首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
水稻土中铁还原菌多样性   总被引:4,自引:0,他引:4  
黎慧娟  彭静静 《应用生态学报》2011,22(10):2705-2710
微生物介导的异化Fe(III) 还原是非硫厌氧环境中Fe(III) 还原生成Fe(II) 的主要途径,然而相关的铁还原菌还不是很清楚,特别是在水稻土中.本文采用富集培养的方法,以乙酸和氢气作为电子供体,水铁矿和针铁矿作为电子受体,通过末端限制性片段长度多态性(T-RFLP)技术和16S rRNA基因克隆测序相结合的分子生物学方法研究了水稻土中铁还原菌的多样性.结果表明:无论是以乙酸或氢气为电子供体,水铁矿或针铁矿为电子受体,地杆菌(Geobacter)和梭菌(Clostridiales)是富集到的主要微生物群落;乙酸为电子供体时,富集到的主要微生物群落还包括红环菌(Rhodocyclaceae);因此,除地杆菌外,梭菌和红环菌很可能也是水稻土中重要的铁还原菌.  相似文献   

2.
铁还原菌降解石油烃的研究进展   总被引:1,自引:0,他引:1  
张涵  孙珊珊  董浩  承磊  佘跃惠 《微生物学报》2020,60(6):1246-1258
铁还原菌是指能够利用细胞外Fe(III)作为末端电子受体,通过氧化有机物将Fe(III)还原为Fe(II)微生物的总称。铁还原作用广泛存在于土壤、河流、海洋、地表含水层以及高温高压的地下深部油藏。在厌氧或兼性厌氧条件下,Fe(III)还原耦合有机物的降解,对铁、碳元素的生物地球化学循环具有重要意义。本文介绍了铁还原菌的多样性和铁还原作用机理,综述了铁还原菌在石油烃降解方面的研究进展。此外,还总结了铁还原菌在生物修复中的潜在作用,并对未来的研究方向进行了展望。  相似文献   

3.
将渤海沉积物进行厌氧培养,富集异化Fe(Ⅲ)还原混合菌群。在不同电子受体下,分析铁还原菌群异化还原Fe(Ⅲ)性质。以柠檬酸铁和氢氧化铁为电子受体培养体系,在培养12 h时,累积Fe(Ⅱ)浓度分别为(100.67±0.75)和(53.24±3.63)mg·L~(-1);当培养60h时,累积Fe(Ⅱ)浓度达到(118.95±1.47)和(119.74±3.96)mg·L~(-1)。这表明可溶性与不可溶性电子受体能够显著影响细菌异化Fe(Ⅲ)还原过程,而对累积Fe(Ⅲ)还原量影响不明显。通过高通量测序技术,分析不同电子受体下的异化Fe(Ⅲ)还原混合菌群多样性与优势菌组成。菌群多样性分析表明,以柠檬酸铁和氢氧化铁为电子受体时,菌群多样性Shannon指数分别是3.40和3.11,较对照组(Shannon指数2.07)高,表明培养体系中加入Fe(Ⅲ)能显著提高铁还原混合菌群多样性。异化Fe(Ⅲ)还原混合菌群在不同电子受体下优势菌主要是Clostridium_sensu_stricto和Romboutsia,属于梭菌目Clostridiales,这表明梭菌是参与Fe(Ⅲ)还原的优势菌。  相似文献   

