首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mannuronan C-5-epimerase AlgE2 is one of a family of Ca(2+)-dependent epimerases secreted by Azotobacter vinelandii. These enzymes catalyze the conversion of beta-D-mannuronic acid residues (M) to alpha-L-guluronic acid residues (G) in alginate. AlgE2 had a pH optimum between 6.5 and 7 and a temperature optimum around 55 degrees C. Addition of low molecular weight organic compounds, including buffers, amino acids and osmoprotective compounds, affected the activity of the enzyme. The charge, size and stereochemistry of the added compounds were important. The activity of AlgE2, dissolved in various buffers (same pH), decreased with increasing fraction of positively charged buffer ions. Mono- and divalent metal ions also influenced the activity. When Ca(2+) was omitted only Sr(2+), of the metal ions tested, supported some activity of AlgE2. At high concentration of Ca(2+) (3.3 mM) these ions had a negative effect on the activity, whereas at low Ca(2+) concentration (0.58 mM) the activity was enhanced by addition of Sr(2+), and to some degree also by addition of Mg(2+) and Mn(2+). During epimerization AlgE2 occasionally causes cleavage of the alginate chain. These chain breaks could not be prevented by changes in the conditions during the epimerization. The composition and sequential structure of epimerized alginate was not altered by changes in the epimerization conditions.  相似文献   

2.
The bacterium Azotobacter vinelandii produces a family of seven secreted and calcium-dependent mannuronan C-5 epimerases (AlgE1–7). These epimerases are responsible for the epimerization of β-d-mannuronic acid (M) to α-l-guluronic acid (G) in alginate polymers. The epimerases display a modular structure composed of one or two catalytic A-modules and from one to seven R-modules having an activating effect on the A-module. In this study, we have determined the NMR structure of the three individual R-modules from AlgE6 (AR1R2R3) and the overall structure of both AlgE4 (AR) and AlgE6 using small angle x-ray scattering. Furthermore, the alginate binding ability of the R-modules of AlgE4 and AlgE6 has been studied with NMR and isothermal titration calorimetry. The AlgE6 R-modules fold into an elongated parallel β-roll with a shallow, positively charged groove across the module. Small angle x-ray scattering analyses of AlgE4 and AlgE6 show an overall elongated shape with some degree of flexibility between the modules for both enzymes. Titration of the R-modules with defined alginate oligomers shows strong interaction between AlgE4R and both oligo-M and MG, whereas no interaction was detected between these oligomers and the individual R-modules from AlgE6. A combination of all three R-modules from AlgE6 shows weak interaction with long M-oligomers. Exchanging the R-modules between AlgE4 and AlgE6 resulted in a novel epimerase called AlgE64 with increased G-block forming ability compared with AlgE6.  相似文献   

3.
The industrially widely used polysaccharide alginate is a co-polymer of β- d -mannuronic acid and α- l -guluronic acid (G), and the G residues originate from a polymer-level epimerization process catalysed by mannuronan C-5-epimerases. In the genome of the alginate-producing bacterium Azotobacter vinelandii genes encoding one periplasmic (AlgG) and seven secreted such epimerases (AlgE1–7) have been identified. Here we report the generation of a strain (MS163171) in which all the algE genes were inactivated by deletion ( algE1–4 and algE6–7 ) or interruption ( algE5 ). Shake flask-grown MS163171 produced a polymer containing less than 2% G ( algG still active), while wild-type alginates contained 25% G. Interestingly, addition of proteases to the MS163171 growth medium resulted in a strong increase in the chain lengths of the alginates produced. MS163171 was found to be unable to form functional cysts, which is a desiccation-resistant differentiated form developed by A. vinelandii under certain environmental conditions. We also generated mutants carrying interruptions in each separate algE gene, and a strain containing algE5 only. Studies of these mutants indicated that single algE gene inactivations, with the exception of algE3 , did not affect the fractional G content much. However, for all strains tested the alginate composition varied somewhat as a response to the growth conditions.  相似文献   

