首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Using an antiserum against the tetrapeptide FMRFamide, we have studied the distribution of FMRFamide-like substances in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. More than 2000 neurons per hemisphere exhibit FMRFamide-like immunoreactivity. Most of these cells reside within the optic lobe. Particular types of FMRFamide-immunoreactive neurons can be identified. Among these are neurosecretory cells, putatively centrifugal neurons of the optic lobe, local interneurons of the antennal lobe, mushroom-body Kenyon cells, and small-field neurons of the central complex. In the suboesophageal ganglion, groups of ventral midline neurons exhibit FMRFamide-like immunoreactivity. Some of these cells have axons in the maxillary nerves and apparently give rise to FMRFamide-immunoreactive terminals in the sheath of the suboesophageal ganglion and the maxillary nerves. In local interneurons of the antennal lobe and a particular group of protocerebral neurons, FMRFamide-like immunoreactivity is colocalized with GABA-like immunoreactivity. This suggests that FMRFamide-like peptides may be cotransmitters of these putatively GABAergic interneurons. All FMRFamide-immunoreactive neurons are, furthermore, immunoreactive with an antiserum against bovine pancreatic polypeptide, and the vast majority is also immunoreactive with an antibody against the molluscan small cardioactive peptide SCPB. Therefore, it is possible that more than one peptide is localized within many FMRFamide-immunoreactive neurons. The results suggest that FMRFamide-related peptides are widespread within the nervous system ofM. sexta and might function as neurohormones and neurotransmitters in a variety of neuronal cell types.Abbreviations AL antennal lobe - BPPLI bovine pancreatic polypeptide-like immunoreactivity - FLI FMRFamide-like immunoreactivity - GLI GABA-like immunoreactivity - NSC neurosecretory cell - SCP B LI small cardioactive peptideB-like immunoreactivity - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion  相似文献   

2.
Summary We have used specific antisera against protein-conjugated-aminobutyric acid (GABA) in immunocytochemical preparations to investigate the distribution of putatively GABAergic neurons in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. About 20000 neurons per brain hemisphere exhibit GABA-immunoreactivity. Most of these are optic-lobe interneurons, especially morphologically centrifugal neurons of the lamina and tangential neurons that innervate the medulla or the lobula complex. Many GABA-immunoreactive neurons, among them giant fibers of the lobula plate, project into the median protocerebrum. Among prominent GABA-immunoreactive neurons of the median protocerebrum are about 150 putatively negative-feedback fibers of the mushroom body, innervating both the calyces and lobes, and a group of large, fan-shaped neurons of the lower division of the central body. Several commissures in the supra- and suboesophageal ganglion exhibit GABA-immunoreactivity. In the suboesophageal ganglion, a group of contralaterally descending neurons shows GABA-like immunoreactivity. The frontal ganglion is innervated by immunoreactive processes from the tritocerebrum but does not contain GABA-immunoreactive somata. With few exceptions the brain nerves do not contain GABA-immunoreactive fibers.  相似文献   

