首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vegetation productivity and desertification in sub‐Saharan Africa may be influenced by global climate variability attributable to the North Atlantic Oscillation (NAO) and El Niño Southern Oscillation (ENSO). Combined and individual effects of the NAO and ENSO indices revealed that 75% of the interannual variation in the area of Sahara Desert was accounted for by the combined effects, with most variance attributable to the NAO. Effects were shown in the latitudinal variation on the 200 mm isocline, which was influenced mostly by the NAO. The combined indices explained much of the interannual variability in vegetation productivity in the Sahelian zone and southern Africa, implying that both the NAO and ENSO may be useful for monitoring effects of global climate change in sub‐Saharan Africa.  相似文献   

2.
Direct impacts of human land use and indirect impacts of anthropogenic climate change may alter land cover and associated ecosystem function, affecting ecological goods and services. Considerable work has been done to identify long‐term global trends in vegetation greenness, which is associated with primary productivity, using remote sensing. Trend analysis of satellite observations is subject to error, and ecosystem change can be confused with interannual variability. However, the relative trends of land cover classes may hold clues about differential ecosystem response to environmental forcing. Our aim was to identify phenological variability and 10‐year trends for the major land cover classes in the Great Basin. This case study involved two steps: a regional, phenology‐based land cover classification and an identification of phenological variability and 10‐year trends stratified by land cover class. The analysis used a 10‐year time series of Advanced Very High Resolution Radiometer satellite data to assess regional scale land cover variability and identify change. The phenology‐based regional classification was more detailed and accurate than national or global products. Phenological variability over the 10‐year period was high, with substantial shifts in timing of start of season of up to 9 weeks. The mean long‐term trends of montane land cover classes were significantly different from valley land cover classes due to a poor response of montane shrubland and pinyon‐juniper woodland to the early 1990s drought. The differential response during the 1990s suggests that valley ecosystems may be more resilient and montane ecosystems more susceptible to prolonged drought. This type of regional‐scale land cover analysis is necessary to characterize current patterns of land cover phenology, distinguish between anthropogenically driven land cover change and interannual variability, and identify ecosystems potentially susceptible to regional and global change.  相似文献   

3.
A synthesis of a long‐term (19 years) study assessing the effects of cattle grazing on the structure and composition of a Mediterranean grassland in north‐eastern Israel is presented, with new insights into the response of the vegetation to grazing management and rainfall. We hypothesized that the plant community studied would be resistant to high grazing intensities and rainfall variability considering the combined long history of land‐use and unpredictable climatic conditions where this community evolved. Treatments included manipulations of stocking densities (moderate, heavy, and very heavy) and of grazing regimes (continuous vs. seasonal), in a factorial design. The effect of interannual rainfall variation on the expression of grazing impacts on the plant community was minor. The main effects of grazing on relative cover of plant functional groups were related to early vs. late seasonal grazing. Species diversity and equitability were remarkably stable across all grazing treatments. A reduction in tall grass cover at higher stocking densities was correlated with increased cover of less palatable groups such as annual and perennial thistles, as well as shorter and prostrate groups such as short annual grasses. This long‐term study shows that interannual fluctuations in plant functional group composition could be partly accounted for by grazing pressure and timing, but not by the measured rainfall variables. Grazing affected the dominance of tall annual grasses. However, the persistence of tall grasses and more palatable species over time, despite large differences in grazing pressure and timing, supports the idea that Mediterranean grasslands are highly resistant to prolonged grazing. Indeed, even under the most extreme grazing conditions applied, there were no signs of deterioration or collapse of the ecosystem. This high resistance to grazing intensity and interannual fluctuation in climatic conditions should favor the persistence of the plant community under forecasted increasing unpredictability due to climate change.  相似文献   