4.
The Azotobacter vinelandii mannuronan C-5 epimerases AlgE1-7 can be used to improve the properties of the commercially important polysaccharide alginate that is widely used in a variety of products, such as food and pharmaceuticals. Since lactic acid bacteria are generally regarded as safe, they are attractive candidates for production of the epimerases. A. vinelandii genes are GC-rich, in contrast to those of lactic acid bacteria, but we show here that significant expression levels of the epimerase AlgE6 can be obtained in Lactococcus lactis using the nisin-controlled expression system. A 1200-fold induction ratio was obtained resulting in an epimerase activity of 23900 dpm mg(-1) h(-1), using a tritiated alginate substrate. The epimerase was detected by Western blotting and nuclear magnetic resonance spectroscopy analysis of its reaction product showed that the enzyme displayed catalytic properties similar to those produced in Escherichia coli.  相似文献   

5.
In the bacterium Azotobacter vinelandii, a family of seven secreted and calcium-dependent mannuronan C-5 epimerases (AlgE1-7) has been identified. These epimerases are responsible for the epimerization of beta-d-mannuronic acid to alpha-l-guluronic acid in alginate polymers. The epimerases consist of two types of structural modules, designated A (one or two copies) and R (one to seven copies). The structure of the catalytically active A-module from the smallest epimerase AlgE4 (consisting of AR) has been solved recently. This paper describes the NMR structure of the R-module from AlgE4 and its titration with a substrate analogue and paramagnetic thulium ions. The R-module folds into a right-handed parallel beta-roll. The overall shape of the R-module is an elongated molecule with a positively charged patch that interacts with the substrate. Titration of the R-module with thulium indicated possible calcium binding sites in the loops formed by the nonarepeat sequences in the N-terminal part of the molecule and the importance of calcium binding for the stability of the R-module. Structure calculations showed that calcium ions can be incorporated in these loops without structural violations and changes. Based on the structure and the electrostatic surface potential of both the A- and R-module from AlgE4, a model for the appearance of the whole protein is proposed.  相似文献   

6.
Alginate biosynthesis involves C-5-mannuronan epimerases catalyzing the conversion of beta-D-mannuronic acid to alpha-L-guluronic acid at the polymer level. Mannuronan epimerases are modular enzymes where the various modules yield specific sequential patterns of the converted residues in their polymer products. Here, the interaction between the AlgE4 epimerase and mannuronan is determined by dynamic force spectroscopy. The specific unbinding between molecular pairs of mannuronan and AlgE4 as well as its two modules, A and R, respectively, was studied as a function of force loading rate. The mean protein-mannuronan unbinding forces were determined to be in the range 73-144 pN, depending on the protein, at a loading rate of 0.6 nN/s, and increased with increasing loading rate. The position of the activation barrier was determined to be 0.23 +/- 0.04 nm for the AlgE4 and 0.10 +/- 0.02 nm for its A-module. The lack of interaction observed between the R-module and mannuronan suggest that the A-module contains the binding site for the polymer substrate. The ratio between the epimerase-mannuronan dissociation rate and the catalytic rate for epimerization of single hexose residues suggests a processive mode of action of the AlgE4 epimerase yielding the observed sequence pattern in the uronan associated with the A-module of this enzyme.  相似文献   

7.
The enzymes mannuronan C-5 epimerases catalyze conversion of beta-D-mannuronic acid to alpha-L-guluronic acid in alginates at the polymer level and thereby introduce sequences that have functional properties relevant to gelation. The enzymatic conversion by recombinant mannuronan C-5 epimerases AlgE4 and AlgE2 on alginate type substrates with different degree of polymerization and initial low fraction of alpha-L-guluronic acid was investigated. Essentially no enzymatic activity was found for fractionated mannuronan oligomer substrates with an average degree of polymerization, DP(n), less than or equal 6, whereas increasing the DP(n) yielded increased epimerization activity. This indicates that these enzymes have an active site consisting of binding domains for consecutive residues that requires interaction with 7 or more consecutive residues to show enzymatic activity. The experimentally determined kinetics of the reaction, and the residue sequence arrangement introduced by the epimerization, were modeled using Monte Carlo simulation accounting for the various competing intrachain substrates and assuming either a processive mode of action or preferred attack. The comparison between experimental data and simulation results suggests that epimerization by AlgE4 is best described by a processive mode of action, whereas the mode of action of AlgE2 appears to be more difficult to determine.  相似文献   