3.
Summary The neuroarchitecture of the central complex, a prominent neuropil in the midbrain of the holometabolan, Tenebrio molitor, is described throughout larval development. The analysis is based on classical silver impregnations and on fate-mapping of identified neurons using antisera against serotonin and FMRF-amide. In T. molitor, the central body is present in the first larval instar, and is formed by side branches of contralaterally projecting neurons. Glial cells surround eight neuropil compartments in the first larval instar. These subdivisions in the organization of the fan-shaped body are maintained throughout development. Intrinsic interneurons are found from the 5th larval instar onwards. In the last larval stage, the central complex consists of the fan-shaped body, the protocerebral bridge, and the anlage of the ellipsoid body. The cellular architecture of the fan-shaped body of the last larval instar resembles the basic structural characteristics of the adult. Serotonin-immunoreactive neurons and FMRF-amide immunoreactive neurons in the midbrain of the first larval instar show the basic structural features of the respective imaginal cells. The structural organizations of larval and adult midbrain are compared.Abbreviations a Anterior - AGT antenno-glomerular tract - aL -lobus - AL antennal lobe - AP anterior protocerebrum - bL -lobe - BSN bilateral symmetrical - FMRF amide-immunopositive neurons - CA calyx - CL1-CL4 serotonin-immunopositive neurons cluster 1–4 - d dorsal - DAB diaminobenzidine tetrahydrochloride - DC dorsal commissure - DCFB dorsal commissure of the fan-shaped body - DHT dorsal horizontal tract - DLTR dorsal lateral triangle - DMLP dorsal medial lateral protocerebrum - DN serotonin-immunopositive deuterocerebral neuron - EB ellipsoid body - en1, en2 extrinsic neurons connecting two FB-subcompartments - esn extrinsic subcompartmental neuron - l lateral - FB fan-shaped body - FN serotonin-immunopositive fan-shaped neuron - fs1, fs2 fanshaped neurons of type 1 and 2 - GC great commissure - HF horizontal fibres - in intrinsic neuron connecting two FB-subcompartments - isn intrinsic subcompartmental neuron - IT isthmus tract - LF large-field neurons - LFASC lateral fascicle - LMFASC lateral median fascicle - MB median bundles - MLP medial lateral protocerebrum - p posterior - P pedunculus - PB protocerebral bridge - pb-fb protocerebral bridge-fan-shaped body connection - PBS phosphate-buffered saline - PDC posterio-dorsal commissure - PTX phosphate-buffered saline containing Triton X-100 - SU suboesophageal ganglion - SVT small ventral triangles - TN 1,2 tritocerebral serotonin-immunoreactive neuron 1,2 - v ventral - VB ventral body - VBC ventral body commissure - VCBC ventral central body commissure - VCFB ventral commissure of the fan-shaped body  相似文献   

4.
Seidel C  Bicker G 《Tissue & cell》1996,28(6):663-672
The biogenic amine serotonin is a neurotransmitter and modulator in both vertebrates and invertebrates. In the CNS of insects, serotonin is expressed by identifiable subsets of neurons. In this paper, we characterize the onset of expression in the brain and suboesophageal ganglion of the honeybee during pupal development. Several identified serotonin-immunoreactive neurons are present in the three neuromeres of the suboesophageal ganglion the dorsal protocerebrum, and the deutocerebrum at pupal ecdysis. Further immunoreactive neurons are incorporated into the developing pupal brain in two characteristic developmental phases. During the first phase, 5 days after pupal ecdysis, serotonin immunoreactivity is formed in the protocerebral central body, the lamina and lobula, and the deutocerebral antennal lobe. During the second phase, 2 days later, immunoreactivity appears in neurons of the protocerebral noduli of the central complex, the medulla, and the pedunculi and lobes of the mushroom bodies. Three novel serotonin-immunoreactive neurons that innervate the central complex and the mushroom bodies can be individually identified.  相似文献   

5.
Summary Topological organization of identified neurons has been characterized for the larval, pupal and imaginal suboeosphageal neuropil of the meal-worm beetleTenebrio molitor. Neuronal fate mapping allows identification of individually persisting neurons in the metamorphosing suboesophageal ganglion ofTenebrio. Analysis was performed on interneurons characterized by serotonin and CCAP (crustacean cardioactive peptide) immunohistochemistry, on motoneurons that innervate the dorsal and ventral longitudinal muscles, and on suboesophageal descending neurons. All these different populations of neurons show topologically invariant features throughout metamorphosis. Motoneurons, interneurons, and descending suboesophageal neurons of the imaginal suboeosphageal ganglion embody individually persisting larval interneurons. Impacts for a functional interpretation of the neuronal architecture of the suboesophageal ganglion are discussed.  相似文献   

