首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
G蛋白信号调节因子的结构分类和功能   总被引:2,自引:0,他引:2  
Du YS  Huang BR 《生理科学进展》2005,36(3):215-219
G蛋白信号调节因子是能够直接与激活的Gα亚基结合,显著刺激Gα亚基上的GTP酶活性,加速GTP水解,从而灭活或终止G蛋白信号的一组分子大小各异的多功能蛋白质家族。它们都共同拥有一个130个氨基酸的保守的RGS结构域,其功能是结合激活的Gα亚基,负调节G蛋白信号。许多RGS蛋白还拥有非RGS结构域,能够结合其它信号蛋白,从而整合和调节G蛋白信号之间以及G蛋白和其它信号系统之间的关系。  相似文献   

2.
RAS作为调节细胞增殖、分化和生存等功能的关键分子,在血液肿瘤的发生发展中具有重要作用.RAS突变不仅能通过RAS-RAF-MEK-ERK、RAS-PI3K和RAS-RALGEF-RAL等下游经典的信号通路来促进细胞癌变,也能通过其他机制来促进肿瘤发生.RAS突变在儿童血液肿瘤中广泛存在,但由于RAS下游分子、信号通路...  相似文献   

3.
G15V点突变对水稻OsRacD基因蛋白产物效应的影响   总被引:3,自引:0,他引:3  
在水稻OsRacD基因编码GTPase结构域处,采用PCR方法引入G15V点突变模拟GTP结合形式的OsRacD.原核表达并纯化了突变前后的OsRacD蛋白,用于蛋白生化活性的分析.结果显示,突变后的OsRacD蛋白在GTP水解活性上有显著的提高,提示OsRacD在激活前后具有不同的蛋白生化特性,而且可能通过不同的胞内互作蛋白,引发不同的信号传递,证实了OsRacD在Rho信号转导通路中“分子开关”的重要作用.  相似文献   

4.
癌蛋白YAP1的研究进展   总被引:1,自引:0,他引:1  
Yes相关蛋白1(Yes-associated protein 1,YAP1)是Hippo信号通路(Hippo pathway)中的一个分子.早期研究人员发现,在Hippo信号通路正常的情况下,YAP1处于非激活状态;当Hippo信号通路中的某些分子出现突变时,YAP1处于超激活状态.此时,超激活状态下的YAP1可以促进细胞增殖、转移、生存(survival)以及维持干细胞活性.由于YAP1的超激活可以促进肿瘤的发生与发展,因此,YAP1被定义为一个癌蛋白.近期,研究者发现,YAP1的突变体与小细胞肺癌病人的存活率有一定关系,YAP1与链蛋白(catenin)、Kras相互作用,调节肿瘤细胞的转移侵袭能力,此外,部分micro RNA也与YAP1有相互作用.基于YAP1的功能,可以制定一些抗癌策略,寻找一些抗癌靶点.本文对当前YAP1的研究进行综述,为肿瘤治疗的基础及临床研究提供一些依据.  相似文献   

5.
谭晓红  杨晓 《生命科学》2011,(4):353-358
针对表皮生长因子受体(EGFR)和血管生成(angiogenesis)信号通路的靶向治疗已经在晚期非小细胞肺癌的治疗上取得成功,但由于抗药性的存在,大多数晚期患者的生存时间仍然提高有限。继发性的EGFR T790M突变和原癌基因肝细胞生长因子受体(MET)的扩增被鉴定为两种主要的抗药机制。最近转化生长因子-β(TGF-β)/白介素-6信号通路被报道能介导选择性和适应性地对erlotinib的抗药。另一方面,Kras突变所致肺癌的靶向治疗方面也取得了一些进展。双重抑制磷脂酰肌醇3-激酶(PI3K)和促分裂素原活化蛋白激酶激酶(MEK)信号通路可导致Kras突变肿瘤的显著消退,联合抑制SRC、PI3K和MEK可使丝氨酸/苏氨酸蛋白激酶11(Lkb1)缺失,Kras突变的肺癌小鼠的肿瘤明显消退,抑制核因子-κB(NF-κB)信号通路导致p53缺失,Kras突变的肿瘤发展显著减慢。这些发现都为发展非小细胞肺癌患者的靶向治疗提供了有力的支持。  相似文献   