4.
碳源和淹水时间对水稻土微生物Fe(Ⅲ)还原能力的影响   总被引:1,自引:0,他引:1  
易维洁  曲东  王庆 《应用生态学报》2010,21(12):3133-3140
以我国6个省的水稻土为供试样品,采用厌氧恒温培养方法,研究了分别以葡萄糖、丙酮酸盐、乳酸盐和乙酸盐为惟一碳源时不同淹水时间土壤微生物群落对Fe(Ⅲ)的还原能力.结果表明:不同淹水时间对Fe(Ⅲ)还原特征值Vmax的影响显著,表现为淹水20 d > 30 d > 12 d > 1 d > 5 d,不同淹水时间下水稻土微生物群落结构不同是导致Fe(Ⅲ)还原能力不同的主要原因.不同碳源对微生物铁还原过程有显著影响,葡萄糖和丙酮酸盐在不同淹水时间中始终为优势碳源,其Fe(Ⅲ)还原率分别为88.1%~99.9%和58.0%~97.9%;不同土壤铁还原微生物群落对乳酸盐的利用差距较大,湖南和浙江水稻土在整个淹水周期中Fe(Ⅲ)还原率达到87.1%~100%,而其他土壤则表现为淹水前5 d为5.0%~49.4%,12 d后增加到52.2%~99.9%;乙酸盐处理在不同淹水时间中都表现为随时间推移Fe(Ⅲ)还原率逐渐增大的趋势,其中浙江水稻土的变化最大,在5.3%~75.8%.  相似文献   

5.
产甲烷菌广泛分布在淹水水稻土等各种厌氧环境中,在全球气候变化、碳循环和能源等领域都发挥着重要的作用。研究发现,厌氧条件下,水稻土中铁氧化物的生物还原会抑制产甲烷菌的甲烷合成作用。然而,目前关于铁氧化物对产甲烷菌群落结构的影响报道较少。通过泥浆厌氧培养实验,向采集的水稻土中添加甲酸盐作为甲烷合成的底物(Control,CK处理),并设置添加水铁矿作为体系中唯一电子受体的处理组(Ferrihydrite,Fh处理)。培养结束后,与CK相比,添加水铁矿显著降低了古菌在总微生物群落中的占比,但对古菌群落的物种多样性和均一度没有显著影响;且两组处理中优势种均为操作分类单元(Operational taxonomic unit,OTU)2056和OTU 911(76%—80%)。这说明碳源相同时,产甲烷菌的群落结构不受铁氧化物的影响。本研究为探索土壤中微生物铁还原与碳循环耦合的分子机制奠定基础。  相似文献   

6.
刘洪艳  刘淼  袁媛 《微生物学通报》2020,47(9):2711-2719
【背景】一些铁还原细菌具有异化铁还原与产氢的能力,该类细菌在环境污染修复的同时能够解决能源问题。【目的】从海洋沉积物中富集获得异化铁还原菌群,明确混合菌群组成、异化铁还原及产氢性质。获得海洋沉积物中异化铁还原混合菌群组成,分析菌群异化铁还原和产氢性质。【方法】利用高通量测序技术分析异化铁还原菌群的优势菌组成,在此基础上,分析异化铁还原混合菌群在不同电子供体培养条件下异化铁还原能力和产氢性质。【结果】高通量数据表明,在不溶性氢氧化铁为电子受体和葡萄糖为电子供体厌氧培养条件下,混合菌群的优势菌属主要是梭菌(Clostridium),属于发酵型异化铁还原细菌。混合菌群能够利用电子供体蔗糖、葡萄糖以及丙酮酸钠进行异化铁还原及发酵产氢。葡萄糖为电子供体时,菌群累积产生Fe(Ⅱ)浓度和产氢量最高,分别是59.34±6.73 mg/L和629.70±11.42 mL/L。【结论】异化铁还原混合菌群同时具有异化铁还原和产氢能力,拓宽了发酵型异化铁还原细菌的种质资源,探索异化铁还原细菌在生物能源方面的应用。  相似文献   

