首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Neuronal pathways in the retrocerebral complex and thoracico-abdominal ganglionic mass of the blowflyCalliphora vomitoria have been identified immunocytochemically with antisera against the extended-enkephalins, Met-enkephalin-Arg6-Phe7 (Met-7) and Met-enkephalin-Arg6-Gly7-Leu8 (Met-8). Neurons of the hypocerebral ganglion, immunoreactive to Met-8, have axons in the crop duct nerve and terminals in muscles of the crop and its duct. Certain neurons of the hypocerebral ganglion are also immunoreactive to Met-7, and axons from these cells innervate the heart. Met-8 immunoreactive nerve terminals invest the cells of the corpus allatum. The source of this material is believed to ve a single pair of lateral neurosecretory cells in the brain. There is no Met-7 immunoreactive material in the corpus allatum. In the corpus cardiacum neither Met-7 nor Met-8 immunoreactivity is present in the cells. However, in the neuropil of the gland certain fibres, with their origins elsewhere, do contain Met-8 immunoreactivity. The most prominent neurons in the thoracic ganglion are the Met-7 immunoreactive ventral thoracic neurosecretory cells, axons from which project to neurohaemal areas in the dorsal neural sheath and also, via the ventral connective, to the brain. Co-localisation studies show that the perikarya of these cells are immunoreactive to antisera raised against several vertebrate-type peptides, such as Met-7, gastrin/cholecystokinin and pancreatic polypeptide. However, their axons and terminals show varying amounts of the peptides, suggesting differential transport and utilisation. Only a few cells in the thoracic ganglion are immunoreactive to Met-8 antisera. These lie close to the nerve bundles suppling the legs. In the abdominal ganglion, Met-8 immunoreactive neurons project to the muscles of the hindgut. This study suggests that the extended enkephalin-like peptides ofCalliphora may have a variety of different roles: as neurotransmitter or neuromodulator substances; in the direct innervation of effector organs; and as neurohormones.  相似文献   

2.
Summary Neuronal circuits in the brain and retrocerebral complex of the cockroach Diploptera punctata have been mapped immunocytochemically with antisera directed against the extended enkephalin, Met-enkephalin-Arg6-Gly7-Leu8 (Met-8). The pathways link median and lateral neurosecretory cells with the corpus cardiacum/corpus allatum complex. In females, nerve fibres penetrate the corpora allata and varicosities or terminals, immunoreactive to Met-8, surround the glandular cells. Males differ in having almost no Met-8 immunoreactivity in the corpora allata. The corpora cardiaca of both males and females are richly supplied with Met-8 immunoreactive material, in particular in the cap regions immediately adjacent to the corpora allata. A similarity in the amino-acid sequences of Met-8 and the C-terminus of the recently characterised allatostatins of D. punctata suggests that the pathways identified with the Met-8 antisera may be the same as those by which the allatostatins are transported from the brain to the corpus allatum. In comparative studies on the blowfly Calliphora vomitoria, similar neuronal pathways have been identified except that no sexual dimophism with respect to amounts of immunoreactive material within the corpus allatum has been observed. These results suggest a possible homology in the neuropeptide regulation of the gland.  相似文献   

3.
Summary Ventral thoracic neurosecretory cells (VTNCs) of the blowflies, Calliphora erythrocephala and C. vomitoria, innervating thoracic neuropil and the dorsal neural sheath of the thoracico-abdominal ganglion have been shown to be immunoreactive to a variety of mammalian peptide antisera. In the neural sheath the VTNC terminals form an extensive neurohaemal network that is especially dense over the abdominal ganglia. The same areas are invaded by separate, ut overlapping serotonin-immunoreactive (5-HT-IR) projections derived from neuronal cell bodies in the suboesophageal ganglion. Immunocytochemical studies with different antisera, applied to adjacent sections at the lightmicroscopic level, combined with extensive cross-absorption tests, suggest that the perikarya of the VTNCs contain co-localized peptides related to gastrin/cholecystokinin (CCK), bovine pancreatic polypeptide (PP), Met- and Leuenkephalin and Met-enk-Arg6-Phe7 (Met-enk-RF). Electron-microscopic immunogold-labeling shows that some of the terminals in the dorsal sheath react with several of the individual peptide antisera, whilst others with similar cytology are non-immunoreactive. In the same region, separate terminals with different cytological characteristics contain 5-HT-IR. Both 5-HT-IR and peptidergic terminals are localized outside the cellular perineurium beneath the acellular permeable sheath adjacent to the haemocoel. Hence, we propose that various bioactive substances may be released from thoracic neurosecretory neurons into the circulating haemolymph to act on peripheral targets. The same neurons may also interact by synaptic or modulatory action in the CNS in different neuropil regions of the thoracic ganglion.  相似文献   