6.
Summary Serotonin-immunoreactivity is mapped in wholemounts and slices of the suboesophageal ganglion (SOG) of larval Manduca sexta by means of immunocytochemistry. An extensive meshwork of serotonin-immunoreactive nerve fibres on some peripheral nerves of the SOG has been demonstrated. This meshwork appears to belong to a serotonergic neurohemal system, probably supplied by two pairs of bilateral serotonin-immunoreactive neurons with big cell bodies on the dorsal side near the midline in the mandibular neuromere. Intracellular recording and staining revealed their physiology and morphology. These neurons produce long lasting (50 msec) action potentials, which suggest that they are neurosecretory cells. Two pairs of bilateral serotonin-immunoreactive interneurons similar to those of other insects are stained in the labial and maxillar neuromeres, but not in the mandibular neuromere. Their ventrolaterally located cell bodies project through a ventral commissure into the contralateral hemiganglion and then cross back again through a dorsal commissure. The axons project into the contralateral circumoesophageal connective.  相似文献   

7.
We have used specific antisera against protein-conjugated -aminobutyric acid (GABA) and rat-brain glutamic acid decarboxylase (GAD) in immunocytochemical preparations to study the distribution of putatively GABAergic neurons in the fused thoracic ganglion of the crab Eriphia spinifrons. In the thoracic neuromeres, about 2000 neurons with somata arranged in clusters or located singly in the cell cortex exhibited both GABA-like and GAD-like immunoreactivity. In addition, more than a hundred cells showed only GABA-like immunoreactivity. Fibrous immunoreactive staining to GAD and GABA was distributed throughout the neuropil of the thoracic ganglion, and several fiber tracts contained immunoreactive processes. Sets of serially homologous neurons exhibited GABA-like and GAD-like immunoreactivity in the thoracic neuromeres. Especially prominent were one medial and four ventro-lateral clusters of somata, together with thirteen individually recognized cells in each neuromere. Six of these cells in the ventro-medial cell cortex may be the somata of inhibitory motoneurons. The leg nerves contained three immunoreactive fibers, corresponding to the previously described common inhibitory motoneuron and the two specific inhibitors. The results present further evidence for GABA being the neurotransmitter of all inhibitory leg motorneurons, and suggest its presence and role as a neurotransmitter in a considerable number of interneurons in the thoracic ganglion of the crab.  相似文献   

8.
Summary Gastrin/cholecystokinin (gastrin/CCK)-like immunoreactivity has been detected in the brain, suboesophageal ganglion and corpora cardiaca of the larva of Aeschna cyanea by radioimmunoassay and immunohistochemistry, by use of two antisera raised against the sulfated (CCK-8S) and the unsulfated form (CCK-8NS) of the carboxyl terminal octapeptide. Numerous immunoreactive neurons were demonstrated in the protocerebrum (exclusive of optic lobes) and suboesophageal ganglion where 20 and 15 symmetrical clusters of reactive cells, respectively, were observed. Immunoreactive cells also occurred in the tritocerebrum, the optic lobes and the frontal ganglion. In the corpora cardiaca, gastrin/CCK-like material was found both within intrinsic cells and axon terminals. RIA measurements support the immunohistochemical results in so far as large amounts of gastrin/CCK-like material were detected in the brain, corpora cardiaca and suboesophageal ganglion complex. Both boiling water-acetic acid- and methanol-extraction procedures were performed. Comparisons of the results lead to the conclusion that a large part of the gastrin/CCK-like material occurs as small molecules. Immunohistochemical procedures performed on material fixed in a solution of picric acid-paraformaldehyde demonstrated differences in the immunoreactivity of the tested antisera. First, the immunohistochemical reaction was always more pronounced when the CCK-8NS antiserum was used instead of the CCK-8S antiserum, which may be interpreted by a lower affinity of the latter. In the second place, some neurons strongly stained by the CCK-8NS antiserum were only very faintly if at all stained by the CCK-8S antiserum, which may mean that different peptides or at least distinct forms of the same precursor are detected.  相似文献   

