首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solution structure and hydration of the chimeric duplex [d(CGC)r(aaa)d(TTTGCG)]2, in which the central hybrid segment is flanked by DNA duplexes at both ends, was determined using two-dimensional NMR, simulated annealing and restrained molecular dynamics. The solution structure of this chimeric duplex differs from the previously determined X-ray structure of the analogous B-DNA duplex [d(CGCAAATTTGCG)]2 as well as NMR structure of the analogous A-RNA duplex [r(cgcaaauuugcg)]2. Long-lived water molecules with correlation time τc longer than 0.3 ns were found close to the RNA adenine H2 and H1′ protons in the hybrid segment. A possible long-lived water molecule was also detected close to the methyl group of 7T in the RNA–DNA junction but not with the other two thymines (8T and 9T). This result correlates with the structural studies that only DNA residue 7T in the RNA–DNA junction adopts an O4′-endo sugar conformation, while the other DNA residues including 3C in the DNA–RNA junction, adopt C1′-exo or C2′-endo conformations. The exchange rates for RNA C2′-OH were found to be ~520 s–1. This slow exchange rate may be due to the narrow minor groove width of [d(CGC)r(aaa)d(TTTGCG)]2, which may trap the water molecules and restrict the dynamic motion of hydroxyl protons. The minor groove width of [d(CGC)r(aaa)d(TTTGCG)]2 is wider than its B-DNA analog but narrower than that of the A-RNA analog. It was further confirmed by its titration with the minor groove binding drug distamycin. A possible 2:1 binding mode was found by the titration experiments, suggesting that this chimeric duplex contains a wider minor groove than its B-DNA analog but still narrow enough to hold two distamycin molecules. These distinct structural features and hydration patterns of this chimeric duplex provide a molecular basis for further understanding the structure and recognition of DNA·RNA hybrid and chimeric duplexes.  相似文献   

2.
S H Chou  P Flynn  B Reid 《Biochemistry》1989,28(6):2435-2443
The nonsymmetrical double-helical hybrid dodecamer d(CGTTATAATGCG).r(CGCAUUAUAACG) was synthesized with solid-phase phosphoramidite methods and studied by high-resolution 2D NMR. The imino protons were assigned by one-dimensional nuclear Overhauser methods. All the base protons and H1', H2', H2", H3', and H4' sugar protons of the DNA strand and the base protons, H1', H2', and most of the H3'-H4' protons of the RNA strand were assigned by 2D NMR techniques. The well-resolved spectra allowed a qualitative analysis of relative proton-proton distances in both strands of the dodecamer. The chemical shifts of the hybrid duplex were compared to those of the pure DNA double helix with the same sequence (Wemmer et al., 1984). The intrastrand and cross-strand NOEs from adenine H2 to H1' resonances of neighboring base pairs exhibited characteristic patterns that were very useful for checking the spectral assignments, and their highly nonsymmetric nature reveals that the conformations of the two strands are quite different. Detailed analysis of the NOESY and COSY spectra, as well as the chemical shift data, indicate that the RNA strand assumes a normal A-type conformation (C3'-endo) whereas the DNA strand is in the general S domain but not exactly in the normal C2'-endo conformation. The overall structure of this RNA-DNA duplex is different from that reported for hybrid duplexes in solution by other groups (Reid et al., 1983a; Gupta et al., 1985) and is closer to the C3'-endo-C2'-endo hybrid found in poly(dA).poly(dT) and poly(rU).poly(dA) in the fiber state (Arnott et al., 1983, 1986).  相似文献   