4.
Summary The distribution of enkephalin-like immunoreactive material has been studied in the CNS of C. vomitoria. The presence of both Met- and Leu-enkephalin-related peptides is suggested by differential immunostaining with a variety of antisera. Comparisons made between certain of the enkephalin-immunoreactive perikarya, nerve fibres and terminals with cells in corresponding positions as evidenced in previously published neuroanatomical studies of the dipteran brain have suggested specific enkephalinergic pathways. As examples, one Met-enkephalin-immunoreactive neuron appears to link the lobula with the dorsal protocerebrum, and a group of Leu-enkephalin cells in the pars intercerebralis appear to have arborisations in both the central body (fan-shaped body) and the tritocerebral neuropil around the oesophageal foramen. Neuronal pathways of this type indicate that the enkephalin-like peptides of the fly brain are functioning as neurotransmitters and/or neuromodulators. In the thoracic ganglia, symmetrically arranged cells, immunoreactive to both Met- and Leu-enkephalin antisera, are positioned ventrally in pairs on either side of the mid-line in a sagittal plane. Very little immunoreactive material is observed in the neuropil, however, and the source of the accumulation of Leu-enkephalin-immunoreactivity in the dorsal neural sheath is not certain. It is suggested that this material, in contrast to that present in areas of the brain, acts as a neurohormone and that it may have a physiological role following its release into the haemolymph. The enkephalin-like immunoreactive material of certain neurons identified within the brain and thoracic ganglion shows a complex pattern of co-existence with pancreatic polypeptide- and gastrin/cholecystokinin-like peptides.  相似文献   

5.
Summary Using an antiserum against the tetrapeptide FMRFamide, we have studied the distribution of FMRFamide-like substances in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. More than 2000 neurons per hemisphere exhibit FMRFamide-like immunoreactivity. Most of these cells reside within the optic lobe. Particular types of FMRFamide-immunoreactive neurons can be identified. Among these are neurosecretory cells, putatively centrifugal neurons of the optic lobe, local interneurons of the antennal lobe, mushroom-body Kenyon cells, and small-field neurons of the central complex. In the suboesophageal ganglion, groups of ventral midline neurons exhibit FMRFamide-like immunoreactivity. Some of these cells have axons in the maxillary nerves and apparently give rise to FMRFamide-immunoreactive terminals in the sheath of the suboesophageal ganglion and the maxillary nerves. In local interneurons of the antennal lobe and a particular group of protocerebral neurons, FMRFamide-like immunoreactivity is colocalized with GABA-like immunoreactivity. This suggests that FMRFamide-like peptides may be cotransmitters of these putatively GABAergic interneurons. All FMRFamide-immunoreactive neurons are, furthermore, immunoreactive with an antiserum against bovine pancreatic polypeptide, and the vast majority is also immunoreactive with an antibody against the molluscan small cardioactive peptide SCPB. Therefore, it is possible that more than one peptide is localized within many FMRFamide-immunoreactive neurons. The results suggest that FMRFamide-related peptides are widespread within the nervous system ofM. sexta and might function as neurohormones and neurotransmitters in a variety of neuronal cell types.Abbreviations AL antennal lobe - BPPLI bovine pancreatic polypeptide-like immunoreactivity - FLI FMRFamide-like immunoreactivity - GLI GABA-like immunoreactivity - NSC neurosecretory cell - SCP B LI small cardioactive peptideB-like immunoreactivity - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion  相似文献   