6.
小分子GTP蛋白涉及肿瘤发生中多条信号通路的改变。类核糖基化因子肿瘤抑制基因1(ADP-ribosylation factor-like tumor suppressorgene1,ARLTS1),是小分子GTP蛋白Ras超家族中ARF家族的成员之一。该基因是低显性基因,可因启动子超甲基化而失调。有两种ARLTSl的多态性与肿瘤的家族风险相关。ARLTS1表达下调与部分肿瘤发生有重要关系,而恢复其表达则会诱导caspase依赖的细胞凋亡发生,并减少肿瘤的体内生长。通过基因微阵列实验发现,转导ARLTS1基因诱导细胞凋亡过程中众多涉及细胞存活、增殖和发育的信号通路。  相似文献   

7.
OsRacD是水稻小GTP结合蛋白Rho家族成员,其功能之一是作为“分子开关”,通过控制花粉管的延伸生长,参与光敏核不育水稻光周期的育性转换。在序列同源性比对和蛋白保守结构域分析的基础上,采用重叠延伸PCR方法在水稻OsRacD基因的第一个高度保守的基序G1区引入T20N点突变,模拟GDP结合形式的OsRacD。进一步构建了与组氨酸标签融合的原核表达载体,原核表达和纯化了野生型和突变型OsRacD蛋白,并通过Western blot证实了融合蛋白表达和纯化的正确性。纯化蛋白的GTP酶活性检测结果显示,突变后的OsRacD蛋白GTP水解活性显著降低,提示OsRacD在T20N突变前后具有不同的生化特性。  相似文献   

8.
内质网应激是细胞内广泛存在的一种应激反应。研究表明,内质网应激与肿瘤的发生发展密切相关。针对内质网应激及其相应信号通路进行肿瘤的预防或治疗受到了广泛关注。IRE1(inositol-requiring enzyme 1)通路是内质网应激诱发的最保守的信号通路。研究证实,IRE1及其主要的下游效应分子剪切型X 盒结合蛋白1与肿瘤进展密切相关。本文对IRE1通路与肿瘤发生发展、血管新生、肿瘤转移、肿瘤耐药性和恶性程度的相关性进行了阐述,同时分析了IRE1在不同肿瘤样本中的突变率、突变类型与病人存活状态的关系。作为肿瘤治疗的有效靶点,针对IRE1通路的调控能够有效延缓肿瘤的发生发展。  相似文献   

9.
RGS(regulators of G protein signaling)是G蛋白偶联信号通路中一类重要的调节蛋白,通过加速Gα结合的GTP水解,即GAP(GTPase activating protein)活性,来中止G蛋白信号通路。RGS4是RGS蛋白家族中的重要成员之一,它能有效中止Gαq介导的信号通路。作者研究了Gαq蛋白对RGS4蛋白的表达调控。当在HEK293细胞中共转染这两个蛋白时,持续性激活的Gαq能特异性地显著增加RGS4蛋白的表达。蛋白降解实验结果证明这种增强作用与RGS4的降解被抑制无关,而与RGS4 mRNA表达增强有关。进一步克隆RGS4蛋白的启动子区域并研究其与RGS4表达相互关系的实验结果又表明,持续性激活的Gαq能够显著增强RGS4启动子区的转录活性,且具有时间和浓度效应。同时,转录因子结合区突变体实验证明,ICE(inverted CCAAT box element)转录因子结合区的突变显著影响RGS4基因的转录活性。以上结果表明Gαq可能通过RGS4的启动子区调控其基因的表达,促进RGS4蛋白表达。  相似文献   

