首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
本文着重探讨当前国际上提出的一种植物抗旱机制的新理论——即生物自由基与植物保护酶系统间相互作用的理论。在水分逆境情况下,植物细胞内自由基产生和清除的平衡遭到破坏,过剩的自由基会伤害细胞膜系统。过氢化物歧化酶是氧自由基的清除剂,因此它的活性的高低应与植物的抗旱能力密切相关。以小麦幼苗为材料,采用光化学方法测定了过氧化物歧化酶活性,同时测定幼苗的脱水耐受力,发现在不同组织和器官中,在不同发育阶段的幼苗中,二者均存在有正相关性。此外,还测定了幼苗脱水前后过氧化物歧化酶活性的变化,发现酶活性在脱水处理时升高。我们推测小麦幼苗经受干旱的过程中,细胞内可能包含生物自由基的有害作用。  相似文献   

2.
3.
以河北杨(Populus hopeiensis)为材料, 研究拟南芥(Arabidopsis thaliana)油菜素内酯(BR)生物合成酶基因DAS5对其生长表型、生物量及抗旱性的影响。结果表明: (1) 转DAS5基因河北杨植株的根长、地径、叶柄及叶片长度均显著大于野生型植株, 且地上、地下部分干重及根冠比显著高于野生型, 其拥有发达的根系; (2) 在干旱胁迫下, 转DAS5基因河北杨植株失水褪绿速度较野生型植株缓慢, 在复水后转基因植株能够较早较好地恢复活力, 萌发较多的新幼芽且长势良好; (3)控水期间, 转基因河北杨的相对生长率显著高于野生型, 且随着干旱胁迫程度的加剧, 其可溶性糖含量、游离脯氨酸含量、过氧化氢酶(CAT)活性、超氧化物歧化酶(SOD)活性均显著高于野生型。实验结果表明, 与野生型相比, 转基因植株具有较高的生长量与较强的抗干旱胁迫能力, 说明来自拟南芥的BR生物合成酶基因DAS5可以显著增加河北杨的生长量并在抵御干旱胁迫机制中发挥重要作用。  相似文献   

4.
Nitric oxide (NO) has been known as an important signal in plant antioxidative defense but its production and roles in water stress are less known. The present study investigated whether NO dependence on a NO synthase-lika (NOS) activity is involved in the signaling of drought-induced protective responses in maize seedlings. NOS activity, rate of NO release and drought responses were analyzed when NO donor sodium nitroprusside (SNP), NO scavenger c-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramathylimidazoline-1-oxyl-3-oxide) and NOS inhibitor L-NAME (NG-nitro-L-arginine methyl ester) were applied to both detached maize leaves and whole plants. Both NOS activity and the rate of NO release increased substantially under dehydration stress. The high NOS activity induced by c-PTIO as NO scavenger and NO accumulation Inhibited by NOS inhibitor L-NAME In dehydration-treated maize seedlings Indicated that most NO production under water deficit stress may be generated from NOS-like activity. After dehydration stress for 3 h, detached maize leaves pretreated with NO donor SNP maintained more water content than that of control leaves pretreated with water. This result was consistent with the decrease in the transpiration rate of SNP-treated leaves subjected to drought treatment for 3 h. Membrane permeability, a cell injury index, was lower in SNP-trested maize leaves under dehydration stress for 4 h when compared with the control leaves. Also, superoxide dismutsse (SOD) activity of SNP combined drought treatment maize leaves was higher than that of drought treatment alone, indicating that exogenous NO treatment alleviated the water loss and oxidative damage of maize leaves under water deficit stress. When c-PTIO as a specific NO scavenger was applied, the effects of applied SNP were overridden. Treatment with L-NAME on leaves also led to higher membrane permeability, higher transpiration rate and lower SOD activities than those of control leaves, indicating that NOS-like activity was involved in the antioxidative defense under water stress. These results suggested that NO dependence on NOS-like activity serves as a signaling component in the induction of protective responses and is associated with drought tolerance in maize seedlings.  相似文献   