6.
Summary The distribution and characterization of the opioid octapeptide met5-enkephalin-arg6-gly7-leu8 (met5-enk-arg6-gly7-leu8) within the gastrointestinal tract of the rat has been determined by immunohistochemistry and radioimmunoassay by use of a newly developed antibody to met5-enk-arg6-gly7-leu8. With both techniques, met5-enk-arg6-gly7-leu8-immunoreactivity (met5-enk-arg6-gly7-leu8IR) was detected in all regions of the gastrointestinal (GI) tract except the esophagus. The highest concentration of immunoreactive met5-enk-arg6-gly7-leu8 was observed in the colon, while intermediate concentrations were found in the stomach, duodenum, jejunum, and ileum. Immunostained somata were observed chiefly in the myenteric plexus; immunostained processes were present primarily in the myenteric plexus and the circular muscle layer. This distribution pattern is similar to that previously observed with antiserum to met5-enkephalin-arg6-phe7 (met5-enk-arg6phe7). Chromatographic analysis of met5-enk-arg6-gly7leu8-immunoreactive peptides extracted from the GI tract revealed the presence of an immunoreactive peptide of high molecular weight which accounted for approximately three-quarters of met5-enk-arg6-gly7-leu8-IR in both stomach and colon. These findings suggest a role for peptides related to the octapeptide met5-enk-arg6-gly7-leu8 in the regulation of GI function.  相似文献   

7.
Summary The adult optic lobes of the blowfly Calliphora erythrocephala were found to be innervated by more than 2000 neurons immunoreactive to antisera raised against the neuropeptides FMRFamide, its fragment RFamide, and gastrin/cholecystokinin (CCK). All of the CCK-like immunoreactive (CCK-IR) neurons also reacted with antisera to RFamide, FMRFamide and pancreatic polypeptide. A few RFamide/FMRFamide-like immunoreactive (RF-IR) neurons did not react with CCK antisera; they reacted instead with antisera to Leu-enkephalin and Met-enkephalin-Arg6-Phe7. The RF-IR neurons are, thus, heterogeneous with respect to their contents of immunoreactive peptides. Two of the RF-IR neuron types innervating the adult optic lobes could be traced in their entirety only after following their postembryonic development, because of the complexity of the trajectories of the immunoreactive neuronal process in the adult insect. The majority of the cell bodies of the RF-IR and CCK-IR neurons lie within the optic lobes and are derived from imaginal neuroblasts of the inner and outer optic anlagen. Six of the peptidergic neurons are, however, metamorphosing larval neurons with their cell bodies in the central part of the protocerebrum. The full extent of immunoreactivitiy is not attained in some of the neurons until the late pupal or early adult stage. The larval optic center was also found to be innervated by neurons immuno-reactive with both RFamide and CCK antisera. The cell bodies of these RF-IR/CCK-IR neurons are located near the developing lamina (one on each side). In the 24 h pupa, the cell bodies of these neurons are still immunoreactive, but thereafter they cannot be immunolabeled apparently due to cell death or a change in transmitter phenotype.  相似文献   

8.
Summary The localization of the proenkephalin A-derived octapeptide, Met5-enkephalin-Arg6-Gly7-Leu8 (MEAGL), was studied in the major salivary glands of Sprague-Dawley and Wistar rats with the indirect immunofluorescence method. MEAGL-immunoreactive nerve fibers were found around the acini, along intra-and interlobular salivary ducts and in close contact with blood vessels. In the parotid and submandibular glands tyrosine hydroxylase (TH) immunoreactivity was observed in nerve fibers around the acini, in association with intra- and interlobular salivary ducts and around blood vessels, while in the sublingual gland TH-immunoreactive nerve fibers were only seen around blood vessels. Parasympathetic neurons in submandibular ganglia contained MEAGL immunoreactivity. Moderate TH immunoreactivity was seen in some neurons of the submandibular ganglia. A subpopulation of sympathetic principal neurons in the superior cervical ganglion were immunoreactive for both MEAGL and TH. In the trigeminal ganglion, no MEAGL-immunoreactive sensory neurons or nerve fibers were observed. Superior cervical ganglionectomies resulted in a complete disappearance of TH-immunoreactive nerve fibers, while MEAGL-immunoreative nerve fibers were still present in the glands. The presence of MEAGL immunoreactivity in neurons of both sympathetic superior cervical ganglia and parasympathetic submandibular ganglia and the results of superior cervical ganglionectomies suggest, that MEAGL-immunoreactive nerve fibers in the major salivary glands of the rat have both sympathetic and parasympathetic origin.  相似文献   