8.
The mannuronan C-5-epimerase AlgE2 is one of a family of Ca2+-dependent epimerases secreted by Azotobacter vinelandii. These enzymes catalyze the conversion of β- -mannuronic acid residues (M) to - -guluronic acid residues (G) in alginate. AlgE2 has been produced by fermentation with a recombinant strain of Escherichia coli, isolated and partially purified. Epimerization with AlgE2 increased the content of G-residues in different alginates from starting values of 0–45% up to approximately 70%. The new G-residues were mainly present in short blocks. Although G-residues may be introduced next to pre-existing G-residues, AlgE2 was not able to epimerize strictly alternating MG-structures. The epimerization with AlgE2 was greatly affected by the concentration of Ca2+. The type of alginate used as substrate affected the reaction rate and the reaction pattern especially at low Ca2+ concentration. AlgE2 appears to act by a preferred attack mechanism where the enzyme associates with different sequences in the alginate depending on the concentration of Ca2+. During epimerization, AlgE2 occasionally causes cleavage of the alginate chain. The observed frequency corresponds to 1–3 breaks per 1,000 M-units epimerized.  相似文献   

9.
AlgE2, AlgE4, and AlgE6 are members of a family of mannuronan C-5 epimerases encoded by Azotobacter vinelandii, and are active in the biosynthesis of alginate, where they catalyze the post-polymerization conversion of beta-D-mannuronic acid residues into alpha-L-guluronic acid residues. To study the kinetics and mode of action of these enzymes, homopolymeric mannuronan and other alginate samples with various composition were epimerized by letting the enzymatic reaction take place in an NMR tube. Series of 1H NMR spectra were recorded to obtain a time-resolved picture of the epimerization progress and the formation of specific monomer sequences. Starting from mannuronan, guluronic acid contents of up to 82% were introduced by the enzymes, and the product specificity, substrate selectivity, and reaction rates have been investigated. To obtain direct information of the GulA-block formation, similar experiments were performed using a 13C-1-enriched mannuronan as substrate. The NMR results were found to be in good agreement with data obtained by a radioisotope assay based on 3H-5-labeled substrates.  相似文献   

10.
The polysaccharide alginate forms a protective capsule for Pseudomonas aeruginosa during chronic pulmonary infections. The structure of alginate, a linear polymer of beta1-4-linked O-acetylated d-mannuronate (M) and l-guluronate (G), is important for its activity as a virulence factor. Alginate structure is mediated by AlgG, a periplasmic C-5 mannuronan epimerase. AlgG also plays a role in protecting alginate from degradation by the periplasmic alginate lyase AlgL. Here, we show that the C-terminal region of AlgG contains a right-handed beta-helix (RHbetaH) fold, characteristic of proteins with the carbohydrate-binding and sugar hydrolase (CASH) domain. When modeled based on pectate lyase C of Erwinia chrysanthemi, the RHbetaH of AlgG has a long shallow groove that may accommodate alginate, similar to protein/polysaccharide interactions of other CASH domain proteins. The shallow groove contains a 324-DPHD motif that is conserved among AlgG and the extracellular mannuronan epimerases of Azotobacter vinelandii. Point mutations in this motif disrupt mannuronan epimerase activity but have no effect on alginate secretion. The D324A mutation has a dominant negative phenotype, suggesting that the shallow groove in AlgG contains the catalytic face for epimerization. Other conserved motifs of the epimerases, 361-NNRSYEN and 381-NLVAYN, are predicted to lie on the opposite side of the RHbetaH from the catalytic center. Point mutations N362A, N367A, and V383A result in proteins that do not protect alginate from AlgL, suggesting that these mutant proteins are not properly folded or not inserted into the alginate biosynthetic scaffold. These motifs are likely involved in asparagine and hydrophobic stacking, required for structural integrity of RHbetaH proteins, rather than for mannuronan catalysis. The results suggest that the AlgG RHbetaH protects alginate from degradation by AlgL by channeling the alginate polymer through the proposed alginate biosynthetic scaffold while epimerizing approximately every second d-mannuronate residue to l-guluronate along the epimerase catalytic face.  相似文献   