7.
淹水时间对水稻土中地杆菌科群落结构及丰度的影响   总被引:2,自引:0,他引:2  
【目的】通过模拟水稻土淹水过程,探讨地杆菌科(Geobacteraceae)群落结构和相对丰度随淹水时间的动态变化特征,揭示其群落结构和相对丰度变化与微生物Fe(Ⅲ)还原的内在联系。【方法】提取水稻土淹水培养1 h、1 d、5 d、10 d、20 d和30 d后的微生物总DNA,构建地杆菌科16S rDNA克隆文库,采用PCR-RFLP方法分析地杆菌科的群落结构和多样性变化特征,通过Real-time PCR技术测定地杆菌科相对丰度的动态变化。采用厌氧泥浆培养方法,测定水稻土中Fe(Ⅱ)产生量变化。【结果】供试水稻土中,微生物Fe(Ⅲ)还原过程在淹水培养初期变化明显,培养20 d后达到稳定期,最大铁还原潜势为10.16 mg/g,最大反应速率为1.064 mg/(g.d),最大反应速率对应的时间为4.84 d。α多样性指数显示,水稻土中地杆菌科的多样性随淹水时间延长呈现波动性变化,淹水5 d和20 d处理出现2个峰值,而淹水10 d和30 d处理的多样性明显减小。β多样性指数表明淹水过程中群落结构存在明显差异。不同淹水时间共产生了10种地杆菌科优势类型,分别属于Clade 1和Clade 2。Real-time PCR结果表明,地杆菌科与总细菌16S rDNA丰度的比值在淹水培养1 d时最小(1.20%),而20 d时达到最大值(4.54%)。【结论】淹水培养的水稻土中,地杆菌科微生物的多样性和相对丰度的动态变化与微生物Fe(Ⅲ)还原过程密切相关。  相似文献   

8.
短期淹水培养对水稻土中地杆菌和厌氧粘细菌丰度的影响   总被引:3,自引:0,他引:3  
模拟水稻土淹水过程,采用Real-time PCR技术测度了不同水稻土中地杆菌(Geobacteraceae spp.)和厌氧粘细菌(Anaeromyxobacter spp.)在不同淹水时期16S rDNA拷贝数的变化,比较了地杆菌和厌氧粘细菌丰度与培养过程中微生物Fe (Ⅲ)还原的关系。结果表明,在4类稻作区采集的水稻土样品中,Fe (Ⅲ)还原潜势有明显的区别,表现出由北向南逐渐降低的趋势。从淹水12 h的地杆菌和厌氧粘细菌拷贝数变化看出,采自浙江和天津的水稻土样品对淹水过程具有高度敏感性,而采自吉林和广西的水稻土样品对淹水响应不敏感。在17 d的短期淹水培养中,地杆菌丰度明显高于厌氧粘细菌,表明地杆菌对水稻土中铁还原的贡献大于厌氧粘细菌。地杆菌和厌氧粘细菌拷贝数总体上表现出在11 d 时达到峰值,17 d时显著下降。吉林水稻土中地杆菌丰度在5 d时达到38.3%,与其最大铁还原速率到达时间(TVmax)为4.07 d相对应,表明地杆菌对其铁还原过程具有重要贡献。四川水稻土中地杆菌和厌氧粘细菌丰度均较低,暗示其他兼性铁还原菌对其铁还原的作用值得重视。  相似文献   

9.
初始pH值对碱性和酸性水稻土微生物铁还原过程的影响   总被引:2,自引:0,他引:2  
吴超  曲东  刘浩 《生态学报》2014,34(4):933-942
酸碱度(pH值)是水稻土铁还原过程的重要影响因素之一。通过模拟水稻土淹水厌氧培养,以Al2(SO4)3和Na2CO3溶液分别调节碱性和酸性水稻土pH值至强酸性(pH值5.0)、酸性(pH值5.0—6.5)、中性(pH值6.5—7.5)、碱性(pH值7.5—8.5)、强碱性(pH值8.5),以此来研究5种初始pH值对水稻土泥浆铁还原过程的影响;通过微生物群落厌氧培养研究了2种水稻土菌悬液在6种pH值条件下的铁还原能力差异。结果表明,碱性水稻土铁还原潜势(a)、最大铁还原速率(V max)随初始pH值的降低而下降,而达到最大铁还原速率所需的时间(T Vmax)则延长。提高酸性水稻土初始pH值使铁还原V max增加而T Vmax缩短,但土壤中无定形氧化铁均能还原,初始pH值与V max具有显著正相关关系。碱性和酸性水稻土的土壤菌悬液在试验pH值范围内厌氧培养,其铁还原能力在培养初期差异不显著,但培养后期的差异明显,且最终都能把培养液中氧化铁完全还原。随着初始pH值升高T Vmax延长,V max则降低,且均显著负相关,但碱性水稻土微生物群落的V max在pH值6.00时最大。初始pH值和土壤类型对水稻土铁还原过程具有显著影响,且对土壤菌悬液微生物群的铁还原具有一定影响。  相似文献   