9.
Summary Separate antisera were raised to the N- and C-terminal half of the diuretic hormone from Manduca sexta. Antisera against the two halves of this peptide recognized the same cells in M. sexta, and preabsorption of the antisera with the peptides used as antigens abolished the immunoreactivity, confirming their specificity. The antisera reacted with two median neurosecretory cells on each side of the protocerebral groove in larvae, and with a group of about 80 small median neurosecretory cells in the adult, as well as their axons to, and their axon terminals in, the corpora cardiaca. During the early pupal stages, small cells, which are possibly derived from a common neuroblast, differentiate into immunoreactive neurosecretory cells, which explains the large increase in cell numbers in the adult. In the sleepy sulphur butterfly, Eurema nicippe, homologous median neurosecretory cells in the adult were immunoreactive with both antisera.  相似文献   

10.
Summary Polyclonal antibodies were raised in rabbits against synthetic crustacean cardioactive peptide (CCAP) conjugated to bovine thyroglobulin, and were used to map CCAP-immunoreactive structures in the central nervous system of Carcinus maenas. As expected, the neurohemal pericardial organs (PO) displayed abundant immunoreactivity in nerve fibers and terminals. In addition, immunoreactive neurons were demonstrated in other parts of the nervous system. At least some of them do not appear to terminate in neurohemal structures and may have a non-endocrine, as yet unknown function. Immunoreactive perikarya with a diameter of 25–30 m occur in the brain. They project into the optic and antennary neuropil, and into the eyestalk. One cell was found in the medulla terminalis of the eyestalk and in the connective ganglion, respectively. From the latter, axonal branches could be traced into the brain and the thoracic ganglia (TG). In the TG, small-diameter perikarya give rise to extensive networks of varicose fibers. Some of the perikarya occur in a characteristic paired arrangement with larger CCAP-immunoreactive somata (diameter 40–50 m). These pairs of one small and one large cell occur in all mouthpart and leg segments of the TG, except the abdominal ganglia (AG), where only large cells were found. The main projections of the large neurons comprise one or more fibers in each of the seven segmental nerves (SN), leading to neurosecretory terminals in the PO. The fibers in the SN are joined by branches of an ascending axonal tract from the large perikarya in the AG. The large-type perikarya are considered to be the principal source of CCAP in the PO. The optic ganglia in the eyestalk, except the medulla terminalis, the neurohemal sinus gland and the stomatogastric nervous system are devoid of CCAP-immunoreactivity.In axon terminals of the PO, CCAP is not colocalized with other PO-neuropeptides, i.e. proctolin-, FMRFamide-like, and Leu-enkephalin-like immunoreactive materials. Electron-microscopic immunocytochemistry revealed a distinct CCAP-containing granule type in specific axon profiles and terminals in the PO.The architecture of CCAP-immunoreactive neurons is discussed with respect to previous morphological studies on the origin and pathways of fibers terminating in the PO.Dedicated to Professor K.E. Wohlfarth-Bottermann, Bonn, on the occasion of his 65th birthday  相似文献   

11.
Summary Light-microscopical observations with immunofluorescence and peroxidase staining procedures revealed leu-enkephalin-like immunoreactivity in axon profiles of the sinus gland (SG) and in single small neurons in the optic ganglia of the eyestalk of Carcinus maenas. Electron microscopy of the SG showed reactivity to be associated with neurosecretory granules 82±23 nm in diameter. High performance liquid chromatography of SG-extracts revealed radioimmunoreactive substances with the retention times of synthetic met- and leu-enkephalin and met-enkephalin-Arg6-Phe7, respectively.  相似文献   