9.
Summary The distribution and morphology of neurons reacting with antisera against dopamine (DA), tyrosine hydroxylase (TH) and histamine (HA) were analyzed in the blowflies Calliphora erythrocephala and Phormia terraenovae. TH-immunoreactive (THIR) and HA-immunoreactive (HAIR) neurons were also mapped in the fruitfly Drosophila melanogaster. The antisera against DA and TH specifically labeled the same neurons in the blowflies. About 300 neurons displayed DA immunoreactivity (DAIR) and THIR in the brain and subesophageal ganglion of the blowflies. Most of these neurons were located in bilateral clusters; some were distributed as bilateral pairs, and two ventral unpaired median (VUM) neurons were seen in the subesophageal ganglion. Immunoreactive processes were found in all compartments of the mushroom bodies except the calyces, in all divisions of the central body complex, in the medulla, lobula and lobula plate of the optic lobe, and in non-glomerular neuropil of protocerebrum, tritocerebrum and the subesophageal ganglion. No DA or TH immunoreactivity was seen in the antennal lobes. In Drosophila, neurons homologous to the blowfly neurons were detected with the TH antiserum. In Phormia and Drosophila, 18 HA-immunoreactive neurons were located in the protocerebrum and 2 in the subesophageal ganglion. The HAIR neurons arborized extensively, but except for processes in the lobula, all HAIR processes were seen in non-glomerular neuropil. The deuto- and tritocerebrum was devoid of HAIR processes. Double labeling experiments demonstrated that TH and HA immunoreactivity was not colocalized in any neuron. In some regions there wasm however, substantial superposition between the two systems. The morphology of the extensively arborizing aminergic neurons described suggests that they have modulatory functions in the brain and subesophageal ganglion.  相似文献   

10.
Summary We have used immunohistochemical methods to investigate the morphology of identified, presumptive serotonergic neurons in the antennal lobes and suboesophageal ganglion of the worker honeybee. A large interneuron (deutocerebral giant, DCG) is described that interconnects the deutocerebral antennal and dorsal lobes with the suboesophageal ganglion and descends into the ventral nerve chord. This neuron is accompanied by a second serotonin-immunoreactive interneuron with projections into the protocerebrum. Two pairs of bilateral immunoreactive serial homologues were identified in each of the three suboesophageal neuromeres and were also found in the thoracic ganglia. With the exception of the frontal commissure, no immunoreactive processes could be found in the peripheral nerves of the brain and the suboesophageal ganglion. The morphological studies on the serial homologues were extended by intracellular injections of Lucifer Yellow combined with immunofluorescence.  相似文献   

11.
Summary Ventral thoracic neurosecretory cells (VTNCs) of the blowflies, Calliphora erythrocephala and C. vomitoria, innervating thoracic neuropil and the dorsal neural sheath of the thoracico-abdominal ganglion have been shown to be immunoreactive to a variety of mammalian peptide antisera. In the neural sheath the VTNC terminals form an extensive neurohaemal network that is especially dense over the abdominal ganglia. The same areas are invaded by separate, ut overlapping serotonin-immunoreactive (5-HT-IR) projections derived from neuronal cell bodies in the suboesophageal ganglion. Immunocytochemical studies with different antisera, applied to adjacent sections at the lightmicroscopic level, combined with extensive cross-absorption tests, suggest that the perikarya of the VTNCs contain co-localized peptides related to gastrin/cholecystokinin (CCK), bovine pancreatic polypeptide (PP), Met- and Leuenkephalin and Met-enk-Arg6-Phe7 (Met-enk-RF). Electron-microscopic immunogold-labeling shows that some of the terminals in the dorsal sheath react with several of the individual peptide antisera, whilst others with similar cytology are non-immunoreactive. In the same region, separate terminals with different cytological characteristics contain 5-HT-IR. Both 5-HT-IR and peptidergic terminals are localized outside the cellular perineurium beneath the acellular permeable sheath adjacent to the haemocoel. Hence, we propose that various bioactive substances may be released from thoracic neurosecretory neurons into the circulating haemolymph to act on peripheral targets. The same neurons may also interact by synaptic or modulatory action in the CNS in different neuropil regions of the thoracic ganglion.  相似文献   