4.
Abstract The aim of this study was to characterize the short-term land-cover change processes that were detected in Eastern Africa, based on a set of change metrics that allow for the quantification of interannual changes in vegetation productivity, changes in vegetation phenology and a combination of both. We tested to what extent land use, fire activity and livestock grazing modified the vegetation response to short-term rainfall variability in East Africa and how this is reflected in change metrics derived from MODerate Imaging Spectrometer (MODIS) time series of remote sensing data. We used a hierarchical approach to disentangle the contribution of human activities and climate variability to the patterns of short-term vegetation change in East Africa at different levels of organization. Our results clearly show that land use significantly influences the vegetation response to rainfall variability as measured by time series of MODIS data. Areas with different types of land use react in a different way to interannual climate variability, leading to different values of the change indices depending on the land use type. The impact of land use is more reflected in interannual variability of vegetation productivity and overall change in the vegetation, whereas changes in phenology are mainly driven by climate variability and affect most vegetation types in similar ways. Our multilevel approach led to improved models and clearly demonstrated that climate influence plays at a different scale than land use, fire and herbivore grazing. It helped us to understand dynamics within and between biomes in the study area and investigate the relative importance of different factors influencing short-term variability in change indices at different scales.  相似文献   

5.
Savanna woody encroachment is widespread across three continents   总被引:1,自引:0,他引:1       下载免费PDF全文
Tropical savannas are a globally extensive biome prone to rapid vegetation change in response to changing environmental conditions. Via a meta‐analysis, we quantified savanna woody vegetation change spanning the last century. We found a global trend of woody encroachment that was established prior the 1980s. However, there is critical regional variation in the magnitude of encroachment. Woody cover is increasing most rapidly in the remaining uncleared savannas of South America, most likely due to fire suppression and land fragmentation. In contrast, Australia has experienced low rates of encroachment. When accounting for land use, African savannas have a mean rate annual woody cover increase two and a half times that of Australian savannas. In Africa, encroachment occurs across multiple land uses and is accelerating over time. In Africa and Australia, rising atmospheric CO2, changing land management and rainfall are likely causes. We argue that the functional traits of each woody flora, specifically the N‐fixing ability and architecture of woody plants, are critical to predicting encroachment over the next century and that African savannas are at high risk of widespread vegetation change.  相似文献   

6.
Global change will likely affect savanna and forest structure and distributions, with implications for diversity within both biomes. Few studies have examined the impacts of both expected precipitation and land use changes on vegetation structure in the future, despite their likely severity. Here, we modeled tree cover in sub‐Saharan Africa, as a proxy for vegetation structure and land cover change, using climatic, edaphic, and anthropic data (R2 = 0.97). Projected tree cover for the year 2070, simulated using scenarios that include climate and land use projections, generally decreased, both in forest and savanna, although the directionality of changes varied locally. The main driver of tree cover changes was land use change; the effects of precipitation change were minor by comparison. Interestingly, carbon emissions mitigation via increasing biofuels production resulted in decreases in tree cover, more severe than scenarios with more intense precipitation change, especially within savannas. Evaluation of tree cover change against protected area extent at the WWF Ecoregion scale suggested areas of high biodiversity and ecosystem services concern. Those forests most vulnerable to large decreases in tree cover were also highly protected, potentially buffering the effects of global change. Meanwhile, savannas, especially where they immediately bordered forests (e.g. West and Central Africa), were characterized by a dearth of protected areas, making them highly vulnerable. Savanna must become an explicit policy priority in the face of climate and land use change if conservation and livelihoods are to remain viable into the next century.  相似文献   

7.
Questions: (1) Is climate a strong driver of vegetation dynamics, including interannual variation, in a range margin steppic community? (2) Are there long‐term trends in cover and species richness in this community, and are these consistent across species groups and species within groups? (3) Can long‐term trends in plant community data be related to variation in local climate over the last three decades? Location: A range margin steppic grassland community in central Germany. Methods: Cover, number and size of all individuals of all plant species present in three permanent 1‐m2 plots were recorded in spring for 26 years (1980–2005). Climatic data for the study area were used to determine the best climatic predictor for each plant community, functional group and species variable (annual data and interannual variation) using best subsets regression. Results: April and autumn temperature showed the highest correlation with total cover and species richness and with interannual variations of cover and richness. However, key climate drivers differed between the five most abundant species. Similarly, total cover and number and cover of perennials significantly decreased over time, while no trend was found for the cover and number of annuals. However, within functional groups there were also contrasting species‐specific responses. Long‐term temperature increases and high interannual variability in both temperature and precipitation were strongly related to long‐term trends and interannual variations in plant community data. Conclusions: Temporal trends in vegetation were strongly associated with temporal trends in climate at the study site, with key roles for autumn and spring temperature and precipitation. Dynamics of functional groups and species within groups and their relationships to changes in temperature and precipitation reveal complex long‐term and interannual patterns that cannot be inferred from short‐term studies with only one or a few individual species. Our results also highlight that responses detected at the functional group level may mask contrasting responses within functional groups. We discuss the implications of these findings for attempts to predict the future response of biodiversity to climate change.  相似文献   