3.
The solution structure and hydration of a DNARNA hybrid chimeric duplex [d(CGC)r(amamam)d(TTTGCG)]2 in which the RNA adenines were substituted by 2-O-methylated riboadenines was determined using two-dimensional NMR, simulated annealing, and restrained molecular dynamics. Only DNA residue 7T in the 2-OMe-RNA DNA junction adopted an O4-endo sugar conformation, while the other DNA residues including 3C in the DNA 2-OMe-RNA junction, adopted C1-exo or C2-endo conformations. The observed NOE intensity of 2-O-methyl group to H1 proton of 4am at the DNA 2-OMe-RNA junction is much weaker than those of 5am and 6am. The 2-O-methyl group of 4am was found to orient towards the minor groove in the trans domain while the 2-O- methyl groups of 5am and 6am were found to be in the gauche (+) domain. In contrast to the long-lived water molecules found close to the RNA adenine H2 and H1 protons and the methyl group of 7T in the RNA-DNA junction of [d(CGC)r(aaa)d(TTTGCG)]2, there were no long-lived water molecules found in [d(CGC)r(amamam)d(TTTGCG)]2. This is probably due to the hydrophobic enviroment created by the 2-O-methylated riboadenines in the minor groove or due to the wider minor groove width in the middle of the structure. In addition, the 2-O-methylation of riboadenines in pure chimeric duplex increses its melting temperature from 48.5°C to 51.9°C. The characteristic structural features and hydration patterns of this chimeric duplex provide a molecular basis for further therapeutic applications of DNARNA hybrid and chimeric duplexes with 2-modified RNA residues.  相似文献   

4.
The hetero duplex molecule, r(CGCA)d(AAAAAGCG):d(CGCTTTTTTGCG) which corresponds to Okazaki fragment was synthesized and its molecular structure has been analyzed by NMR study. The RNA strand of RNA-DNA hybrid region adopts A-form and DNA strand of the same region deviates from the standard B-form. The conformation of DNA-DNA duplex segment belongs to B-form. The hybrid-DNA duplex junction shows a structural discontinuities, A-B junction. The same conformational characteristic of oligo(dA): oligo(dT) tract as that of DNA oligomer which has same base sequence has been observed.  相似文献   

5.
Crystal structure of a DNA.RNA hybrid, d(CTCCTCTTC).r(gaagagagag), with an adenine bulge in the polypurine RNA strand was determined at 2.3 A resolution. The structure was solved by the molecular replacement method and refined to a final R-factor of 19.9% (Rfree 22.2%). The hybrid duplex crystallized in the space group I222 with unit cell dimensions, a = 46.66 A, b = 47.61 A and c = 54.05 A, and adopts the A-form conformation. All RNA and DNA sugars are in the C3'-endo conformation, the glycosyl angles in anti conformation and the majority of the C4'-C5' torsion angles in g+ except two trans angles, in conformity with the C3'-endo rigid nucleotide hypothesis. The adenine bulge is looped out and it is also in the anti C3'-endo conformation. The bulge is involved in a base-triple (C.g)*a interaction with the end base-pair (C9.g10) in the minor groove of a symmetry-related molecule. The 2' hydroxyl group of g15 is hydrogen bonded to O2P and O5' of g17, skipping the bulged adenine a16 and stabilizing the sugar-phosphate backbone of the hybrid. The hydrogen bonding and the backbone conformation at the bulged adenine site is very similar to that found in the crystal structure of a protein-RNA complex.  相似文献   

6.
The self-complementary oligonucleotides [r(CGC)d(CGC)]2 and [d(CCCCGGGG)]2 in single-crystal and solution forms have been investigated by Raman spectroscopy. Comparison of the Raman spectra with results of single-crystal X-ray diffraction and with data from polynucleotides permits the identification of a number of Raman frequencies diagnostic of the A-helix structure for GC sequences. The guanine ring frequency characteristic of C3'-endo pucker and anti base orientation is assigned at 668 +/- 2 cm-1 for both dG and rG residues of the DNA/RNA hybrid [r(GCG)d(CGC)]2. The A-helix backbone of crystalline [r(GCG)d(CGC)]2 is altered slightly in the aqueous structure, consistent with the conversion of at least two residues to the C2'-endo/anti conformation. For crystalline [d(CCCCGGGG)]2, the Raman and X-ray data indicate nucleosides of alternating 2'-endo-3'-endo pucker sandwiched between terminal and penultimate pairs of C3'-endo pucker. The A-A-B-A-B-A-A-A backbone of the crystalline octamer is converted completely to a B-DNA fragment in aqueous solution with Raman markers characteristic of C2'-endo/anti-G (682 +/- 2) and the B backbone (826 +/- 2 cm-1). In the case of poly(dG).poly(dC), considerable structural variability is detected. A 4% solution of the duplex is largely A DNA, but a 2% solution is predominantly B DNA. On the other hand, an oriented fiber drawn at 75% relative humidity reveals Raman markers characteristic of both A DNA and a modified B DNA, not unlike the [d-(CCCCGGGG)]2 crystal. A comparison of Raman and CD spectra of the aqueous [d(CCCCGGGG)]2 and poly(dG).poly(dC) structures suggests the need for caution in the interpretation of CD data from G clusters in DNA.  相似文献   