11.
AlgE1, AlgE5 and AlgE6 are members of a family of mannuronan C-5 epimerases encoded by the bacterium Azotobacter vinelandii, and are active in the biosynthesis of alginate, where they catalyse the post-polymerization conversion of beta-D-mannuronic acid (M) residues into alpha-L-guluronic acid residues (G). All enzymes show preference for introducing G-residues neighbouring a pre-existing G. They also have the capacity to convert single M residues flanked by G, thus 'condensing' G-blocks to form almost homopolymeric guluronan. Analysis of the length and distribution of G-blocks based on specific enzyme degradation combined with size-exclusion chromatography, electrospray ionization MS, HPAEC-PAD (high-performance anion-exchange chromatography and pulsed amperometric detection), MALDI (matrix-assisted laser-desorption ionization)-MS and NMR revealed large differences in block length and distribution generated by AlgE1 and AlgE6, probably reflecting their different degree of processivity. When acting on polyMG as substrates, AlgE1 initially forms only long homopolymeric G-blocks >50, while AlgE6 gives shorter blocks with a broader block size distribution. Analyses of the AlgE1 and AlgE6 subsite specificities by the same methodology showed that a mannuronan octamer and heptamer respectively were the minimum substrate chain lengths needed to accommodate enzyme activities. The fourth M residue from the non-reducing end is epimerized first by both enzymes. When acting on MG-oligomers, AlgE1 needed a decamer while AlgE6 an octamer to accommodate activity. By performing FIA (flow injection analysis)-MS on the lyase digests of epimerized and standard MG-oligomers, the M residue in position 5 from the non-reducing end was preferentially attacked by both enzymes, creating an MGMGGG-sequence (underlined and boldface indicate the epimerized residue).  相似文献   

12.
Hexuronyl C5-epimerases in alginate and glycosaminoglycan biosynthesis   总被引:1,自引:0,他引:1  
The sugar residues in most polysaccharides are incorporated as their corresponding monomers during polymerization. Here we summarize the three known exceptions to this rule, involving the biosynthesis of alginate, and the glycosaminoglycans, heparin/heparan sulfate and dermatan sulfate. Alginate is synthesized by brown seaweeds and certain bacteria, while glycosaminoglycans are produced by most animal species. In all cases one of the incorporated sugar monomers are being C5-epimerized at the polymer level, from D-mannuronic acid to L-guluronic acid in alginate, and from D-glucuronic acid to L-iduronic acid in glycosaminoglycans. Alginate epimerization modulates the mechanical properties of seaweed tissues, whereas in bacteria it seems to serve a wide range of purposes. The conformational flexibility of iduronic acid units in glycosaminoglycans promotes apposition to, and thus functional interactions with a variety of proteins at cell surfaces and in the extracellular matrix. In the bacterium Azotobacter vinelandii the alginates are being epimerized at the cell surface or in the extracellular environment by a family of evolutionary strongly related modular type and Ca(2+)-dependent epimerases (AlgE1-7). Each of these enzymes introduces a specific distribution pattern of guluronic acid residues along the polymer chains, explaining the wide structural variability observed in alginates isolated from nature. Glycosaminoglycans are synthesized in the Golgi system, through a series of reactions that include the C5-epimerization reaction along with extensive sulfation of the polymers. The single, Ca(2+)-independent, epimerase in heparin/heparan sulfate biosynthesis and the Ca(2+)-dependent dermatan sulfate epimerase(s) also generate variable epimerization patterns, depending on other polymer-modification reactions. The alginate and heparin epimerases appear unrelated at the amino acid sequence level, and have probably evolved through independent evolutionary pathways; however, hydrophobic cluster analysis indicates limited similarity. Seaweed alginates are widely used in industry, while heparin is well established in the clinic as an anticoagulant.  相似文献   

13.
The industrially important polysaccharide alginate is a linear copolymer of beta-D-mannuronic acid (M) and alpha-L-guluronic acid (G). It is produced commercially by extraction from brown seaweeds, although some of the bacteria belonging to the genera Azotobacter and Pseudomonas also synthesize alginates. Alginates are synthesized as mannuronan, and varying amounts of the M residues in the polymer are then epimerized to G residues by mannuronan C-5-epimerases. The gel-forming, water-binding, and immunogenic properties of the polymer are dependent on the relative amount and sequence distribution of M and G residues. A family of seven calcium-dependent, secreted epimerases (AlgE1-7) from Azotobacter vinelandii have now been characterized, and in this paper the properties of all these enzymes are described. AlgE4 introduces alternating M and G residues into its substrate, while the remaining six enzymes introduce a mixture of continuous stretches of G residues and alternating sequences. Two of the enzymes, AlgE1 and AlgE3, are composed of two catalytically active domains, each introducing different G residue sequence patterns in alginate. These results indicate that the enzymes can be used for production of alginates with specialized properties.  相似文献   