8.
Human modification of the landscape potentially affects exchanges of energy and water between the terrestrial biosphere and the atmosphere. This study develops a possible scenario for land cover in the year 2050 based on results from the IMAGE 2 (Integrated Model to Assess the Greenhouse Effect) model, which projects land‐cover changes in response to demographic and economic activity. We use the land‐cover scenario as a surface boundary condition in a biophysically‐based land‐surface model coupled to a general circulation model for a 15‐years simulation with prescribed sea surface temperature and compare with a control run using current land cover. To assess the sensitivity of climate to anthropogenic land‐cover change relative to the sensitivity to decadal‐scale interannual variations in vegetation density, we also carry out two additional simulations using observed normalized difference vegetation index (NDVI) from relatively low (1982–83) and high (1989–90) years to describe the seasonal phenology of the vegetation. In the past several centuries, large‐scale land‐cover change occurred primarily in temperate latitudes through conversion of forests and grassland to highly productive cropland and pasture. Several studies in the literature indicate that past changes in surface climate resulting from this conversion had a cooling effect owing to changes in vegetation morphology (increased albedo). In contrast, this study indicates that future land‐cover change, likely to occur predominantly in the tropics and subtropics, has a warming effect governed by physiological rather than morphological mechanisms. The physiological mechanism is to reduce carbon assimilation and consequently latent relative to sensible heat flux resulting in surface temperature increases up to 2 °C and drier hydrologic conditions in locations where land cover was altered in the experiment. In addition, in contrast to an observed decrease in diurnal temperature range (DTR) over land expected with greenhouse warming, results here suggest that future land‐cover conversion in tropics could increase the DTR resulting from decreased evaporative cooling during the daytime. For grid cells with altered land cover, the sensitivity of surface temperature to future anthropogenic land‐cover change is generally within the range induced by decadal‐scale interannual variability in vegetation density in temperate latitudes but up to 1.5 °C warmer in the tropics.  相似文献   

9.
Identifying the relative importance of climatic and other environmental controls on the interannual variability and trends in global land surface phenology and greenness is challenging. Firstly, quantifications of land surface phenology and greenness dynamics are impaired by differences between satellite data sets and phenology detection methods. Secondly, dynamic global vegetation models (DGVMs) that can be used to diagnose controls still reveal structural limitations and contrasting sensitivities to environmental drivers. Thus, we assessed the performance of a new developed phenology module within the LPJmL (Lund–Potsdam–Jena managed Lands) DGVM with a comprehensive ensemble of three satellite data sets of vegetation greenness and ten phenology detection methods, thereby thoroughly accounting for observational uncertainties. The improved and tested model allows us quantifying the relative importance of environmental controls on interannual variability and trends of land surface phenology and greenness at regional and global scales. We found that start of growing season interannual variability and trends are in addition to cold temperature mainly controlled by incoming radiation and water availability in temperate and boreal forests. Warming‐induced prolongations of the growing season in high latitudes are dampened by a limited availability of light. For peak greenness, interannual variability and trends are dominantly controlled by water availability and land‐use and land‐cover change (LULCC) in all regions. Stronger greening trends in boreal forests of Siberia than in North America are associated with a stronger increase in water availability from melting permafrost soils. Our findings emphasize that in addition to cold temperatures, water availability is a codominant control for start of growing season and peak greenness trends at the global scale.  相似文献   