10.
[目的]研究嗜水气单胞菌HS01的偶氮染料还原脱色特性.[方法]建立HS01/偶氮染料/电子供体序批式厌氧反应体系,研究Fe(Ⅲ)/腐殖质还原菌HS01以偶氮染料为电子受体的厌氧呼吸特性及影响因素;并构建HS01/偶氮染料/电子供体/铁氧化物体系,探讨铁氧化物对HS01偶氮还原的影响.[结果]HS01可将金橙Ⅰ迅速还原,菌体增殖;柠檬酸、丙三醇、蔗糖和葡萄糖体系中,16h金橙Ⅰ的脱色率分别达87%、85%、88%、90%;不同pH和金橙Ⅰ初始浓度条件下的脱色率不同;在反应体系中加入α-FeOOH,脱色率从90%增加至95%,Fe(Ⅱ)生成量与无染料对照体系相当.[结论]HS01能以葡萄糖为电子供体,金橙Ⅰ为唯一电子受体,进行厌氧呼吸;蔗糖、柠檬酸、丙三醇也可作为有效的电子供体,脱色率依次递减;甲酸、乙酸、乳酸、乙醇及丙酸不能作为HS01厌氧呼吸的电子供体.金橙Ⅰ脱色的最佳pH范围为6.0-8.0;高浓度(2.0 mmol/L)金橙Ⅰ负荷下,HS01仍保持高脱色率(>85%).在HS01/α-FeOOH/金橙Ⅰ体系中,异化铁还原作用与偶氮呼吸作用同时发生,异化铁还原能促进偶氮脱色,而脱色对Fe(Ⅲ)还原没有明显影响.这可为铁/腐殖质还原菌在环境修复和废水处理等领域的应用提供研究积累.  相似文献   

11.
Li HJ  Peng JJ 《应用生态学报》2011,22(10):2705-2710
Microorganism-mediated dissimilatory Fe (III) reduction is recognized as the dominant mechanism for Fe(III) reduction to Fe(II) in non-sulfidogenic anaerobic environments, but the microorganisms involved, especially in paddy soil, are still poorly understood. In this paper, an enrichment culture was conducted to study the phylogenetic diversity of Fe (III)-reducing bacteria in paddy soil, with acetate or hydrogen as the electron donor and with ferrihydrite or goethite as the electron acceptor, and by the methods of terminal-restriction fragment length polymorphism (T-RFLP) technology and 16S rRNA genes cloning and sequencing. No matter what the electron donor and electron acceptor were supplemented, the most abundant microorganisms were Geobacter and Clostridiales, and Rhodocyclaceae were also abundant, when acetate was supplemented as electron donor, which suggested that besides Geobacter, Clostridiales and Rhodocyclaceae could be also the important Fe(III)-reducing bacteria in paddy soil.  相似文献   

12.
In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram-negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor for Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.  相似文献   

13.
异化Fe(Ⅲ)还原微生物研究进展   总被引:7,自引:0,他引:7  
黎慧娟  彭静静 《生态学报》2012,32(5):1633-1642
铁是地壳中含量第四丰富的元素,微生物介导的异化铁还原是自然界中Fe(Ⅲ)还原的主要途径。介绍了Fe(Ⅲ)还原菌的分类及多样性,总结了Fe(Ⅲ)还原菌还原铁氧化物机制及其产能代谢机制,概述了Fe(Ⅲ)还原菌的生态环境意义,并对未来Fe(Ⅲ)还原菌的分子生态学研究方向提出了探索性的建议。  相似文献   