7.
S H Chou  P Flynn  A Wang  B Reid 《Biochemistry》1991,30(21):5248-5257
Two symmetrical DNA-RNA-DNA duplex chimeras, d(CGCG)r(AAUU)d(CGCG) (designated rAAUU) and d(CGCG)r(UAUA)d(CGCG) (designated rUAUA), and a nonsymmetrical chimeric duplex, d(CGTT)r(AUAA)d(TGCG)/d(CGCA)r(UUAU)d(A ACG) (designated rAUAA), as well as their pure DNA analogues, containing dU instead of T, have been synthesized by solid-phase phosphoramidite methods and studied by high-resolution NMR techniques. The 1D imino proton NOE spectra of these d-r-d chimeras indicate normal Watson-Crick hydrogen bonding and base stacking at the junction region. Preliminary qualitative NOESY, COSY, and chemical shift data suggest that the internal RNA segment contains C3'-endo (A-type) sugar conformations except for the first RNA residues (position 5 and 17) following the 3' end of the DNA block, which, unlike the other six ribonucleotides, exhibit detectable H1'-H2' J coupling. The nucleosides of the two flanking DNA segments appear to adopt a fairly normal C2'-endo B-DNA conformation except at the junction with the RNA blocks (residues 4 and 16), where the last DNA residue appears to adopt an intermediate sugar conformation. The DNA-RNA junction residues exhibit quite different COSY, chemical shift, and NOE behavior, but these effects do not appear to propagate into the DNA or RNA segments. The circular dichroism spectra of these d-r-d chimeras also display a mixture of characteristic A-type and B-type absorption bands. The data indicate that A-type and B-type conformations can coexist in a single short continuous nucleic acid duplex, but our results differ somewhat from previous theoretical model studies.  相似文献   

8.
9.
To gain insight into the origins of the large binding affinity of RNA toward target duplexes, 2'-deoxy-2'-fluororibonucleic acid (2'F-RNA) and 2'-deoxy-2'-fluoroarabinonucleic acid (2'F-ANA) were tested for their ability to recognize duplex DNA, duplex RNA, and RNA-DNA hybrids. 2'F-RNA, 2'F-ANA, and the corresponding control single-stranded (ss) DNA strands were shown to form triple-helical complexes only with duplex DNA and hybrid DNA (Pu)-RNA (Py), but not with duplex RNA and hybrid RNA (Pu)-DNA (Py). In contrast, an RNA third strand recognized all four possible duplexes (DD, DR, RD, and RR) as previously demonstrated by Roberts and Crothers [(1992) Science 258, 1463-1466]. The 2'F-RNA (C3'-endo) strand exhibited significantly reduced affinity for duplexes compared to an unmodified RNA (C3'-endo) strand. These findings are consistent with the intermolecular 2'-OH-phosphate contact mechanism proposed by Escudé et al. [(1993) Nucleic Acids Res. 24, 5547-5553], as a ribo 2'-F atom should not interact with a negatively charged phosphate. In addition, they emphasize the role of the 2'-OH ribose as a general recognition and binding determinant of RNA. The 2'-F arabino modification (2'F-ANA, C2'-endo) led to a considerable increase in the binding affinity for duplex DNA, as compared to those of DNA and 2'F-RNA third strands. This is likely to be the result of a greater population of C2'-endo pucker of the 2'F-ANA compared to DNA. The enhancement observed for 2'F-ANA strands toward duplex DNA is comparable to that observed with 2'-OMe RNA. Since 2'F-ANA has been shown to be more resistant to nuclease degradation than DNA, these results are likely to stimulate experimental work on arabinose derivatives in laboratories concerned with targeting DNA sequences in vivo ("antigene" strategy).  相似文献   

