首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
This paper deals with chromosomal numbers and morphology of 10 species of Aconitum in China. According to the basic number of the genus (x=8), these species can be referred to diploid, tetraploid, hexaploid and octoploid. Correlation is found between chromosomal numbers, sizes and structures. The perennial species with a rhizome are mostly diploid, with chromosomes larger than those in the biennial species with a tuber, and their chromosome pairs 3-7 are mostly subterminal ones, whereas most biennial species are polyploid, and their chromosome pairs 3-7 are almost submetacentric. The evolutionary trends of chromosome from diploid to polyploid, large to small, st to sm are considered possible. The data are agreed with the idea that rhizomal species are more primitive than tuberous ones. The existence of two types of karyotypes in these 10 species is a further support of taxonomic division of two subgenera, subgen. Paraconitum and subgen. Aconitum. In addition, some species are taxonomically discussed.  相似文献   

2.
In this paper 7 species of wildflowers were collected from Beijing suburb and Jilin Province. They are all common sightly and hardy perennials in their localities (See the Appendix for detail of the materials). The micrographs of their somatic metaphases are shown in Plate 1; the karyotype formulae, ranges of chromosome length and classification of karyotypes according to Stebbins (1971) are shown in Table 1; the idiograms of 5 species in Figs. 1-5. The karyotype analysis is made on the basis of Li and Chen (1985)(1). The essential points are as follows; (1) Ten pairs of chromosomes of Achyrophorus ciliatus are all submetacentric (sm). (2) Twelve pairs of chromosomes are all metacentric (m), and the short arms of the seventh pair of chromosomes with a pair of satellites in Orychophragmus violaceus. (3) The seventh and nineth pairs of chromosomes are sm and the short arms of latter with satellites in Silene repens var. angustifolia. It is reported for the first time. (4) In Scabiosa tschiliensis. the first, fourth, fifth and eighth pairs of chromosomes are sm, the sixth is terminal (t). The second and seventh are subterminal (st), the third is m. There are satellites on the short arms of third and seventh pairs. It is reported for the first time. (5) The eleventh pair of chromosomes is sm and the others are all m. The short arms of the twelfth pairs with satellites in Lychnis fulgens. (6) The chromosome number (2n) is 42, with a pair of satellites in Papaver pseudo-radicatum. It is also reported for the first time. (7) The chromosome number is2n=56 with two pairs of satellites in Rehmannia glutinosa.  相似文献   

3.
二倍体铁破锣的核型及四倍体细胞型的首次发现   总被引:4,自引:3,他引:1  
本文重新检查了铁破锣的核型。来自湖南新宁的40个个体中,1个个体为四倍体,其核型公式为2n=4x=32=16m+8sm+4st+4t;其余个体为二倍体,其核型公式为2n=2x=16=8m+4sm+2st+2t。来自云南大理的10个个体全为四倍体,其核型公式为2n=4x=32=16m+8sm+4st+4t。据此认为商效民(1985)报道的该种的核型分析结果有误。他至少将第4对染色体的着丝点位置辨认错了。该对染色体不具有中部着丝点而实际上具有近端部着丝点。本文还比较了铁破锣和角叶铁破锣的核型差异,并详细讨论了铁破锣属的系统位置。  相似文献   

4.
In this paper, the chromosomes of Beesia calthifolia were re-examined. In the 40 plant individuals of the population from Xinning County, Hunan Province, central China, one was found to be tetraploid with the karyotype formula of 2n=4x=32=16m+8sm+4st + 4t, and the remaining were all found to be diploids with the karyotype formula of 2n=2x =16=8m+4sm+2st+2t. All the 10 individuals of the population from Cangshan Mountain, Dali City, Yunnan Province, southwestern China, were unexpectedly found to be tetraploids with the karyotype formula of 2n=4x=32=16m+8sm+4st+4t. Tetraploid cytotype was reported in this species for the first time. Based on the results and those previously reported, it is considered that there may exist some errors in the results of the karyotype analysis of this species previously reported by Shang(1985). He might have at least mistakenly recognized the centromere position of the fourth pair of chromosomes. This pair of chromosomes should have subterminal rather than median centromeres. Furthermore, the karyotypic differences of B. calthifolia and B. deltophylla were analyzed and the systematicposition of the genus Beesia was discussed in detail.  相似文献   