14.
The mechanisms for Fe(III) oxide reduction in Geobacter species are of interest because Fe(III) oxides are the most abundant form of Fe(III) in many soils and sediments and Geobacter species are prevalent Fe(III)-reducing microorganisms in many of these environments. Protein abundance in G. sulfurreducens grown on poorly crystalline Fe(III) oxide or on soluble Fe(III) citrate was compared with a global accurate mass and time tag proteomic approach in order to identify proteins that might be specifically associated with Fe(III) oxide reduction. A total of 2991 proteins were detected in G. sulfurreducens grown with acetate as the electron donor and either Fe(III) oxide or soluble Fe(III) citrate as the electron acceptor, resulting in 86% recovery of the genes predicted to encode proteins. Of the total expressed proteins 76% were less abundant in Fe(III) oxide cultures than in Fe(III) citrate cultures, which is consistent with the overall slower rate of metabolism during growth with an insoluble electron acceptor. A total of 269 proteins were more abundant in Fe(III) oxide-grown cells than in cells grown on Fe(III) citrate. Most of these proteins were in the energy metabolism category: primarily electron transport proteins, including 13 c-type cytochromes and PilA, the structural protein for electrically conductive pili. Several of the cytochromes that were more abundant in Fe(III) oxide-grown cells were previously shown with genetic approaches to be essential for optimal Fe(III) oxide reduction. Other proteins that were more abundant during growth on Fe(III) oxide included transport and binding proteins, proteins involved in regulation and signal transduction, cell envelope proteins, and enzymes for amino acid and protein biosynthesis, among others. There were also a substantial number of proteins of unknown function that were more abundant during growth on Fe(III) oxide. These results indicate that electron transport to Fe(III) oxide requires additional and/or different proteins than electron transfer to soluble, chelated Fe(III) and suggest proteins whose functions should be further investigated in order to better understand the mechanisms of electron transfer to Fe(III) oxide in G. sulfurreducens.  相似文献   

15.
Microorganisms in the family Geobacteraceae are the predominant Fe(III)-reducing microorganisms in a variety of subsurface environments in which Fe(III) reduction is an important process, but little is known about the mechanisms for electron transport to Fe(III) in these organisms. The Geobacter sulfurreducens genome was found to contain a 10-kb chromosomal duplication consisting of two tandem three-gene clusters. The last genes of the two clusters, designated omcB and omcC, encode putative outer membrane polyheme c-type cytochromes which are 79% identical. The role of the omcB and omcC genes in Fe(III) reduction in G. sulfurreducens was investigated. OmcB and OmcC were both expressed during growth with acetate as the electron donor and either fumarate or Fe(III) as the electron acceptor. OmcB was ca. twofold more abundant under both conditions. Disrupting omcB or omcC by gene replacement had no impact on growth with fumarate. However, the OmcB-deficient mutant was greatly impaired in its ability to reduce Fe(III) both in cell suspensions and under growth conditions. In contrast, the ability of the OmcC-deficient mutant to reduce Fe(III) was similar to that of the wild type. When omcB was reintroduced into the OmcB-deficient mutant, the capacity for Fe(III) reduction was restored in proportion to the level of OmcB production. These results indicate that OmcB, but not OmcC, has a major role in electron transport to Fe(III) and suggest that electron transport to the outer membrane is an important feature in Fe(III) reduction in this organism.  相似文献   