10.
Raman spectra of the parallel-stranded duplex formed from the deoxyoligonucleotides 5'-d-[(A)10TAATTTTAAATATTT]-3' (D1) and 5'-d[(T)10ATTAAAATTTATAAA]-3' (D2) in H2O and D2O have been acquired. The spectra of the parallel-stranded DNA are then compared to the spectra of the antiparallel double helix formed from the deoxyoligonucleotides D1 and 5'-d(AAATATTTAAAATTA-(T)10]-3' (D3). The Raman spectra of the antiparallel-stranded (aps) duplex are reminiscent of the spectra of poly[d(A)].poly[d(T)] and a B-form structure similar to that adopted by the homopolymer duplex is assigned to the antiparallel double helix. The spectra of the parallel-stranded (ps) and antiparallel-stranded duplexes differ significantly due to changes in helical organization, i.e., base pairing, base stacking, and backbone conformation. Large changes observed in the carbonyl stretching region (1600-1700 cm-1) implicate the involvement of the C(2) carbonyl of thymine in base pairing. The interaction of adenine with the C(2) carbonyl of thymine is consistent wtih formation of reverse Watson-Crick base pairing in parallel-stranded DNA. Phosphate-furanose vibrations similar to those observed for B-form DNA of heterogenous sequence and high A,T content are observed at 843 and 1092 cm-1 in the spectra of the parallel-stranded duplex. The 843-cm-1 band is due to the presence of a sizable population of furanose rings in the C2'-endo conformation. Significant changes observed in the regions from 1150 to 1250 cm-1 and from 1340 to 1400 cm-1 in the spectra of the parallel-stranded duplex are attributed to variations in backbone torsional and glycosidic angles and base stacking.  相似文献   

11.
X L Gao  D J Patel 《Biochemistry》1988,27(5):1744-1751
We report on two-dimensional proton NMR studies of echinomycin complexes with the self-complementary d(A1-C2-G3-T4) and d(T1-C2-G3-A4) duplexes in aqueous solution. The exchangeable and nonexchangeable antibiotic and nucleic acid protons in the 1 echinomycin per tetranucleotide duplex complexes have been assigned from analyses of scalar coupling and distance connectivities in two-dimensional data sets recorded in H2O and D2O solution. An analysis of the intermolecular NOE patterns for both complexes combined with large upfield imino proton and large downfield phosphorus complexation chemical shift changes demonstrates that the two quinoxaline chromophores of echinomycin bisintercalate into the minor groove surrounding the dC-dG step of each tetranucleotide duplex. Further, the quinoxaline rings selectively stack between A1 and C2 bases in the d(ACGT) complex and between T1 and C2 bases in the d(TCGA) complex. The intermolecular NOE patterns and the base and sugar proton chemical shifts for residues C2 and G3 are virtually identical for the d(ACGT) and d(TCGA) complexes. A change in sugar pucker from the C2'-endo range to the C3'-endo range is detected at C2 on formation of the d(ACGT) and d(TCGA) complexes. In addition, the sugar ring protons of C2 exhibit upfield shifts and a large 1 ppm separation between the H2' and H2" protons for both complexes. The L-Ala amide protons undergo large downfield complexation shifts consistent with their participation in intermolecular hydrogen bonds for both tetranucleotide complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Ohtani N  Tomita M  Itaya M 《The FEBS journal》2008,275(21):5444-5455
Junction ribonuclease (JRNase) recognizes the transition from RNA to DNA of an RNA-DNA/DNA hybrid, such as an Okazaki fragment, and cleaves it, leaving a mono-ribonucleotide at the 5' terminus of the RNA-DNA junction. Although this JRNase activity was originally reported in calf RNase H2, some other RNases H have recently been suggested to possess it. This paper shows that these enzymes can also cleave an RNA-DNA/RNA heteroduplex in a manner similar to the RNA-DNA/DNA substrate. The cleavage site of the RNA-DNA/RNA substrate corresponds to the RNA/RNA duplex region, indicating that the cleavage activity cannot be categorized as RNase H activity, which specifically cleaves an RNA strand of an RNA/DNA hybrid. Examination of several RNases H with respect to JRNase activity suggested that the activity is only found in RNase HII orthologs. Therefore, RNases HIII, which are RNase HII paralogs, are distinguished from RNases HII by the absence of JRNase activity. Whether a substrate can be targeted by JRNase activity would depend only on whether or not an RNA-DNA junction consisting of one ribonucleotide and one deoxyribonucleotide is included in the duplex. In addition, although the activity has been reported not to occur on completely single-stranded RNA-DNA, it can recognize a single-stranded RNA-DNA junction if a double-stranded region is located adjacent to the junction.  相似文献   