12.
Summary The distribution of dopamine-like immunoreactive neurons is described for the brain of the bee, Apis mellifera L., following the application of a pre-embedding technique on Vibratome sections. Immunoreactive somata are grouped into seven clusters, mainly situated in the protocerebrum. Immunoreactive interneurons have been detected in the different neuropilar compartments, except for the optic lobe neuropils. Strong immunoreactivity is found in the upper division of the central body, in parts of the stalk and in the -lobe layers of the mushroom bodies. A dense network of many immunoreactive fibres surrounds the mushroom bodies and the central body. It forms a number of interhemispheric commissures/chiasmata, projecting partly into the contralateral mushroom body and central body. The lateral protocerebral neuropil contains some large wide-field-neurons. The antennal-lobe glomeruli receive fine projections of multiglomerular dopamine-like immunoreactive interneurons.  相似文献   

13.
A specific antiserum against met5-enkepha-lin-arg6-phe7 was raised and used to study the distribution and characterization of met5-enkephalin-arg6-phe7-like immunoreactive material in rat brains by radioimmunoassay and immunohistochemical procedures. The antiserum appears to be directed to the COOH-terminus of the peptide, as it fails to cross-react with met5-enkeph-alin, met3-enkephalin-arg6, met5-enkephalin-arg6-arg7, met6-enkephalin-lys6, and leu-enkephalin. However, it cross-reacts with phe-met-arg-phe by about 10% and with phe-met-arg-phe-NH2 to an insignificant degree. The highest content of met5-enkephalin-arg6-phe7 was found in the striatum, which contains a dense network of immunoreactive varicose fibers and terminals, as well as immunoreac tive cell bodies. The met5-enkephalin-arg6-phe7 in striatum can be released in a Ca2+-dependent manner by a depolarizing concentration of KC1, raising the possibility of a neu-roregulatory role for met5-enkephalin-arg6-phe7. Characterization of the immunoreactive material by gel filtration and high pressure liquid chromatography revealed the presence of multiple forms of immunoreactive material in some brain regions.  相似文献   

14.
Summary Serotonin-immunoreactive neurons in the median protocerebrum and suboesophageal ganglion of the sphinx moth Manduca sexta were individually reconstructed. Serotonin immunoreactivity was detected in 19–20 bilaterally symmetrical pairs of interneurons in the midbrain and 10 pairs in the suboesophageal ganglion. These neurons were also immunoreactive with antisera against DOPA decarboxylase. All major neuropil regions except the protocerebral bridge are innervated by these neurons. In addition, efferent cells are serotonin-immunoreactive in the frontal ganglion (5 neurons) and the suboesophageal ganglion (2 pairs of neurons). The latter cells probably give rise to an extensive network of immunoreactive terminals on the surface of the suboesophageal ganglion and suboesophageal nerves. Most of the serotonin-immunoreactive neurons show a gradient in the intensity of immunoreactive staining, suggesting low levels of serotonin in cell bodies and dendritic arbors and highest concentrations in axonal terminals. Serotonin-immunoreactive cells often occur in pairs with similar morphological features. With one exception, all serotonin-immunoreactive neurons have bilateral projections with at least some arborizations in identical neuropil areas in both hemispheres. The morphology of several neurons suggests that they are part of neuronal feedback circuits. The similarity in the arborization patterns of serotonin-immunoreactive neurons raises the possibility that their outgrowing neurites experienced similar forces during embryonic development. The morphological similarities further suggest that serotonin-immunoreactive interneurons in the midbrain and suboesophageal ganglion share physiological characteristics.Abbreviations CNS central nervous system - DDC DOPA decarboxylase - LAL lateral accessory lobe - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion - VLP ventro-lateral protocerebrum  相似文献   