16.
Repeated anaerobic microbial redox cycling of iron   总被引:4,自引:0,他引:4  
Some nitrate- and Fe(III)-reducing microorganisms are capable of oxidizing Fe(II) with nitrate as the electron acceptor. This enzymatic pathway may facilitate the development of anaerobic microbial communities that take advantage of the energy available during Fe-N redox oscillations. We examined this phenomenon in synthetic Fe(III) oxide (nanocrystalline goethite) suspensions inoculated with microflora from freshwater river floodplain sediments. Nitrate and acetate were added at alternate intervals in order to induce repeated cycles of microbial Fe(III) reduction and nitrate-dependent Fe(II) oxidation. Addition of nitrate to reduced, acetate-depleted suspensions resulted in rapid Fe(II) oxidation and accumulation of ammonium. High-resolution transmission electron microscopic analysis of material from Fe redox cycling reactors showed amorphous coatings on the goethite nanocrystals that were not observed in reactors operated under strictly nitrate- or Fe(III)-reducing conditions. Microbial communities associated with N and Fe redox metabolism were assessed using a combination of most-probable-number enumerations and 16S rRNA gene analysis. The nitrate-reducing and Fe(III)-reducing cultures were dominated by denitrifying Betaproteobacteria (e.g., Dechloromonas) and Fe(III)-reducing Deltaproteobacteria (Geobacter), respectively; these same taxa were dominant in the Fe cycling cultures. The combined chemical and microbiological data suggest that both Geobacter and various Betaproteobacteria participated in nitrate-dependent Fe(II) oxidation in the cycling cultures. Microbially driven Fe-N redox cycling may have important consequences for both the fate of N and the abundance and reactivity of Fe(III) oxides in sediments.  相似文献   

17.
Fe(III) and S0 reduction by Pelobacter carbinolicus.   总被引:3,自引:2,他引:1       下载免费PDF全文
There is a close phylogenetic relationship between Pelobacter species and members of the genera Desulfuromonas and Geobacter, and yet there has been a perplexing lack of physiological similarities. Pelobacter species have been considered to have a fermentative metabolism. In contrast, Desulfuromonas and Geobacter species have a respiratory metabolism with Fe(III) serving as the common terminal electron acceptor in all species. However, the ability of Pelobacter species to reduce Fe(III) had not been previously evaluated. When a culture of Pelobacter carbinolicus that had grown by fermentation of 2,3-butanediol was inoculated into the same medium supplemented with Fe(III), the Fe(III) was reduced. There was less accumulation of ethanol and more production of acetate in the presence of Fe(III). P. carbinolicus grew with ethanol as the sole electron donor and Fe(III) as the sole electron acceptor. Ethanol was metabolized to acetate. Growth was also possible on Fe(III) with the oxidation of propanol to propionate or butanol to butyrate if acetate was provided as a carbon source. P. carbinolicus appears capable of conserving energy to support growth from Fe(III) respiration as it also grew with H2 or formate as the electron donor and Fe(III) as the electron acceptor. Once adapted to Fe(III) reduction, P. carbinolicus could also grow on ethanol or H2 with S0 as the electron acceptor. P. carbinolicus did not contain detectable concentrations of the c-type cytochromes that previous studies have suggested are involved in electron transport to Fe(III) in other organisms that conserve energy to support growth from Fe(III) reduction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO(2) at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently as an electron donor for direct cell-mediated reduction of technetium, supported the reduction of Fe(III), and the Fe(II) formed was able to transfer electrons abiotically to Tc(VII). Tc(VII) reduction was comparatively inefficient via this indirect mechanism when soluble Fe(III) citrate was supplied to the cultures but was enhanced in the presence of solid Fe(III) oxide. The rate of Tc(VII) reduction was optimal, however, when Fe(III) oxide reduction was stimulated by the addition of the humic analog and electron shuttle anthaquinone-2,6-disulfonate, leading to the rapid formation of the Fe(II)-bearing mineral magnetite. Under these conditions, Tc(VII) was reduced and precipitated abiotically on the nanocrystals of biogenic magnetite as TcO(2) and was removed from solution to concentrations below the limit of detection by scintillation counting. Cultures of Fe(III)-reducing bacteria enriched from radionuclide-contaminated sediment using Fe(III) oxide as an electron acceptor in the presence of 25 microM Tc(VII) contained a single Geobacter sp. detected by 16S ribosomal DNA analysis and were also able to reduce and precipitate the radionuclide via biogenic magnetite. Fe(III) reduction was stimulated in aquifer material, resulting in the formation of Fe(II)-containing minerals that were able to reduce and precipitate Tc(VII). These results suggest that Fe(III)-reducing bacteria may play an important role in immobilizing technetium in sediments via direct and indirect mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号