13.
Structural studies using 500 MHz 1H NMR spectroscopy on Bam H1 recognition site d(GGATCC)2 in solution at 19 degrees is reported. The resonances from the sugar ring and base protons have been assigned from the 2D-COSY and NOESY spectra. Analyses of the NOESY cross-peaks between the base protons H8/H6 and sugar protons H2'/H2", H3' reveal that the nucleotide units G2, A3 and C6 adopt (C3'-endo, chi = 200 degrees-220 degrees) conformation while G1, T4 and C5 exhibit (C2'-endo, chi = 240 degrees-260 degrees) conformation. NMR data clearly suggest that the two strands of d(GGATCC)2 are conformationally equivalent and there is a structural two-fold between the two A-T pairs. The above information and the NOESY data are used to generate a structural model of d(GGATCC)2. The important features are: (i) G1-G2 stack, the site of cleavage, shows an alternation in sugar pucker i.e. C2'-endo, C3'-endo as in a B-A junction, (ii) G2-A3 stack adopts a mini A-DNA, both the sugars being C3'-endo, (iii) A3-T4 stack, the site of two-fold, displays an A-B junction with alternation in sugar pucker as C3'-endo, C2'-endo, (iv) T4-C5 stack adopts a mini B-DNA both the sugars being C2'-endo and (v) C5-C6 stack exhibits a B-A junction with C2'-endo, C3'-endo sugar puckers. Thus, our studies demonstrate that conformational microheterogeneity with a structural two fold, is present in the Bam H1 recognition site.  相似文献   

14.
15.
Vaccinia virus RNA helicase (NPH-II) catalyzes nucleoside triphosphate-dependent unwinding of duplex RNAs containing a single-stranded 3' RNA tail. In this study, we examine the structural features of the nucleic acid substrate that are important for helicase activity. Strand displacement was affected by the length of the 3' tail. Whereas NPH-II efficiently unwound double-stranded RNA substrates with 19- or 11-nucleotide (nt) 3' tails, shortening the 3' tail to 4 nt reduced unwinding by an order of magnitude. Processivity of the helicase was inferred from its ability to unwind a tailed RNA substrate containing a 96-bp duplex region. NPH-II exhibited profound asymmetry in displacing hybrid duplexes composed of DNA and RNA strands. A 34-bp RNA-DNA hybrid with a 19-nt 3' RNA tail was unwound catalytically, whereas a 34-bp DNA-RNA hybrid containing a 19-nt 3' DNA tail was 2 orders of magnitude less effective as a helicase substrate. NPH-II was incapable of displacing a 34-bp double-stranded DNA substrate of identical sequence. 3'-Tailed DNA molecules with 24- or 19-bp duplex regions were also inert as helicase substrates. On the basis of current models for RNA-DNA hybrid structures, we suggest the following explanation for these findings. (i) Unwinding of duplex nucleic acids by NPH-II is optimal when the polynucleotide strand of the duplex along which the enzyme translocates has adopted an A-form secondary structure, and (ii) a B-form secondary structure impedes protein translocation through DNA duplexes.  相似文献   