10.
Africa is predicted to be highly vulnerable to 21st century climatic changes. Assessing the impacts of these changes on Africa's biodiversity is, however, plagued by uncertainties, and markedly different results can be obtained from alternative bioclimatic envelope models or future climate projections. Using an ensemble forecasting framework, we examine projections of future shifts in climatic suitability, and their methodological uncertainties, for over 2500 species of mammals, birds, amphibians and snakes in sub‐Saharan Africa. To summarize a priori the variability in the ensemble of 17 general circulation models, we introduce a consensus methodology that combines co‐varying models. Thus, we quantify and map the relative contribution to uncertainty of seven bioclimatic envelope models, three multi‐model climate projections and three emissions scenarios, and explore the resulting variability in species turnover estimates. We show that bioclimatic envelope models contribute most to variability, particularly in projected novel climatic conditions over Sahelian and southern Saharan Africa. To summarize agreements among projections from the bioclimatic envelope models we compare five consensus methodologies, which generally increase or retain projection accuracy and provide consistent estimates of species turnover. Variability from emissions scenarios increases towards late‐century and affects southern regions of high species turnover centred in arid Namibia. Twofold differences in median species turnover across the study area emerge among alternative climate projections and emissions scenarios. Our ensemble of projections underscores the potential bias when using a single algorithm or climate projection for Africa, and provides a cautious first approximation of the potential exposure of sub‐Saharan African vertebrates to climatic changes. The future use and further development of bioclimatic envelope modelling will hinge on the interpretation of results in the light of methodological as well as biological uncertainties. Here, we provide a framework to address methodological uncertainties and contextualize results.  相似文献   

11.
Recent evidence shows that warm semi‐arid ecosystems are playing a disproportionate role in the interannual variability and greening trend of the global carbon cycle given their mean lower productivity when compared with other biomes (Ahlström et al. 2015 Science, 348, 895). Using multiple observations (land‐atmosphere fluxes, biomass, streamflow and remotely sensed vegetation cover) and two state‐of‐the‐art biospheric models, we show that climate variability and extremes lead to positive or negative responses in the biosphere, depending on vegetation type. We find Australia to be a global hot spot for variability, with semi‐arid ecosystems in that country exhibiting increased carbon uptake due to both asymmetry in the interannual distribution of rainfall (extrinsic forcing), and asymmetry in the response of gross primary production (GPP) to rainfall change (intrinsic response). The latter is attributable to the pulse‐response behaviour of the drought‐adapted biota of these systems, a response that is estimated to be as much as half of that from the CO2 fertilization effect during 1990–2013. Mesic ecosystems, lacking drought‐adapted species, did not show an intrinsic asymmetric response. Our findings suggest that a future more variable climate will induce large but contrasting ecosystem responses, differing among biomes globally, independent of changes in mean precipitation alone. The most significant changes are occurring in the extensive arid and semi‐arid regions, and we suggest that the reported increased carbon uptake in response to asymmetric responses might be contributing to the observed greening trends there.  相似文献   

12.
Landsliding is a natural process influencing montane ecosystems, particularly in areas with elevated rainfall and seismic activity. Yet, to date, little effort has been made to quantify the contribution of this process to land‐cover change. Focusing on the mountains of Mexico and Central America (M‐CA), we estimated the contribution of landsliding to land‐cover change at two scales. At the scale of M‐CA, we classified the terrain into major landforms and entered in a GIS historical data on earthquake‐ and rainfall‐triggered landslides. At the scale of the Sierra de Las Minas of Guatemala, we investigated Landsat TM data to map rainfall‐triggered landslides. During the past 110 yr, >136,200 ha of land in the mountains of M‐CA have been affected by landslides, which translates into disturbance rates exceeding 0.317 percent/century. In Sierra de Las Minas, rainfall associated with hurricane Mitch affected 1765 ha of forest, or equivalently, landslides triggered by storms of this magnitude transformed between 0.196 (return time of 500 yr) and 1.290 (return time of 75 yr) percent of forest/century. Although landsliding results in smaller rates of land‐cover change than deforestation, we hypothesize that it has a stronger impact on ecosystems, both in qualitative and quantitative terms, given its influence on vegetation and soil. Moreover, interactions between landsliding and deforestation may be altering the expression of this complex process such that the few protected areas in the mountains of M‐CA may represent the only possibility for the conservation of this process.  相似文献   