14.
The cloning and expression of a family of five modular-type mannuronan C-5-epimerase genes from Azotobacter vinelandii (algE1 to -5) has previously been reported. The corresponding proteins catalyze the Ca2+-dependent polymer-level epimerization of β-d-mannuronic acid to α-l-guluronic acid (G) in the commercially important polysaccharide alginate. Here we report the identification of three additional structurally similar genes, designated algE6, algE7, and algY. All three genes were sequenced and expressed in Escherichia coli. AlgE6 introduced contiguous stretches of G residues into its substrate (G blocks), while AlgE7 acted as both an epimerase and a lyase. The epimerase activity of AlgE7 leads to formation of alginates with both single G residues and G blocks. AlgY did not display epimerase activity, but a hybrid gene in which the 5′-terminal part was exchanged with the corresponding region in algE4 expressed an active epimerase. Southern blot analysis of genomic A. vinelandii DNA, using the 5′ part of algE2 as a probe, indicated that all hybridization signals originated from algE1 to -5 or the three new genes reported here.Alginate is a linear copolymer composed of β-d-mannuronic acid (M) and its C-5 epimer, α-l-guluronic acid (G). The M and G residues are organized in blocks of consecutive M residues (M blocks), consecutive G residues (G blocks), or alternating M and G (MG blocks), and the lengths and distributions of the different block types vary among alginates isolated from brown algae or from different bacteria belonging to the genera Azotobacter and Pseudomonas (36, 37). Alginates are the most abundant polysaccharides in brown algae (comprising up to 40% of the dry matter), and their functions are to supply strength and flexibility to the algal tissues (38). The bacterium Azotobacter vinelandii produces alginate both as a vegetative state capsule and as an integrated part of a particular resting stage form (cyst) of this organism (31). The opportunistic pathogen Pseudomonas aeruginosa produces alginate as a capsule-like exopolysaccharide during infection of the lungs of cystic fibrosis patients (12, 23). Alginates from brown algae and A. vinelandii have M, G, and MG blocks (29, 36, 37), while alginates from P. aeruginosa and other Pseudomonas species do not contain G blocks (34, 36). In contrast to the alginates produced by brown algae, bacterial alginates are partially O-acetylated at O-2 and/or O-3 on mannuronic acid residues (36).The relative amount and distribution of G residues determine most of the physicochemical properties of the polymer. Alginates with G blocks can form gels by reversible cross-linking with divalent cations such as Ca2+, Ba2+, and Sr2+ (41), and the gelling and viscosifying properties of alginate are utilized in pharmaceutical, food, textile, and paper industries (26). In addition, alginate has a very interesting potential in a variety of biotechnological applications and in biomedicine. Alginate rich in M blocks stimulates cytokine production (27) and has a much higher antitumor activity than alginates with a high fraction of G blocks (14). G-rich alginates can be used for encapsulation of cells and enzymes (35), and Langerhans islets immobilized in alginates rich in G have been evaluated as a potential treatment for type 1 diabetes (39, 40).Both in brown algae and in alginate-producing bacteria, the polymer is first synthesized as mannuronan, and the enzyme mannuronan C-5-epimerase catalyzes the epimerization of M to G at the polymer level (7, 12, 21, 22). Ertesvåg et al. (7) have previously reported the cloning and expression of five genes encoding a family of Ca2+-dependent epimerases in A. vinelandii (algE1 to -5). The deduced AlgE protein sequences consist of two types of structural modules, designated A (385 amino acids each; one or two copies) and R (155 amino acids each; one to seven copies), and each R module contains four to six nine-amino-acid-long repeated sequences corresponding to putative Ca2+-binding motifs. The molecular masses of AlgE1 to -5 vary from 57.7 (AlgE4) to 191 kDa (AlgE3), depending on the number of A and R modules in the proteins. Four of the epimerase genes are clustered in the chromosome (algE1 to -4), while algE5 is located in another part of the A. vinelandii genome. Nuclear magnetic resonance (NMR) spectroscopy analyses demonstrate that the reaction products at least of AlgE2 and AlgE4 differ with respect to sequence distributions of M and G residues. AlgE2 leads to formation of mainly G blocks, while AlgE4 forms predominantly alginates with MG blocks.The A. vinelandii chromosome also encodes a Ca2+-independent mannuronan C-5-epimerase, designated AlgG (30). Sequence alignments demonstrate that algG does not belong to the algE gene family but shares 66% sequence identity to a mannuronan C-5-epimerase gene (also designated algG) from P. aeruginosa (12). The algG gene in P. aeruginosa is localized in a cluster of alg genes encoding enzymes involved in alginate biosynthesis, and sequence analysis of genomic DNA flanking algG in A. vinelandii suggests that this gene also is part of an alg gene cluster organized as in P. aeruginosa (30).Southern blot analysis of genomic A. vinelandii DNA using the 5′-terminal 800 bp in the A sequence of algE2 as the probe (A probe) demonstrated that the chromosome probably encodes more A-like sequences than are present in algE1 to -5 (7). In this report, we show that the A. vinelandii genome encodes two additional mannuronan C-5-epimerase genes, designated algE6 and algE7, and also a third highly related gene apparently not encoding an active epimerase.  相似文献   

