首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   634篇
  免费   63篇
  2023年   7篇
  2022年   2篇
  2021年   11篇
  2020年   2篇
  2019年   12篇
  2018年   15篇
  2017年   18篇
  2016年   19篇
  2015年   39篇
  2014年   33篇
  2013年   42篇
  2012年   56篇
  2011年   54篇
  2010年   27篇
  2009年   20篇
  2008年   33篇
  2007年   30篇
  2006年   47篇
  2005年   24篇
  2004年   27篇
  2003年   24篇
  2002年   37篇
  2001年   8篇
  2000年   19篇
  1999年   10篇
  1998年   5篇
  1997年   5篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   3篇
  1990年   6篇
  1989年   6篇
  1988年   5篇
  1986年   6篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1980年   4篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1967年   1篇
  1966年   1篇
  1961年   1篇
  1960年   1篇
  1932年   1篇
排序方式: 共有697条查询结果,搜索用时 378 毫秒
1.
2.
The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP). Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain.  相似文献   
3.
The pancreatic ductal tree conveys enzymatic acinar products to the duodenum and secretes the fluid and ionic components of pancreatic juice. The physiology of pancreatic duct cells has been widely studied, but many questions are still unanswered concerning their mechanisms of ionic transport. Differences in the transport mechanisms operating in the ductal epithelium has been described both among different species and in the different regions of the ductal tree. In this review we summarize the methods developed to study pancreatic duct secretion both in vivo and in vitro, the different mechanisms of ionic transport that have been reported to date in the basolateral and luminal membranes of pancreatic ductal cells and the regulation of pancreatic duct secretion by nervous endocrine and paracrine influences.  相似文献   
4.
5.
The aim of this study was to find an improved method with which to stain the entire population of myenteric neurons in the different segments of the developing chicken intestine. Histochemical staining with cuprolinic blue (quinolinic phthalocyanine) and immunostaining against neurofilament (NF) were performed on whole mounts prepared from intestinal segments of embryonic (day 19 of incubation) and hatched (1, 2, 4 and 7 days after hatching) chickens. Double labelling was performed to evaluate to what extent the two markers visualise the same nerve cell population. Cuprolinic blue stained neuronal somata highly selectively, whereas processes and glia cells were poorly labelled. The cuprolinic blue-positive neurons were uniform in shape. NF immunostaining revealed a morphologically highly variable neuron population. Double labelling with cuprolinic blue and NF resulted in an intensification of both stainings, allowing an accurate morphological classification of NF-stained myenteric neurons. Data obtained from the counting of cuprolinic blue-positive neurons were subjected to two-way ANOVA and the Tukey probe. The densities of ganglia and neurons were found to decrease, and the mean number of neurons per myenteric ganglion to increase, with different dynamics along the longitudinal axis of the gut during the examined time span. The variances in the number of NF-positive neurons were not homogeneous, and the data were therefore not suitable for ANOVA. Accordingly, only semiquantitative conclusions could be drawn.  相似文献   
6.
7.
8.
9.
Purinergic Signalling - The guanine-based purines (GBPs) have essential extracellular functions such as modulation of glutamatergic transmission and trophic effects on neurons and astrocytes. We...  相似文献   
10.
Flavodiiron proteins (FDPs) play key roles in biological response mechanisms against oxygen and/or nitric oxide; in particular they are present in oxygenic phototrophs (including cyanobacteria and gymnosperms). Two conserved domains define the core of this family of proteins: a N-terminal metallo-β-lactamase-like domain followed by a C-terminal flavodoxin-like one, containing the catalytic diiron centre and a FMN cofactor, respectively. Members of the FDP family may present extra modules in the C-terminus, and were classified into several classes according to their distribution and composition. The cyanobacterium Synechocystis sp. PCC6803 contains four Class C FDPs (Flv1-4) that include at the C-terminus an additional NAD(P)H:flavin oxidoreductase (FlR) domain. Two of them (Flv3 and Flv4) have the canonical diiron ligands (Class C, Type 1), while the other two (Flv1 and Flv2) present different residues in that region (Class C, Type 2). Most phototrophs, either Bacterial or Eukaryal, contain at least two FDP genes, each encoding for one of those two types. Crystals of the Flv1 two core domains (Flv1-ΔFlR), without the C-terminal NAD(P)H:flavin oxidoreductase extension, were obtained and the structure was determined. Its pseudo diiron site contains non-canonical basic and neutral residues, and showed anion moieties, instead. The presented structure revealed for the first time the structure of the two-domain core of a Class C-Type 2 FDP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号