13.
14.
Akana E. Noto  Jonathan B. Shurin 《Oikos》2017,126(9):1308-1318
Environmental variability and the frequency of extreme events are predicted to increase in future climate scenarios; however, the role of fluctuations in shaping community composition, diversity and stability is not well understood. Identifying current patterns of association between measures of community stability and climatic means and variability will help elucidate the ways in which altered variability and mean conditions may change communities in the future. Salt marshes provide essential ecosystem services and are increasingly threatened by sea‐level rise, land‐use change, eutrophication and predator loss, yet the effects of temporal environmental variation on salt marshes remain unknown. We synthesized long‐term plant community monitoring data from 11 sites on both coasts of the United States. We used an information‐theoretic approach and linear models to determine the associations among long‐term mean conditions, interannual environmental variability, and plant community stability and diversity. We found that salt marsh community stability and diversity were more strongly related to long‐term means of temperature and precipitation than to interannual variation. Warm and wet environments had fewer species and less turnover among years. Our results suggest that communities in cool, dry environments may be more resilient to climate warming due to greater species richness and turnover. Mean conditions are sufficient to predict contemporary patterns of salt marsh plant community dynamics, but environmental variability may have stronger impacts as it increases with climate change.  相似文献   

15.
In this paper, the influence of climate variability and change on the environment was studied over southern Africa using ground-based and remotely sensed data. A time series analysis of rainfall and temperature anomalies indicated that there was a high rainfall and temperature variability in the region. The influence of global teleconnections on rainfall patterns over southern Africa showed that in some areas there was a spatial variation in their strength, increasing from west to east. Maps of NDVI, from 1982 to 2004, showed that changes in vegetation cover were more apparent during the dry season than during the wet season. The study also revealed that climate variability and change are linked to decreasing rainfall and hence, decreasing regional water resources and biodiversity and increasing environmental degradation. With the regional population expected increase, this depletion of resources poses the greatest regional environmental challenge to humankind.  相似文献   

16.
Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model‐data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter‐model variation is generally large and model agreement varies with timescales. In severely water‐limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter‐model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models.  相似文献   

17.
Information on the response of vegetation to different environmental drivers, including rainfall, forms a critical input to ecosystem models. Currently, such models are run based on parameters that, in some cases, are either assumed or lack supporting evidence (e.g., that vegetation growth across Africa is rainfall‐driven). A limited number of studies have reported that the onset of rain across Africa does not fully explain the onset of vegetation growth, for example, drawing on the observation of prerain flush effects in some parts of Africa. The spatial extent of this prerain green‐up effect, however, remains unknown, leaving a large gap in our understanding that may bias ecosystem modelling. This paper provides the most comprehensive spatial assessment to‐date of the magnitude and frequency of the different patterns of phenology response to rainfall across Africa and for different vegetation types. To define the relations between phenology and rainfall, we investigated the spatial variation in the difference, in number of days, between the start of rainy season (SRS) and start of vegetation growing season (SOS); and between the end of rainy season (ERS) and end of vegetation growing season (EOS). We reveal a much more extensive spread of prerain green‐up over Africa than previously reported, with prerain green‐up being the norm rather than the exception. We also show the relative sparsity of postrain green‐up, confined largely to the Sudano‐Sahel region. While the prerain green‐up phenomenon is well documented, its large spatial extent was not anticipated. Our results, thus, contrast with the widely held view that rainfall drives the onset and end of the vegetation growing season across Africa. Our findings point to a much more nuanced role of rainfall in Africa's vegetation growth cycle than previously thought, specifically as one of a set of several drivers, with important implications for ecosystem modelling.  相似文献   