15.
The Ca2+-dependent mannuronan C-5-epimerase AlgE4 is a representative of a family of Azotobacter vinelandii enzymes catalyzing the polymer level epimerization of beta-D-mannuronic acid (M) to alpha-L-guluronic acid (G) in the commercially important polysaccharide alginate. The reaction product of recombinantly produced AlgE4 is predominantly characterized by an alternating sequence distribution of the M and G residues (MG blocks). AlgE4 was purified after intracellular overexpression in Escherichia coli, and the activity was shown to be optimal at pH values between 6.5 and 7.0, in the presence of 1-3 mM Ca2+, and at temperatures near 37 degrees C. Sr2+ was found to substitute reasonably well for Ca2+ in activation, whereas Zn2+ strongly inhibited the activity. During epimerization of alginate, the fraction of GMG blocks increased linearly as a function of the total fraction of G residues and comparably much faster than that of MMG blocks. These experimental data could not be accounted for by a random attack mechanism, suggesting that the enzyme either slides along the alginate chain during catalysis or recognizes a pre-existing G residue as a preferred substrate in its consecutive attacks.  相似文献   

16.
Alginates are industrially important, linear copolymers of beta-d-mannuronic acid (M) and its C-5-epimer alpha-l-guluronic acid (G). The G residues originate from a postpolymerization reaction catalyzed by mannuronan C-5-epimerases (MEs), leading to extensive variability in M/G ratios and distribution patterns. Alginates containing long continuous stretches of G residues (G blocks) can form strong gels, a polymer type not found in alginate-producing bacteria belonging to the genus Pseudomonas. Here we show that the Pseudomonas syringae genome encodes a Ca(2+)-dependent ME (PsmE) that efficiently forms such G blocks in vitro. The deduced PsmE protein consists of 1610 amino acids and is a modular enzyme related to the previously characterized family of Azotobacter vinelandii ME (AlgE1-7). A- and R-like modules with sequence similarity to those in the AlgE enzymes are found in PsmE, and the A module of PsmE (PsmEA) was found to be sufficient for epimerization. Interestingly, an R module from AlgE4 stimulated Ps-mEA activity. PsmE contains two regions designated M and RTX, both presumably involved in the binding of Ca(2+). Bacterial alginates are partly acetylated, and such modified residues cannot be epimerized. Based on a detailed computer-assisted analysis and experimental studies another PsmE region, designated N, was found to encode an acetylhydrolase. By the combined action of N and A PsmE was capable of redesigning an extensively acetylated alginate low in G from a non gel-forming to a gel-forming state. Such a property has to our knowledge not been previously reported for an enzyme acting on a polysaccharide.  相似文献   