16.
A hairpin structure contains two conformationally distinct domains: a double-helical stem with Watson-Crick base pairs and a single-stranded loop that connects the two arms of the stem. By extensive 1D and 2D 500-MHz 1H NMR studies in H2O and D2O, it has been demonstrated that the DNA oligomers d(CGCCGCAGC) and d(CGCCGTAGC) form hairpin structures under conditions of low concentration, 0.5 mM in DNA strand, and low salt (20 mM NaCl, pH 7). From examination of the nuclear Overhauser effect (NOE) between base protons H8/H6 and sugar protons H1' and H2'/H2", it was concluded that in d(CGCCGCAGC) and d(CGCCGTAGC) all the nine nucleotides display average (C2'-endo,anti) geometry. The NMR data in conjunction with molecular model building and solvent accessibility studies were used to derive a working model for the hairpins.  相似文献   

17.
One-dimensional nuclear Overhauser effect (NOE) in nuclear magnetic resonance spectroscopy along with stereochemically sound model building was employed to derive the structure of the hybrid poly(rA).poly(dT) in solution. Extremely strong NOE was observed at AH2' when AH8 was presaturated; strong NOEs were observed at TH2'TH2' when TH6 was presaturated; in addition the observed NOEs at TH2' and TH2' were nearly equal when TH6 was presaturated. There was no NOE transfer to AH3' from AH8 ruling out the possibility of (C-3'-endo, low anti chi approximately equal to 200 degrees to 220 degrees) conformation for the A residues. The observed NOE data suggest that the nucleotidyl units in both rA and dT strands have equivalent conformations: C-2'-endo/C-1'-exo, anti chi approximately equal to 240 degrees to 260 degrees. Such a nucleotide geometry for rA/dT is consistent with a right-handed B-DNA model for poly(rA).poly(dT) in solution in which the rA and dT strands are conformationally equivalent. Molecular models were generated for poly(rA).poly(dT) in the B-form based upon the geometrical constraints as obtained from the NOE data. Incorporation of (C-2'-endo pucker, chi congruent to 240 degrees to 260 degrees) into the classical B-form resulted in severe close contacts in the rA chain. By introducing base-displacement, tilt and twist along with concomitant changes in the backbone torsion angles, we were able to generate a B-form for the hybrid poly(rA).poly(dT) fully consistent with the observed NOE data. In the derived model the sugar pucker is C-1'-exo, a minor variant of C-2'-endo and the sugar base torsion is 243 degrees, the remaining torsion angles being: epsilon = 198 degrees, xi = 260 degrees, alpha = 286 degrees, beta = 161 degrees and gamma = 72 degrees; this structure is free of any steric compression and indicates that it is not necessary to switch to C-3'-endo pucker for rA residues in order to accommodate the 2'-OH group. The structure that we have proposed for the polynucleotide RNA-DNA hybrid in solution is in complete agreement with that proposed for a hexamer hybrid in solution from NOE data and is inconsistent with the heteronomous model proposed for the fibrous state.  相似文献   