18.
Abstract. A 44‐yr record of herbaceous vegetation change was analysed for three contrasting grazing regimes within a semi‐arid savanna to evaluate the relative contribution of confined livestock grazing and climatic variability as agents of vegetation change. Grazing intensity had a significant, directional effect on the relative composition of short‐ and mid‐grass response groups; their composition was significantly correlated with time since the grazing regimes were established. Interannual precipitation was not significantly correlated with response group composition. However, interannual precipitation was significantly correlated with total plant basal area while time since imposition of grazing regimes was not, but both interannual precipitation and time since the grazing regimes were established were significantly correlated with total plant density. Vegetation change was reversible even though the herbaceous community had been maintained in an altered state for ca. 60 yr by intensive livestock grazing. However, ca. 25 yr were required for the mid‐grass response group to recover following the elimination of grazing and recovery occurred intermittently. The increase in mid‐grass composition was associated with a significant decrease in total plant density and an increase in mean individual plant basal area. Therefore, we failed to reject the hypotheses based on the proportional change in relative response group composition with grazing intensity and the distinct effects of grazing and climatic variability on response group composition, total basal area and plant density. Long‐term vegetation change indicates that grazing intensity established the long‐term directional change in response group composition, but that episodic climate events defined the short‐term rate and trajectory of this change and determines the upper limit on total basal area. The occurrence of both directional and non‐directional vegetation responses were largely a function of (1) the unique responses of the various community attributes monitored and (2) the distinct temporal responses of these community attributes to grazing and climatic variation. This interpretation supports previous conclusions that individual ecosystems may exist in equilibrial and non‐equilibrial states at various temporal and spatial scales.  相似文献   

19.
Tropical ecosystems are under increasing pressure from land‐use change and deforestation. Changes in tropical forest cover are expected to affect carbon and water cycling with important implications for climatic stability at global scales. A major roadblock for predicting how tropical deforestation affects climate is the lack of baseline conditions (i.e., prior to human disturbance) of forest–savanna dynamics. To address this limitation, we developed a long‐term analysis of forest and savanna distribution across the Amazon–Cerrado transition of central Brazil. We used soil organic carbon isotope ratios as a proxy for changes in woody vegetation cover over time in response to fluctuations in precipitation inferred from speleothem oxygen and strontium stable isotope records. Based on stable isotope signatures and radiocarbon activity of organic matter in soil profiles, we quantified the magnitude and direction of changes in forest and savanna ecosystem cover. Using changes in tree cover measured in 83 different locations for forests and savannas, we developed interpolation maps to assess the coherence of regional changes in vegetation. Our analysis reveals a broad pattern of woody vegetation expansion into savannas and densification within forests and savannas for at least the past ~1,600 years. The rates of vegetation change varied significantly among sampling locations possibly due to variation in local environmental factors that constrain primary productivity. The few instances in which tree cover declined (7.7% of all sampled profiles) were associated with savannas under dry conditions. Our results suggest a regional increase in moisture and expansion of woody vegetation prior to modern deforestation, which could help inform conservation and management efforts for climate change mitigation. We discuss the possible mechanisms driving forest expansion and densification of savannas directly (i.e., increasing precipitation) and indirectly (e.g., decreasing disturbance) and suggest future research directions that have the potential to improve climate and ecosystem models.  相似文献   

20.
Globally, long‐term research is critical to monitor the responses of tropical species to climate and land cover change at the range scale. Citizen science surveys can reveal the long‐term persistence of poorly known nomadic tropical birds occupying fragmented forest patches. We applied dynamic occupancy models to 13 years (2002–2014) of citizen science‐driven presence/absence data on Cape parrot (Poicephalus robustus), a food nomadic bird endemic to South Africa. We modeled its underlying range dynamics as a function of resource distribution, and change in climate and land cover through the estimation of colonization and extinction patterns. The range occupancy of Cape parrot changed little over time (ψ = 0.75–0.83) because extinction was balanced by recolonization. Yet, there was considerable regional variability in occupancy and detection probability increased over the years. Colonizations increased with warmer temperature and area of orchards, thus explaining their range shifts southeastwards in recent years. Although colonizations were higher in the presence of nests and yellowwood trees (Afrocarpus and Podocarpus spp.), the extinctions in small forest patches (≤227 ha) and during low precipitation (≤41 mm) are attributed to resource constraints and unsuitable climatic conditions. Loss of indigenous forest cover and artificial lake/water bodies increased extinction probabilities of Cape parrot. The land use matrix (fruit farms, gardens, and cultivations) surrounding forest patches provides alternative food sources, thereby facilitating spatiotemporal colonization and extinction in the human‐modified matrix. Our models show that Cape parrots are vulnerable to extreme climatic conditions such as drought which is predicted to increase under climate change. Therefore, management of optimum sized high‐quality forest patches is essential for long‐term survival of Cape parrot populations. Our novel application of dynamic occupancy models to long‐term citizen science monitoring data unfolds the complex relationships between the environmental dynamics and range fluctuations of this food nomadic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号