17.
Bacterial alginates are produced as 1-4-linked beta-D-mannuronan, followed by epimerization of some of the mannuronic acid residues to alpha-L-guluronic acid. Here we report the isolation of four different epimerization-defective point mutants of the periplasmic Pseudomonas fluorescens mannuronan C-5-epimerase AlgG. All mutations affected amino acids conserved among AlgG-epimerases and were clustered in a part of the enzyme also sharing some sequence similarity to a group of secreted epimerases previously reported in Azotobacter vinelandii. An algG-deletion mutant was constructed and found to produce predominantly a dimer containing a 4-deoxy-L-erythro-hex-4-enepyranosyluronate residue at the nonreducing end and a mannuronic acid residue at the reducing end. The production of this dimer is the result of the activity of an alginate lyase, AlgL, whose in vivo activity is much more limited in the presence of AlgG. A strain expressing both an epimerase-defective (point mutation) and a wild-type epimerase was constructed and shown to produce two types of alginate molecules: one class being pure mannuronan and the other having the wild-type content of guluronic acid residues. This formation of two distinct classes of polymers in a genetically pure cell line can be explained by assuming that AlgG is part of a periplasmic protein complex.  相似文献   

18.
Alginates are polysaccharides composed of 1-4-linked β-d-mannuronic acid and α-l-guluronic acid. The polymer can be degraded by alginate lyases, which cleave the polysaccharide using a β-elimination reaction. Two such lyases have previously been identified in the soil bacterium Azotobacter vinelandii, as follows: the periplasmic AlgL and the secreted bifunctional mannuronan C-5 epimerase and alginate lyase AlgE7. In this work, we describe the properties of three new lyases from this bacterium, AlyA1, AlyA2, and AlyA3, all of which belong to the PL7 family of polysaccharide lyases. One of the enzymes, AlyA3, also contains a C-terminal module similar to those of proteins secreted by a type I secretion system, and its activity is stimulated by Ca2+. All three enzymes preferably cleave the bond between guluronic acid and mannuronic acid, resulting in a guluronic acid residue at the new reducing end, but AlyA3 also degrades the other three possible bonds in alginate. Strains containing interrupted versions of alyA1, alyA3, and algE7 were constructed, and their phenotypes were analyzed. Genetically pure alyA2 mutants were not obtained, suggesting that this gene product may be important for the bacterium during vegetative growth. After centrifugation, cultures from the algE7 mutants form a large pellet containing alginate, indicating that AlgE7 is involved in the release of alginate from the cells. Upon encountering adverse growth conditions, A. vinelandii will form a resting stage called cyst. Alginate is a necessary part of the protective cyst coat, and we show here that strains lacking alyA3 germinate poorly compared to wild-type cells.Azotobacter vinelandii is a nitrogen-fixing bacterium found in soil. A. vinelandii and several species belonging to the related genus Pseudomonas have been found to produce the polymer alginate. This linear, extracellular polysaccharide is composed of 1-4-linked β-d-mannuronic acid (M) and its C-5 epimer α-l-guluronic acid (G) (35), and the relative amount and distribution of these two residues vary according to the species and growth conditions. Some of the M residues in bacterial alginates may be O acetylated at C-2, C-3, or both C-2 and C-3 (34).Alginate is first synthesized as mannuronan, and the G residues are introduced by mannuronan C-5 epimerases. All genome-sequenced alginate-producing bacteria have been found to encode a periplasmic epimerase, AlgG, that epimerizes some of the M residues in the polymer into G residues (40). AlgG seems to be unable to epimerize an M residue next to a preexisting G residue in vivo. A. vinelandii also encodes a family of secreted mannuronan C-5 epimerases (AlgE1-7) (40), some of which are able to form stretches of consecutive G residues (G blocks). Alginates containing G blocks can be cross-linked by divalent cations and thereby form gels (35).Polysaccharide lyases (EC 4.2.2.-) are a group of enzymes which cleave the polymer chains via a β-elimination mechanism, resulting in the formation of a double bond at the newly formed nonreducing end. For alginate lyases, 4-deoxy-l-erythro-hex-4-enepyranosyluronate (denoted as Δ) is formed at the nonreducing end. Several such lyases have been purified from both alginate-producing and alginate-degrading organisms, as reviewed by Wong et al. (42). When they are classified according to primary structure, the alginate lyases belong to the polysaccharide-degrading enzyme families PL5, PL6, PL7, PL14, PL17, and PL18 (http://www.cazy.org). Alginate molecules may contain four different bonds (M-M, M-G, G-M, and G-G), and alginate lyases may therefore be classified according to their preferred substrate specificities. It is now possible to obtain pure mannuronan and nearly pure (MG)n and G blocks (17, 19, 20), and this allows for an improved assessment of the substrate specificities of the alginate lyases.The following two alginate lyases have been characterized in A. vinelandii: the periplasmic AlgL that belongs to the PL5 family (15) and the extracellular bifunctional mannuronan C-5 epimerase and alginate lyase AlgE7 (36, 37). AlgL is encoded by the alginate biosynthesis operon, similar to what has been found in all characterized alginate-producing bacteria. This enzyme cleaves M-M and M-G bonds (15), while AlgE7 preferably degrades G-MM and G-GM bonds (37). The latter enzyme is also able to introduce G residues in the alginate, thus creating the preferred substrate for the lyase.When A. vinelandii experiences a lack of nutrients, it will develop into a dormant cell designated cyst (30). The cell is then protected against desiccation by a multilayered coat, of which gel-forming alginate is a necessary part. Resuspension of cysts in a medium containing glucose leads to a germination process in which vegetative cells eventually escape from the cyst coat. It has been proposed that an alginate lyase may be involved in the rupture of the coat (43). AlgL is dispensable for germination (38), while the biological function of AlgE7 is unknown. In this report, we use the available draft genome sequence of A. vinelandii to identify three additional putative lyases and evaluate their and AlgE7''s role in growth, encystment, and germination of the bacterium.  相似文献   