10.
哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,m TOR)是一种丝/苏氨酸蛋白激酶,是细胞内调控生长、增殖的中心信号分子,与肿瘤发生、发展关系密切.近年发现,m TOR信号通路在肾上腺肿瘤的发生发展中扮演重要角色.许多研究证实,PI3K/Akt/m TOR信号通路的关键蛋白Akt、m TOR、S6K1、4EB-P1的磷酸化水平在肾上腺皮质癌(adrenocortical carcinoma,ACC)和嗜铬细胞瘤(pheochromocytomas,PCC)中均明显高于正常肾上腺组织,且可能与肾上腺肿瘤的恶性转化相关.胰岛素样生长因子2基因的杂合性缺失、PTEN的生殖系突变、微小RNA表达异常均可激活PI3K/Akt/m TOR信号通路,使得血管内皮生长因子、细胞周期蛋白等分子过表达,从而产生抑凋亡、促增殖、促血管形成等效应,使组织呈现出肿瘤特征,并促进肿瘤的侵袭和转移.目前,细胞和动物模型研究已证实m TOR抑制剂对ACC与PCC有良好的疗效,且联合其他抗癌药物治疗效果更佳,这给肾上腺肿瘤患者的治疗带来了新的希望.本文总结了近年来m TOR信号通路与肾上腺肿瘤发生、发展的关系进展,希望为肾上腺肿瘤的机制研究及临床治疗提供实验室依据.  相似文献   

11.
小分子G蛋白Rap属于Ras家族,其结构类似于Ras,结合GTP后处于活性状态(RapGTP),结合GDP后则处于非活性状态(RapGDP)。在细胞内,Rap通过RapGTP与RapGDP之间的动态转换起到分子开关的作用,调控细胞增殖、分化、存活、粘附、迁移等生理过程。胞外信号通过特异性鸟嘌呤核苷酸交换因子(guanine nucleotide exchange factors,GEFs)调控Rap与GTP的结合,激活Rap;胞内特异性GTP酶激活蛋白(GTPase activating proteins,GAPs)促进GTP的水解,使Rap失活。活化的Rap信号通过其下游不同的信号分子调控不同的生物学功能。在神经系统中,Rap信号具有多样的生物学功能,Rap信号能促进神经元极性的建立和轴突生长,还能调节神经突生长。Rap信号能够调控神经突触结构和功能的可塑性变化。此外,也有研究报道Rap信号和神经元的迁移具有相关性。本文主要针对Rap信号在神经系统中的功能研究进展进行综述。  相似文献   

12.
胰岛素受体底物蛋白家族(insulin receptor substrate,IRS)具有衔接蛋白功能,可通过结合于跨膜受体而协调胞外信号向胞内的传递,进而激活PI3K/Akt和MAPK这两条经典的信号通路,从而调节细胞生长、增殖、代谢和存活等生物学过程。研究显示,IRS蛋白的表达水平或功能异常常与肿瘤、糖尿病和心血管疾病的发生发展密切相关。本文就IRS蛋白结构、在信号传导过程中的调控作用及其对肿瘤、糖尿病和心血管疾病发生发展的影响进行综述。  相似文献   

13.
HBP1——一种重要的肿瘤抑制因子   总被引:1,自引:0,他引:1  
  相似文献   

14.
thoA介导的细胞骨架在肿瘤发生发展中的作用   总被引:1,自引:0,他引:1  
RhoA是Ras超家族中具有GTP酶活性的一种小G蛋白分子。RhoA在肿瘤组织的高表达与肿瘤的恶性程度密切相关。另外,RhoA的酶活性通过信号通路参与和调节微丝(microfilament,MF)和微管(microtubule,MT)细胞骨架的重排。新近研究表明,活性RhoA调控细胞骨架改变,进而诱导细胞癌变及肿瘤细胞增殖、入侵、转移、屏障功能和凋亡等多种生命活动。因此,研究RhoA介导的细胞骨架在肿瘤发生发展中的作用具有重要意义。该文结合作者的最新研究成果,对RhoA及其分子机制作一综述。  相似文献   