12.
The distribution and morphology of crustacean cardioactive peptide-immunoreactive neurons in the brain of the locust Locusta migratoria has been determined. Of more than 500 immunoreactive neurons in total, about 380 are interneurons in the optic lobes. These neurons invade several layers of the medulla and distal parts of the lobula. In addition, a small group of neurons projects into the accessory medulla, the lamina, and to several areas in the median protocerebrum. In the midbrain, 12 groups or individual neurons have been reconstructed. Four groups innervate areas of the superior lateral and ventral lateral protocerebrum and the lateral horn. Two cell groups have bilateral arborizations anterior and posterior to the central body or in the superior median protocerebrum. Ramifications in subunits of the central body and in the lateral and the median accessory lobes arise from four additional cell groups. Two local interneurons innervate the antennal lobe. A tritocerebral cell projects contralaterally into the frontal ganglion and appears to give rise to fibers in the recurrent nerve, and in the hypocerebral and ingluvial ganglia. Varicose fibers in the nervi corporis cardiaci III and the corpora cardiaca, and terminals on pharyngeal dilator muscles arise from two subesophageal neurons. Some of the locust neurons closely resemble immunopositive neurons in a beetle and a moth. Our results suggest that the peptide may be (1) a modulatory substance produced by many brain interneurons, and (2) a neurohormone released from subesophageal neurosecretory cells.  相似文献   

13.
Summary The central and visceral nervous systems of the cockroach Periplaneta americana were studied by means of the peroxidase-antiperoxidase immunocytochemical method, with the use of antibody to bovine pancreatic polypeptide (PP). PP-like immunoreactive neuron somata are most numerous in the brain; at least 6 pairs of cell groups occur in clearly defined regions. Three pairs of cells each are also present in the suboesophageal ganglion and the thoracic ganglia, one pair of a single cell each in the first abdominal and the frontal ganglia, and 4 to 6 pairs of single cells in the terminal ganglion. No reactive cells were found in the retrocerebral complex and the second to the fifth abdominal ganglia. The axons containing PP-like immunoreactivity issue many branches that are distributed in the entire brain-retrocerebral complex, ventral cord, and visceral nervous system. PP-like immunoreactive material produced in the brain seems to be transported by three routes: protocerebrum to corpora cardiaca (-allata) through the nervi corporis cardiaci, tritocerebrum to visceral nervous system through frontal commissures, and to ventral cord through circumoesophageal connectives.A possible homology between the mammalian brain-GEP (gastro-enteropancreatic) system and the brain-midgut system of this insect is discussed.  相似文献   

14.
Summary The distribution of dopamine-like immunoreactive neurons is described for the brain of the bee, Apis mellifera L., following the application of a pre-embedding technique on Vibratome sections. Immunoreactive somata are grouped into seven clusters, mainly situated in the protocerebrum. Immunoreactive interneurons have been detected in the different neuropilar compartments, except for the optic lobe neuropils. Strong immunoreactivity is found in the upper division of the central body, in parts of the stalk and in the -lobe layers of the mushroom bodies. A dense network of many immunoreactive fibres surrounds the mushroom bodies and the central body. It forms a number of interhemispheric commissures/chiasmata, projecting partly into the contralateral mushroom body and central body. The lateral protocerebral neuropil contains some large wide-field-neurons. The antennal-lobe glomeruli receive fine projections of multiglomerular dopamine-like immunoreactive interneurons.  相似文献   