19.
Alginate is a linear copolymer of beta-d-mannuronic acid and its C-5-epimer, alpha-l-guluronic acid. During biosynthesis, the polymer is first made as mannuronan, and various fractions of the monomers are then epimerized to guluronic acid by mannuronan C-5-epimerases. The Azotobacter vinelandii genome encodes a family of seven extracellular such epimerases (AlgE1 to AlgE7) which display motifs characteristic for proteins secreted via a type I pathway. Putative ATPase-binding cassette regions from the genome draft sequence of the A. vinelandii OP strain and experimentally verified type I transporters from other species were compared. This analysis led to the identification of one putative A. vinelandii type I system (eexDEF). The corresponding genes were individually disrupted in A. vinelandii strain E, and Western blot analysis using polyclonal antibodies against all AlgE epimerases showed that these proteins were present in wild-type culture supernatants but absent from the eex mutant supernatants. Consistent with this, the wild-type strain and the eex mutants produced alginate with about 20% guluronic acid and almost pure mannuronan (< or =2% guluronic acid), respectively. The A. vinelandii wild type is able to enter a particular desiccation-tolerant resting stage designated cyst. At this stage, the cells are surrounded by a rigid coat in which alginate is a major constituent. Such a coat was formed by wild-type cells in a particular growth medium but was missing in the eex mutants. These mutants were also found to be unable to survive desiccation. The reason for this is probably that continuous stretches of guluronic acid residues are needed for alginate gel formation to take place.  相似文献   

20.
An Azotobacter vinelandii mannuronan C-5-epimerase gene was cloned in Escherichia coli. This enzyme catalyzes the Ca(2+)-dependent epimerization of D-mannuronic acid residues in alginate to the corresponding epimer L-guluronic acid. The epimerase gene was identified by screening a bacteriophage EMBL3 gene library of A. vinelandii DNA with a synthetic oligonucleotide probe. The sequence of this probe was deduced after determination of the N-terminal amino acid sequence of a previously reported extracellular mannuronan C-5-epimerase from A. vinelandii. A DNA fragment hybridizing against the probe was subcloned in a plasmid vector in E. coli, and the corresponding recombinant plasmid expressed intracellular mannuronan C-5-epimerase in this host. The nucleotide sequence of the gene encoding the epimerase was determined, and the sequence data showed that the molecular mass of the deduced protein is 103 kDa. A module consisting of about 150 amino acids was repeated tandemly four times in the C-terminal part of the deduced protein. Each of the four repeats contained four to six tandemly oriented nonameric repeats. The sequences in these motifs are similar to the Ca(2+)-binding domains of functionally unrelated secreted proteins reported previously in other bacteria. The reaction product of the recombinant epimerase was analyzed by nuclear magnetic resonance spectroscopy, and the results showed that the guluronic acid residues were distributed in blocks along the polysaccharide chain. Such a nonrandom distribution pattern, which is important for the commercial use of alginate, has previously also been identified in the reaction product of the corresponding enzyme isolated from A. vinelandii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号