15.
Because leucokinins stimulate diuresis in some insects, we wished to identify the neurosecretory cells in Manduca sexta that might be a source of leucokinin-like neurohormones. Immunostaining was done at various stages of development, using an antiserum to leucokinin IV. Bilateral pairs of neurosecretory cells in abdominal ganglia 3–7 of larvae and adults are immunoreactive; these cells project via the ipsilateral ventral nerves to the neurohemal transverse nerves. The immunoreactivity and size of these lateral cells greatly increases in the pharate adult, and this change appears to be related to a period of intensive diuresis occurring a few days before adult eclosion. Relationships of these neurons to cells that are immunoreactive to a M. sexta diuretic hormone were also investigated. Diuretic hormone and leucokinin immunoreactivity are co-localized in the lateral neurosecretory cells and their neurohemal projections. A median pair of leucokinin-immunoreactive, and a lateral pair of diuretic hormone-immunoreactive neurons in the larval terminal abdominal ganglion project to neurohemal release sites within the cryptonephridium. The immunoreactivity of these cells is lost as the cryptonephridium is eliminated during metamorphosis. This loss appears to be related to the change from the larval to adult pattern of diuresis.  相似文献   

16.
The ultrastructure of neurohaemal areas on abdominal nerves of the blood-sucking bug Rhodnius prolixus was investigated. Four types of axon terminals were found, distinguished by the morphology of their neurosecretory granules. By use of post-embedding immunogold labelling, granules in Type I axon terminals were shown to contain serotonin-like immunoreactive material, and granules in Type II axon terminals were shown to contain FMRFamide-like immunoreactive material. There was no colocalization of these materials. It is suggested that Type III terminals contain peptidergic diuretic hormone, which has previously been reported to be present in electron-dense neurosecretory granules in this neurohaemal area. The identity of material in Type IV terminals is unknown.  相似文献   

17.
The Leu-callatostatins are a series of four neuropeptides isolated from nervous tissues of the blowfly Calliphora vomitoria that show C-terminal sequence homology to the allatostatins of cockroaches. The allatostatins have an important role in the reproductive processes of insects as inhibitors of the synthesis and release of juvenile hormone from the corpus allatum. In this study, the distribution of the Leu-callatostatin-immunoreactive neurones and endocrine cells has been mapped in C. vomitoria and, in contrast to the cockroach allatostatins, it has been shown that there is no cytological basis to suggest that the dipteran peptides act as regulators of juvenile hormone. Although occurring in various neurones in the brain and thoracico-abdominal ganglion, there is no evidence of Leu-callatostatin-immunoreactive pathways linking the brain to the corpus allatum, or of immunoreactive terminals in this gland. Three different types of functions for the Leu-callatostatins are suggested by the occurrence of immunoreactive material in cells and by the pathways that have been identified. (1) A role in neurotransmission or neuromodulation appears evident from immunoreactive neurones in the medulla of the optic lobes, and from immunoreactive material in the central body and in descending interneurones in the suboesophageal ganglion that project to the neuropile of the thoracico-abdominal ganglion. (2) Leu-callatostatin neurones directly innervate muscles of the hindgut and the heart. Immunoreactive fibres from neurones of the abdominal ganglion pass by way of the median abdominal nerve to ramify extensively over several areas of the hindgut. Physiological experiments with synthetic peptides show that the Leu-callatostatins are potent inhibitors of peristaltic movements of the ileum. Leu-callatostatin 3 is active at 10-16 to 10-13 M. This form or regulatory control over gut motility appears to be highly specific since the patterns of contraction in other regions are unaffected by these peptides. (3) Evidence that the Leu-callatostatins act as neurohormones comes from the presence of varicosities in axons passing through the corpus cardiacum (but not the corpus allatum) and also from material in extraganglionic neurosecretory cells in the thorax. Fibres from these peripheral neurones are especially prominent over the large nerve bundles supplying the legs. There are also a considerable number of Leu-callatostatin-immunoreactive endocrine cells in a specific region of the midgut. The conclusion from this study is that although conservation of the structure of the allatostatin-type of peptides is evident through a long period of evolution it cannot be assumed that all of their functions have also been conserved. Several different types of functions for the Leu-callatostatins of the blowfly are proposed in this study, but there is no evidence to suggest a role in the regulation of juvenile hormone synthesis and release.  相似文献   