15.
Summary In Cupiennius salei (Ctenidae), as in other spiders, the central nervous system is divided into the supraoesophageal ganglion or brain and the suboesophageal ganglia (Fig. 1). The two masses are interconnected by oesophageal connectives. The brain gives off four pairs of optic and one pair of cheliceral nerves. From the suboesophageal ganglia arise a pair of pedipalpal, four pairs of leg, and several pairs of opisthosomal nerves (Fig. 2). 1. Cell types. In the brain a total of 50900 cells were counted, in the suboesophageal ganglia 49000. They are all monopolar cells, found in the ganglion periphery and may be classified into four types: (a) Small globuli cells (nuclear diameter 6–7 m) forming a pair of compact masses in the protocerebrum (Fig. 10b); (b) Small and numerous cells (cell diameter 12–20 m) with processes forming the bulk of the neuropil in the brain and suboesophageal ganglia; (c) Neurosecretory cells (cell diameter ca. 45 m) in the brain and suboesophageal ganglia; (d) Large motor and interneurons (cell daimeter 40–112 m), mostly in the suboesophageal ganglia (Figs. 10a and c). 2. Suboesophageal mass. The cell bodies form a sheet of one to several cell layers on the ventral side of each ganglion and are arranged in groups. Three such groups were identified as motor neurons, four as interneurons. At the dorsal, dorso-lateral, and mid-central parts of the ganglion there are no cell somata. The fibre bundles arising from them form identifiable transverse commissural pathways (Fig. 9b). They form the fibrous mass in the central part of the suboesophageal mass.Neuropil is well-formed in association with the sensory terminations of all major nerves (Fig. 9a). As these proceed centrally they break up into five major sensory tracts forming five layers one above the other. There are six pairs of additional major longitudinal tracts arranged at different levels dorsoventrally (Fig. 8). They ascend into the brain through the oesophageal connectives and terminate mostly in the mushroom bodies and partly in the central body. 3. Protocerebrum. Fine processes of the globuli cells form the most important neuropil mass in the fibrous core, called the mushroom bodies. These consist of well developed glomeruli, hafts, and bridge which are interconnected with the optic masses of the lateral eyes and most fibre tracts from the brain and suboesophageal mass (Fig. 7). The median eye nerves form a small optic lamella and optic ganglia, connected to the central body through an optic tract. Each posterior median and posterior lateral eye nerve ends in large optic lamellae (Fig. 13a). These are connected through chiasmata to a large optic mass where fibres from globuli cells form conspicuous glomeruli. There are 10–12 large fibres (diameter 9 m) of unknown origin on each side, terminating in the optic lambella of the posterior lateral eye.The central body, another neuropil mass (Fig. 13b) in the protocerebrum, is well developed in Cupiennius and located transversely in its postero-dorsal region (Fig. 10d). It consists of two layers and is interconnected with optic masses of the median and lateral eyes through optic tracts. Fibre tracts from the brain and suboesophageal mass join the central body.  相似文献   

16.
Summary The distribution patterns of serotonin-immunoreactive somata in the cerebral and subpharyngeal ganglion, and in the head and tail ganglia of the nerve cord of Lumbricus terrestris are described from whole-mount preparations. A small number of serotonin-immunoreactive neurons occurs in the cerebral ganglion, in contrast to the large population of serotonin-immunoreactive neurons that exists in all parts of the ventral nerve cord. From the arrangement of serotonin-immunoreactive somata in the subpharyngeal ganglion, we suggest that this ganglion arises from the fusion of two primordial ganglia. In head and tail ganglia, the distribution of serotonin-immunoreactive somata resembles that in midbody segments. Segmental variations in the pattern and number of serotonin-immunoreactive somata in the different body regions are discussed on the background of known developmental mechanisms that result in metameric neuronal populations in annelids and arthropods.Abbreviations CG1, CG2 cerebral soma group 1, 2 - CNS central nervous system - GINs giant interneurons - 5-HT 5-hydroxytryptamine, serotonin - 5-HTi 5-HT-immunoreactive - N side nerve - SG19 subpharyngeal soma group 1–9 - SN segmental nerve  相似文献   