5.
Wheat seedlings obtained after 2 or 3 days of seed germination in darkness at 20°C (i.e. with a 0.5–0.7 cm long coleoptile) were still viable after drying in darkness in ambient conditions which reduced the shoot moisture content to about 0.30 g H2O g?1 dry mass (DM). Coleoptile and primary leaf growth resumed upon rehydration, but primary roots died and new roots regenerated. In the present work we have investigated whether desiccation tolerance of the shoot (coleoptile and primary leaf combined) was related to some reversible cellular or metabolic changes induced by dehydration. Non‐dehydrated shoots were high in moisture content (4.0–5.0 g H2O g?1 DM) and exhibited an active metabolism as indicated by a high energy charge (EC = 0.85) and cells with well developed mitochondria, endoplasmic reticulum, polysomes and Golgi bodies. Dehydration induced changes in cell membrane properties since it reduced in vivo capacity of the shoot to convert 1‐aminocyclopropane 1‐carboxylic acid (ACC) to ethylene (i.e. ACC oxidase activity). This effect was already observed at 4–5 h of dehydration, namely when shoot moisture content dropped down below about 3.0 g H2O g?1 DM, and ACC‐dependent ethylene production became almost nil when shoot moisture content reached 1.0 g H2O g?1 DM. Dehydration also resulted in decreases in ATP and non‐adenylic triphosphate nucleotide (NTP) contents down to 1–2% of their initial values, and in EC value to 0.20. Concomitant with water loss, sucrose content of the shoot increased and was maximal (about 330 mg g?1 DM, namely three‐fold that of non‐dehydrated organs) after 2 days of drying. Upon rehydration, shoots regained their original moisture content within 3 days, during which they progressively recovered apparent normal metabolism. Reversal of extensive dehydration‐associated cell wall folding occurred between 2 and 3 days of rehydration, when the ultrastructure of coleoptile and primary leaf cells also provided evidence of intensive autophagic activity, indicative of the removal of damaged cell components. Concomitantly, apparently undamaged organelles and endomembranes persisted in the cytoplasm. Restoration of 60–70% of ACC oxidase activity and 80–90% of EC value occurred within 48 and 18 h, respectively. However, the values of the ATP/ADP and NTP/ATP ratios remained lower than in control non‐dehydrated shoots, indicating that not all metabolic deterioration induced by dehydration was completely repaired. Differences in relationships between shoot moisture content and ACC‐oxidase activity or energy metabolism during dehydration and upon rehydration, and cell ultrastruture analyses suggest that desiccation tolerance of wheat seedling shoot is related to mechanisms involved in the maintenance of cell structure during water loss and the cell capacity to repair the dehydration damage.  相似文献   

6.
7.
The potential to cryopreserve embryonic axes of desiccation-sensitive (recalcitrant) seeds is limited by damage during the desiccation necessary for low temperature survival, but the basis of this injury and how to reduce it is not well understood. The effects of drying rate on the viability, respiratory metabolism and free radical-mediated processes were therefore investigated during dehydration of Quercus robur L. embryonic axes. Viability, assessed by evidence of germination and tetrazolium staining, showed a sharp decline at 0.27 and 0.8 g/g during rapid (<12 h) or slow (3 d) dehydration, respectively. Rapid dehydration therefore lowered the critical water content for survival. At any given water content rapid dehydration was associated with higher activities of the free radical processing enzymes, superoxide dismutase, catalase and glutathione reductase and lower levels of hydroperoxide and membrane damage. Rapid dehydration was also associated with lower malate dehydrogenase activity, and a reduced decline in phosphofructokinase activity and in levels of the oxidized form of nicotinamide dinucleotide. Ageing may have contributed to increased damage during slow dehydration, since viability declined even in hydrated storage after 3 d. The results presented are consistent with rapid dehydration reducing the accumulation of damage resulting from desiccation induced aqueous-based deleterious reactions.  相似文献   

8.
干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响   总被引:25,自引:1,他引:24  
采用水培试验方法,以2个耐旱性不同的小麦品种(敏感型望水白和耐旱型洛旱7号)为材料,研究了干旱胁迫对小麦幼苗根系形态、生理特性以及叶片光合作用的影响,以期揭示小麦幼苗对干旱胁迫的适应机制.结果表明: 干旱胁迫下,2个小麦品种幼苗的根系活力显著增大,而根数和根系表面积受到抑制;干旱胁迫降低了望水白的叶片相对含水量,提高了束缚水/自由水,而对洛旱7号无显著影响;干旱胁迫降低了2个小麦品种叶片的叶绿素含量、净光合速率、蒸腾速率、气孔导度和胞间CO2浓度,但随胁迫时间的延长,洛旱7号的叶绿素含量和净光合速率与对照差异不显著;干旱胁迫降低了2个小麦品种幼苗的单株叶面积,以及望水白的根系、地上部和植株生物量,而对洛旱7号无显著影响.水分胁迫下,耐旱型品种可以通过提高根系活力、保持较高的根系生长量来补偿根系吸收面积的下降,保持较高的根系吸水能力,进而维持较高的光合面积和光合速率,缓解干旱对生长的抑制.  相似文献   