18.
Summary Crustacean cardioactive peptide-immunoreactive neurons occur in the entire central nervous system of Locusta migratoria. The present paper focuses on mapping studies in the ventral nerve cord and on peripheral projection sites. Two types of contralaterally projecting neurons occur in all neuromers from the subesophageal to the seventh abdominal ganglia. One type forms terminals at the surface of the thoracic nerves 6 and 1, the distal perisympathetic organs, the lateral heart nerves, and on ventral and dorsal diaphragm muscles. Two large neurons in the anterior part and several neurons of a different type in the posterior part of the terminal ganglion project into the last tergal nerves. In the abdominal neuromers 1–7, two types of ipsilaterally projecting neurons occur, one of which gives rise to neurosecretory terminals in the distal perisympathetic organs, in peripheral areas of the transverse, stigmata and lateral heart nerves. Four subesophageal neurons have putative terminals in the neurilemma of the nervus corporis allati II, and in the corpora allata and cardiaca. In addition, several immunoreactive putative interneurons and other neurons were mapped in the ventral nerve cord. A new in situ whole-mount technique was essential for elucidation of the peripheral pathways and targets of the identified neurons, which suggest a role of the peptide in the control of heartbeat, abdominal ventilatory and visceral muscle activity.Abbreviations AG abdominal ganglia - AM alary muscle - AMN alary muscle nerve - CA corpus allatum - CC corpus cardiacum - dPSO distal perisympathetic organ - LHN lateral heart nerve - LT CCAP-immunoreactive lateral tract - NCA nervus corporis allati - NCC nervus corporis cardiaci - NM neuromer - PMN paramedian nerve - PSO perisympathetic organ - SOG subesophageal ganglion - VDM ventral diaphragm muscles - VNC ventral nerve cord  相似文献   

19.
Gamma-aminobutyric acid (GABA)-like immunoreactive neurons were studied in the central and peripheral nervous system of Helix pomatia by applying immunocytochemistry on whole-mount preparations and serial paraffin sections. GABA-immunoreactive cell bodies were found in the buccal, cerebral and pedal ganglia, but only GABA-immunoreactive fibers were found in the viscero-parietal-pleural ganglion complex. The majority of GABA-immunoreactive cell bodies were located in the pedal ganglia but a few could be found in the buccal ganglia. Varicose GABA-ir fibers could be seen in the neuropil areas and in distinct areas of the cell body layer of the ganglia. The majority of GABA-ir axonal processes run into the connectives and commissures of the ganglia, indicating an important central integrative role of GABA-immunoreactive neurons. GABA may also have a peripheral role, since GABA-immunoreactive fibers could be demonstrated in peripheral nerves and the lips. Glutamate injection did not change the number or distribution of GABA-immunoreactive neurons, but induced GABA immunoreactivity in elements of the connective tissue ensheathing the muscle cells and fibers of the buccal musculature. This shows that GABA may be present in different non-neural tissues as a product of general metabolic pathways.  相似文献   

20.
Summary Immunocytochemistry using antibodies against Met-enkephalin and Leu-enkephalin has demonstrated a group of large enkephalin-immunoreactive neurons in the nucleus of the rostral mesencephalic tegmentum (mRMT) of two teleost fish, Salmo gairdneri and Salmo salar. Injections of cobalt-lysine in the medial optic tectum retrogradely labeled the above group of tegmental neurons. Tegmental neurons were labeled only ipsilaterally to the injection site. This indicates that enkephalinergic neurons in the nRMT project to the optic tectum, and that at least some of the enkephalinergic axons observed in the optic tectum belong to a tegmento-tectal pathway. Comparable enkephalinergic pathways have been described in reptiles and birds, where pretectal-mesencephalic nuclei contribute to the enkephalin-containing fibers that project to the optic tectum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号