17.
Summary Serotonin-immunoreactive neurons in the brain of Tenebrio molitor L. have been demonstrated and mapped throughout metamorphosis. Most serotonin-immunoreactive brain neurons persist throughout metamorphosis; their fate can be followed during development because of their characteristic cell body locations and arborization patterns. The detailed morphology of the persisting neurons, however, changes during metamorphosis, probably to accommodate architectural changes of the different brain centers. Serotonin-immunoreactivity in the optic lobes allows a subset of neurons that is newly differentiated during metamorphosis to be identified. Phylogenetic homology of serotonin-immunoreactive brain interneurons of different insect species is discussed. The serotonin-immunoreactive brain neurons comprise a phylogenetically conserved neuronal population. Serial homologous abdomino-thoracic and brain serotonin-immunoreactive neurons were characterized, allowing a comparison of some basic structural features of these neurons.  相似文献   

18.
We previously demonstrated that tryptophan hydroxylase (TPH), the rate-limiting enzyme of serotonin (5-HT) synthesis, was commonly present in the brains of some insects. The current study was aimed at determining the number of serotonergic neurons in the brain and suboesophageal ganglion of adult Drosophila melanogaster and to investigate further the differences in immunoreactivity between 5-HT and TPH. Brain sections of Drosophila were immunostaind with sheep anti-TPH polyclonal antibody and rabbit anti-5-HT antiserum. The 5-HT-like immunoreactive neurons were also immunoreactive for TPH and bilaterally symmetrical; 83 neurons were found in each hemisphere of the brain and suboesophageal ganglion of adult Drosophila. This technique of colocalizing 5-HT and TPH revealed a larger number of serotonergic neurons in the brain and suboesophageal ganglion than that previous reported, thus updating our knowledge of the 5-HT neuronal system of Drosophila.  相似文献   

19.
Summary The synaptic organization of three classes of cobalt-filled and silver-intensified visual interneurons in the lobula complex of the blowfly Calliphora (Col A cells, horizontal cells and vertical cells) was studied electron microscopically. The Col A cells are regularly spaced, columnar, small field neurons of the lobula, which constitute a plexus of arborizations at the posterior surface of the neuropil and the axons of which terminate in the ventrolateral protocerebrum. They show postsynaptic specializations in the distal layer of their lobula-arborizations and additional presynaptic sites in a more proximal layer; their axon terminals are presynaptic to large descending neurons projecting into the thoracic ganglion. The horizontal and vertical cells are giant tangential neurons, the arborizations of which cover the anterior and posterior surface of the lobula plate, respectively, and which terminate in the perioesophageal region of the protocerebrum. Both classes of these giant neurons were found to be postsynaptic in the lobula plate and pre- and postsynaptic at their axon terminals and axon collaterals. The significance of these findings with respect to the functional properties of the neurons investigated is discussed.  相似文献   

20.
Summary The distribution of octopamine in the metathoracic ganglion, brain and corpus cardiacum of Locusta migratoria and Schistocerca gregaria was investigated by means of immunocytochemistry with an antiserum against octopamine. The dorsal unpaired median (DUM) cells of the metathoracic ganglion were found to be strongly octopamine-immunoreactive. In the rostroventral part of the protocerebrum a group of seven immunopositive cells was demonstrated. Stained nerve fibres of these cells run into three directions: circumoesophageal connectives, midbrain, and optic lobes. As far as the protocerebrum is concerned, immunoreactive fibres were found in the central body, the protocerebral bridge, and in other neuropile areas. In the optic lobe a dense plexus of immunopositive fibres was found in the lobula and in the medulla. In the brain one other immunopositive cell was demonstrated, situated at the lateral border of the tritocerebrum. Octopamine could not be shown to occur either in the globuli cells of the mushroom bodies or in the dorsolateral part of the protocerebrum, where the perikarya of the secretomotor neurones are located that innervate the glandular cells of the corpus cardiacum. In the nervi corporis cardiaci II, which contain the axons of the neurones that extend into the glandular part of the corpus cardiacum, and in the corpus cardiacum proper no specific octopamine immunoreactivity could be found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号