18.
The polynucleotide helix d(T)n.d(A)n.d(T)n is the only deoxypolynucleotide triple helix for which a structure has been published, and it is generally assumed as the structural basis for studies of DNA triplexes. The helix has been assigned to an A-form conformation with C3'-endo sugar pucker by Arnott and Selsing [1974; cf. Arnott et al. (1976)]. We show here by infrared spectroscopy in D2O solution that the helix is instead B-form and that the sugar pucker is in the C2'-endo region. Distamycin A, which binds only to B-form and not to A-form helices, binds to the triple helix without displacement of the third strand, as demonstrated by CD spectroscopy and gel electrophoresis. Molecular modeling shows that a stereochemically satisfactory structure can be build using C2'-endo sugars and a displacement of the Watson-Crick base-pair center from the helix axis of 2.5 A. Helical constraints of rise per residue (h = 3.26 A) and residues per turn (n = 12) were taken from fiber diffraction experiments of Arnott and Selsing (1974). The conformational torsion angles are in the standard B-form range, and there are no short contacts. In contrast, we were unable to construct a stereochemically allowed model with A-form geometry and C3'-endo sugars. Arnott et al. (1976) observed that their model had short contacts (e.g., 2.3 A between the phosphate-dependent oxygen on the A strand and O2 in the Hoogsteen-paired thymine strand) which are generally known to be outside the allowed range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Minasov G  Teplova M  Nielsen P  Wengel J  Egli M 《Biochemistry》2000,39(13):3525-3532
The origins of the substrate specificity of Escherichia coli RNase H1 (termed RNase H here), an enzyme that hydrolyzes the RNA strand of DNA-RNA hybrids, are not understood at present. Although the enzyme binds double-stranded RNA, no cleavage occurs with such duplexes [Lima, W. F., and Crooke, S. T. (1997) Biochemistry 36, 390]. Therefore, the hybrid substrates may not adopt a canonical A-form geometry. Furthermore, RNase H is exquisitely sensitive to chemical modification of the DNA strands in hybrid duplexes. This is particularly relevant to the RNase H-dependent pathway of antisense action. Thus, only very few of the modifications currently being evaluated as antisense therapeutics are tolerated by the enzyme, among them phosphorothioate DNA (PS-DNA). Recently, hybrids of RNA and arabinonucleic acid (ANA) as well as the 2'F-ANA analogue were shown to be substrates of RNase H [Damha, M. J., et al. (1998) J. Am. Chem. Soc. 120, 12976]. Using X-ray crystallography, we demonstrate here that ANA analogues, such as 2'F-ANA [Berger, I., et al. (1998) Nucleic Acids Res. 26, 2473] and [3.3.0]bicyclo-ANA (bc-ANA), may not be able to adopt sugar puckers that are compatible with pure A- or a B-form duplex geometries, but rather prefer the intermediate O4'-endo conformation. On the basis of the observed conformations of these ANA analogues in a DNA dodecamer duplex, we have modeled a duplex of an all-C3'-endo RNA strand and an all-O4'-endo 2'F-ANA strand. This duplex exhibits a minor groove width that is intermediate between that of A-form RNA and B-form DNA, a feature that may be exploited by the enzyme in differentiating between RNA duplexes and DNA-RNA hybrids. Therefore, the combination of the established structural and functional properties of ANA analogues helps settle existing controversies concerning the discrimination of substrates by RNase H. Knowlegde of the structure of an analogue that exhibits enhanced RNA affinity while not interfering with RNase H activity may prove helpful in the design of future antisense modifications.  相似文献   

20.
The 2'-OH group in the ribose sugars of an RNA molecule plays an important role in guiding tertiary interactions that stabilize different RNA structural motifs. Deoxyribose, or 2'-OH by 2'-H, substitution in both the single-stranded and the duplex part of an RNA backbone has been routinely used to evaluate what role the 2'-OH plays in different tertiary interactions that guide an RNA-RNA contact. A deoxyribose substitution not only has the effect of removing a hydrogen bond donating group, but also introduces a sugar moiety with a preference for C2'-endo pucker in a backbone of predominantly C3'-endo sugars. This study evaluates the effects of a single deoxyribose substitution in both single-stranded and double-helical forms of RNA oligomers. A single-stranded, nonrepetitive 7-mer oligoribonucleotide (7-mer RNA) and four different variants having the same base sequence but with a single deoxyribose sugar at different positions in the strands have been studied by ultraviolet (UV) absorption, circular dichroism (CD), and Fourier transform infrared (FTIR) spectroscopy. Duplexes were formed by association with the complementary strand of the 7-mer RNA. The results show that both RNA and DNA single strands have preorganized conformations with spectral properties resembling those of A- and B-form helices, respectively, with RNA being more heterogeneous than its DNA counterpart. A single deoxyribose substitution perturbs the structure of the RNA backbone, with the effect being more pronounced in the single-stranded than in the duplex structure. The perturbation depends on the position of the 2'-H substitution in the strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号