15.
RhoA是Ras超家族中具有GTP酶活性的一种小G蛋白分子。RhoA在肿瘤组织的高表达与肿瘤的恶性程度密切相关。另外,RhoA的酶活性通过信号通路参与和调节微丝(microfi lament,MF)和微管(microtubule,MT)细胞骨架的重排。新近研究表明,活性RhoA调控细胞骨架改变,进而诱导细胞癌变及肿瘤细胞增殖、入侵、转移、屏障功能和凋亡等多种生命活动。因此,研究RhoA介导的细胞骨架在肿瘤发生发展中的作用具有重要意义。该文结合作者的最新研究成果,对RhoA及其分子机制作一综述。  相似文献   

16.
TRIM29在肿瘤中的研究进展   总被引:1,自引:0,他引:1  
TRIM29蛋白属于TRIM蛋白家族,是一种E3泛素连接酶,它在肿瘤的增殖、侵袭转移、耐药及肿瘤免疫中都具有十分重要的作用,且其功能具有细胞和组织特异性。TRIM29蛋白可通过与p53的相互作用促进肿瘤细胞的增殖;通过促进肿瘤细胞上皮-间质转化、激活经典的Wnt信号通路等增强肿瘤细胞的侵袭转移能力。高表达的TRIM29可与DNA修复因子RNF8相互作用促进DNA损伤的修复,也可激活PI3K/AKT信号通路促进P-糖蛋白的表达,从而增强肿瘤细胞对放化疗的耐受性。另外,TRIM29还可调控NK细胞及肺泡巨噬细胞的功能。明确TRIM29在不同肿瘤中的表达水平与功能,可为肿瘤的诊断与治疗提供新的思路。  相似文献   

17.
ARHI是Ras超家族中第一个被报道的肿瘤抑制基因,定位于人染色体lp31,属小GTP结合蛋白,与Ras拥有相似的GTP/GDP结构域,却具有抑癌作用。ARHI是母源性印迹、父源性表达,可参与细胞周期调控和信号通路转导,从而负向调节细胞生长。在正常人类多种组织中都存在ARHI基因的表达,但在肿瘤组织中其表达却下调。ARHI的表达异常可能与印迹基因的杂合性丢失,DNA甲基化和染色体乙酰化修饰等转录水平的调节失常有关。  相似文献   

18.
唐利  刘博强  李承新 《生物磁学》2012,(26):5192-5194
Rab23为小GTP结合蛋白,是Ras超家族Rab家族成员,其突变可引起小鼠开脑综合征(openbrain syndrome),因此又称为opb基因。它是Sonic hedgehog信号通路的负调控因子,在不同肿瘤中发挥不同作用,并参与机体组织器官的发育和分化。它可能通过转运细胞内蛋白发挥相关作用。  相似文献   

19.
Wnt途径—调控细胞增殖和癌变的关键途径   总被引:5,自引:0,他引:5  
高丰  张学  宋今丹 《生命科学》2001,13(1):14-17
Wnt/Wingless途径是调控细胞生长增殖的关键途径,在胚胎发育和肿瘤发生中起着重要作用。由于肿瘤抑制基因APC失活突变或原癌基因β-catenin激活突变等因素引起的该途径的异常激活可以启动下游靶基因c-myc和cyclin D1,致使细胞恶性转化,发生肿瘤,尤其是结肠癌。本文对Wnt-APC-β-catenin-TCF/LEF-c-myc/cyclin D1信号途径的最新研究进展作一综述。  相似文献   

20.
Rab23为小GTP结合蛋白,是Ras超家族Rab家族成员,其突变可引起小鼠开脑综合征(open brain syndrome),因此又称为opb基因.它是Sonic hedgehog信号通路的负调控因子,在不同肿瘤中发挥不同作用,并参与机体组织器官的发育和分化.它可能通过转运细胞内蛋白发挥相关作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号