9.
《Journal of bryology》2013,35(4):281-286
Abstract

The effects of treatments that increase desiccation tolerance were tested on the activity of the enzymes superoxide dismutase (SOD) and catalase (CAT) in the moss Atrichum androgynum subjected to a drying/wetting cycle. Hardening by both abscisic acid (ABA) pretreatment and partial dehydration significantly increased the rate of recovery of photosynthesis during rehydration following desiccation. Hardening treatments had little effect on SOD activity. In non-hardened plants, SOD activity increased three-fold during desiccation for 32 h at 52% rh, but hardened material tended to display smaller increases in activity. During rehydration, SOD activities rapidly declined to their initial values in all treatments. Hardening by partial dehydration, but not ABA, reduced CAT activity. After desiccation for 32 h, material from all treatments displayed about half the initial CAT activity, and activity did not change during subsequent rehydration. Results show that, while the induction of SOD appears to play a role in desiccation tolerance, a similar induction occurred in both hardened and non-hardened mosses. Induction of greater activities of enzymes that scavenge reactive oxygen species is not responsible for the added tolerance induced by hardening treatments.  相似文献   

10.
11.
Insufficient stand establishment at early growth stages in wheat (Triticum aestivum L.) due to drought stress is a major problem that limits overall efficiency and yield of crop. Priming of seed is an effective method for raising seed performance and improving tolerance of crops to abiotic stresses especially drought. The seeds of two local wheat cultivars (Kohistan-97 and Pasban-90) were soaked in distilled water or sodium selenate solutions of 25, 50, 75, and 100 μM for 1/2 or 1 h at 25 °C and later re-dried to their original moisture levels before sowing. One-hour priming significantly increased root length stress tolerance index, dry matter stress tolerance index, and total biomass of seedlings; however, no significant effect of changing duration of Se seed priming was observed on plant height stress tolerance index and shoot/root ratio. Among cultivars, Kohistan-97 was found to be more responsive to Se seed treatment as 1 h priming at 100 μM significantly increased its total biomass by 43 % as compared to control treatment. Although biomass of seedlings was not affected with Se seed priming under normal conditions, but it increased significantly with increase in rates of Se under drought stress conditions. One-hour priming at 75 μM increased the total sugar content and total free amino acids in both wheat cultivars. A more significant decrease in soluble proteins of seedlings was observed by 1 h priming than 1/2 h priming under drought stress conditions.  相似文献   

12.
采用盆栽试验,以‘蠡玉18'玉米单交种为供试材料,设置充分供水(CK)、轻度水分胁迫(LS)、中度水分胁迫(MS)和重度水分胁迫(SS)4个水分处理水平,研究了水分胁迫对春播玉米苗期保护酶活性和生长的影响,以探讨土壤水分胁迫对玉米苗期生长发育及其生理过程的影响机制.结果表明:(1)随着水分胁迫程度的加剧,玉米幼苗的生物量显著下降,根冠比、根系活力和脯氨酸含量增加,且水分胁迫对玉米幼苗地上部生物量的抑制作用更大;可溶性蛋白含量差异不明显,MDA含量波动变化.(2)随着水分胁迫时间的延长,根冠比、根系活力和植株脯氨酸含量先升高后降低,可溶性蛋白含量呈先下降后升高的趋势;玉米幼苗叶片和根系MDA积累波动变化,而叶片MDA含量始终高于根系.(3)在水分胁迫初期,玉米叶片中CAT活性较SOD、POD响应更敏感;玉米苗期根系在中度水分胁迫下主要依赖CAT来降低氧化危害,而在重度水分胁迫下前期主要依赖CAT、后期通过CAT和POD的共同作用来降低氧化伤害;水分胁迫条件下,叶片和根系POD同步降低氧化伤害,而SOD和CAT在叶片和根系间存在互补作用.研究表明,在不同程度的水分胁迫条件下,玉米幼苗的生长受到一定程度的抑制,但其能够通过调节自身的保护酶活性和渗透调节物质含量来减轻干旱伤害,维持植株的正常生理代谢功能.  相似文献   

13.
该研究采用盆栽法,于百日草幼苗期叶面喷施不同浓度(100、150、200、250 和 300 mg·kg-1)三唑酮(tri-adimefon,TD)预处理后进行自然干旱和复水处理,分析百日草植株农艺性状及生理特性的变化,并筛选出对百日草抗旱效果最佳的三唑酮浓度,以明确三唑酮对干旱胁迫下百日草幼苗生长的影响机理,为百日...  相似文献   

14.
The majority of plant species lose their ability to tolerate severe water deficit after germination at the beginning of seedling growth, in the time of emergence of the radical from the seed. The experiment was designed to compare the differences in proteolytic response between 4-and 6-days old spring wheat (Triticum aestivum L.) seedlings of Eta cultivar, respectively tolerant and sensitive to severe drought inducing up to 90% water saturation deficit (WSD). In coleoptiles the changes of proteolytic activity had the same trend regardless on the seedlings age and increased about fourfold upon 85% WSD as compared to the control, from about 4 to 19 (U/mg protein h). The dehydration of roots of 4 day old seedlings resulted in sharp, fivefold activity increase at 85% WSD (from 11 to >50 U/mg protein h). In roots of 6 days old seedlings dehydrated to 55% WSD the proteolytic activity raised twofold and was about 2.5 times higher than in roots of 4 days old seedlings dehydrated to the same WSD. In coleoptiles of both the 4- and 6-days old seedlings subjected to drought appearance of new bands of serine proteinases was observed. Presented results indicate that roots are more sensitive to drought than coleoptiles, which brings an argument for breeders showing that programs involving roots phenotyping have a full biochemical rationale.  相似文献   

15.
骆驼蓬提取物浸种对小麦幼苗生长及抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
以不同浓度骆驼蓬提取液浸种处理小麦。研究对幼苗生长及抗氧化酶活性的影响。结果表明,骆驼蓬提取液浸种后小麦幼苗的根长、株高和干重增加,根冠比增大;幼苗根系活力增强,根系超氧化物歧化酶(SOD)活性提高,过氧化氢酶(CAT)活性先升后降,过氧化物酶(POD)活性下降,过氧化物酶同工酶表达受抑;叶片叶绿素和可溶性蛋白质含量增加,叶片SOD、POD活性提高,过氧化物酶同工酶表达增强,CAT活性降低。根系和叶片丙二醛(MDA)含量下降。  相似文献   

16.
We investigated the effect of salt stress on enzymatic activity of superoxide dismutase (SOD) isozymes in shoot and root tissues of salt tolerant and sensitive wheat (Triticum aestivum L. and Triticum durum Defs.) cultivars. Ten day old seedlings were subjected to 0.7 M NaCl stress for 3 and 5 days. Seedlings treated in the same manner without salt stress served as controls. Activity of SOD isozymes in root and shoot extracts was determined by activity staining of native polyacrylamide gels. In both shoot and root extracts of examined cultivars two isozymes of SOD, namely MnSOD and Cu/ZnSOD were identified. Cu/ZnSOD activity comprised 90 % of total SOD activity in both root and shoot tissues. Salt stress caused 1–1.5 fold increase in MnSOD activity of shoots in tolerant cultivars when compared with non-stressed controls. Under stress conditions, compared to controls all cultivars exhibited reduced MnSOD activity in root tissues. Cu/ZnSOD activity, on the other hand, was remarkably enhanced (3–4 fold) in root extracts of the tolerant cultivars, whereas it was reduced in the sensitive ones.  相似文献   

17.
Aerial parts of the chilling-sensitive young sal seedlings showed overproduction of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) in response to constant chilling exposure during November to March (9–14.1 °C) in field conditions. Almost 4–6 fold increase in ROS was observed in aerial parts of chilling exposed seedlings than the control seedlings (maintained in greenhouse). Increased formation of ROS was found to be closely associated with the rise in TBARS in leaf (5.8 fold) and shoot (4.8 fold) tissues. On the contrary the leaf and shoot of control seedling and root of both control and chilling exposed seedlings exhibited relatively very low levels of superoxide and TBARS. The chilling exposed seedlings also showed striking weakening in the free radical processing enzyme systems. The low temperatures during November to March resulted in reduced activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POX) and ascorbate peroxidase (APX) almost by 49, 26, 7 and 78 % in leaves and 65, 46, 9 and 85% in shoots respectively compared to leaves and shoots of control seedlings. Our results indicated that, substantially higher rates of liberation of superoxide and TBARS along with drastic failure of antioxidant enzyme system in chilling sensitive sal seedlings leads to oxidative bursts terminating into irreversible injury in leaves and shoot of these seedlings.  相似文献   

18.
The effects of soil water regime and wheat cultivar, differing in drought tolerance with respect to root respiration and grain yield, were investigated in a greenhouse experiment. Two spring wheat (Triticum aestivum) cultivars, a drought sensitive (Longchun 8139-2) and drought tolerant (Dingxi 24) were grown in PVC tubes (120 cm in length and 10 cm in diameter) under an automatic rain-shelter. Plants were subjected to three soil moisture regimes: (1) well-watered control (85% field water capacity, FWC); (2) moderate drought stress (50% FWC) and (3) severe drought stress (30% FWC). The aim was to study the influence of root respiration on grain yield under soil drying conditions. In the experiment, severe drought stress significantly (p < 0.05) reduced shoot and root biomass, photosynthesis and root respiration rate for both cultivars, but the extent of the decreases was greater for Dingxi 24 compared to that for Longchun 8139-2. Compared with Dingxi 24, 0.04 and 0.07 mg glucose m−2 s−1 of additional energy, equivalent to 0.78 and 1.43 J m−2 s−1, was used for water absorption by Longchun 8139-2 under moderate and severe drought stress, respectively. Although the grain yield of both cultivars decreased with declining soil moisture, loss was greater in Longchun 8139-2 than in Dingxi 24, especially under severe drought stress. The drought tolerance cultivar (Dingxi 24), had a higher biomass and metabolic activity under severe drought stress compared to the sensitive cultivar (Longchun 8139-2), which resulted in further limitation of grain yield. Results show that root respiration, carbohydrates allocation (root:shoot ratio) and grain yield were closely related to soil water status and wheat cultivar. Reductions in root respiration and root biomass under severe soil drying can improve drought tolerant wheat growth and physiological activity during soil drying and improve grain yield, and hence should be advantageous over a drought sensitive cultivar in arid regions.  相似文献   

19.
Hydroponically grown wheat seedlings of two prominent Bulgarian cultivars (Katya and Prelom) were subjected to 48 h osmotic stress with PEG 8000 and were then rehydrated. The degree of stress was evaluated by monitoring relative water content, lipid peroxidation level, and accumulation of free proline and hydrogen peroxide in the leaves. Anatomy and ultrastructure of leaf tissue were observed under light microscopy. After imposition of stress, drought tolerant cultivar Katya displayed higher free proline content and significantly lower malondialdehyde and peroxide concentration in leaves than in the leaves of susceptible cultivar Prelom. After 24 h of rehydration Katya showed better ability to restore leaf water status and an apparent tendency towards recovery, whereas Prelom sustained higher levels of hydrogen peroxide, lipid peroxidation products and free proline and markedly low relative water content. Here, we have uncovered some of the characteristics displayed by cultivar Katya that enable it to survive and recover from severe osmotic stress. Interestingly, there was congruence between our results and the high level of cultivar Katya drought tolerance observed in the field.  相似文献   

20.
土壤施钙诱导水稻幼苗抗低温和抗病生理机制研究   总被引:7,自引:4,他引:3  
试验发现,以干土重1%的CaO混土处理培育水稻秧苗,能显著提高幼苗的抗低温和抗立枯病能力.对其生理机制研究表明,该处理对水稻幼苗体内活性氧清除酶系统具有显著影响,与空白对照处理相比。施钙处理的水稻幼苗根部和地上部SOD活性增强;根部POD活性显著增强,地上部POD活性下降;根部和地上部CAT活性则先下降,后上升;根部和地上部的可溶性蛋白含量均有所上升.POD同工酶PAGE电泳结果表明,CaO处理的水稻幼苗地上部POD同工酶谱带明显减弱和减少,而根部POD同工酶谱带增强和增多.这些结果揭示了土壤施加CaO可提高水稻幼苗抗低温和抗病能力的部分原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号