5.
The present paper reports the chromosome numbers and karyotypes of eight species of Sect. Rhiziridium in Allium (Liaceae). The materials were all collected from their natural populations in east Inner Mongolia, China. The karyotype analysis is made on the basis of Li et al. (1985).The results are as follows (for chromosomes parameters, voucher specimens and localities, see Table 1 and Plate 1--2 the idiograms of the eight species in Fig. 1): (1) Auium leucocephalum Turcz. The somatic chromosome number and karyotype of this species is 2n=16=12m=2sm+2st (2SAT), in Stebbinsl(1971) kayotype classification, which belongs to 2A (Plate 1: 1; Fig. 1: 1). The range of chromosome relative length varies between 8.90--15.55%. Two small satellites are attached to the short arms of the 8th pair of chromosomes. (2) A. strictum Schrader has 2n (4x) =32=16m+4sm+12st, belonging to 2B (Plate 1: 2 & Fig. 1: 2). Satellites were not observed., and the range of chromosome relative length is between 3. 67-11.00%. (3) A. ramosum L. 2n=16=14m+ 2st (2SAT), belonging to 2A (Plate 1: 3 & Fig. 1: 3), Two small satellies are attached to the short arms of the 8th pair of chromosomes. The range of chromosome relative length is between 9.17-16.39%. The chromosome number and karyotype of this species are in accordancewith those reported by Li et al. (1982) with the material from Jinshan, Beijing. (4) A. bidentatum Fisch. ex Prokh. 2n (4x) =32=24m+4sm+4T, belonging to 2B (Plate 1: 4 & Fig. 1: 4). Satellites were not observed. A small median B-chromosome was found in root-tip cells of the population growing in sandy soil, and it is the first discovery (Plate 2: 9). The species has terminal chromosomes, which are seldom seen in Sect. Rhiziridium. The range of chromosome relative length is between 3.32—9.06%. (5) A. tenuissimu L. 2n=16= 10m+4sm+2st(2SAT), belonging to 2B(Plate 1:5 & Fig. 1:5). Two large satellites are attached to the short arms of the 8th pair of chromosome. The range of chromosome relative length is between 8.27--17.56%. (6)A. anisopodium Ledeb. 2n = 16 = l2m +2sm + 2st (2SAT), belonging to 2A (Plate 2:7 & Fig. 1: 7). Two large satellites are attached to the short arms of the 8th pair of chromosomes. In somatic cells of some plants of this species, a small submedian B-chromosome was found (Plate 2: 10, 11). The range of chromosome relative length is between 8.05-17.08 %. (7) A. anisopodium Ledeb. var. zimmermannianum (Gilg) Wang et Tang 2n (4x)=32=24m+4sm+4st( 4SAT), belonging to 2A (Plate 1: 6 & Fig. 1: 6). Four large satellites are attached to the short arms of the 15 and 16th pairs of chromosomes. The range of chromosome relative length is between 4.45--8.35%. This variety is similar to A. anisopodium Ledeb. in morphological characters, and their karyotype formulas are also very similar. The present authors consider that the variety is an allotetraploid derived from A. anisopodium Ledeb. (8) A. condensatum Turcz. 2n=16=14m+2st (2SAT), belonging to 2B (Plate 2:8 & Fig. 1:8). Two. small satellites are attached to the short arms of the 6th pair of chromosomes. In a few individuals of this species median (M) B-chromosome was discovered, and the number is stable (Plate 2: 12). The range of chromosome relative length is between 7.64--17.07%. In short, the chromosome numbers of the species studied in the present work are found to be 2n=16 or 32, and the karyotypes belong to 2A or 2B, highly symmetrical. The karyotypes of Chinese materials of these species are mostly reported for the first time. Threespecies have B-chromosomes.  相似文献   

6.
甘薯栽培种及其近缘野生种的DAPI核型及rDNA FISH分析   总被引:1,自引:0,他引:1  
利用DAPI显带和rDNA-FISH技术对栽培种甘薯(‘徐薯18’)(Ipomoea batatas cv.Xushu No.18)及2种不同产地近缘野生种(Ipomoea hederacea Jacq.)进行了细胞遗传学研究。DAPI核型分析表明,‘徐薯18’核型公式为2n=6x=90=72m+18sm(18SAT),随体位于第1、3、6染色体上;美国近缘野生种核型公式为2n=2x=30=30m(4SAT),香港近缘野生种核型公式为2n=2x=30=20m+10sm(4SAT),随体均位于第6、12染色体上。rD-NA-FISH结果显示,栽培种甘薯基因组中含有3对5SrDNA位点,分别位于着丝粒区、亚着丝粒区和染色体端部;美国近缘野生种基因组中含有2对5SrDNA位点,香港近缘野生种基因组中含有1对5SrDNA位点,均位于随体部位;两种不同地域来源的近缘野生种基因组中均含有2对45SrDNA位点,分别位于第6和第12染色体上。  相似文献   

7.
云南乌头属牛扁亚属的核形态研究   总被引:6,自引:1,他引:5  
对云南乌头属牛扁亚属3种、1变种共9个居群的核形态进行了研究。其中弯短距乌头、粗花乌头和滇川乌头的染色体数目和核型为首次报道。所有种类的静止核和前期染色体形态基本相似,分别属于复杂中央染色微粒型和中国型;分裂中期染色体数目为2n=4x=32,染色体类型通常为sm或m,st染色体少见,染色体从大到小逐渐过渡,核型的二型性不明显。结合有关资料,重点指出了乌头属不但在亚属之间,而且在牛扁亚属内也存在着较  相似文献   

8.
睡莲科的核型分析及其分类学位置的探讨   总被引:5,自引:0,他引:5  
本文对睡莲科6属6种代表植物的核型进行了研究,并探讨了它的分类学位置。结果如下:莲2n=16=9sm+4m+3st;王莲2n=24=8sm+8m+8T,蓝睡莲2n=28,可配成14对,染色体小,第l号染色体上有2条随体;萍蓬草2n=34=18m+16sm;芡实2n=58,可配成29对,染色体小,第l号染色体有2条随体,莼菜2n=72,可配成36对,染色体按大小可分成大,中、小三个类别。除莲外,其它5种植物的核型为首次报道。莼菜的体细胞染色体数目2n=72和国外报道的2n=80不相一致。莲的染色体以及形态学特征和其它睡莲科分类群显著不同,可将其从睡莲科中独立出来,并成立莲科和莲目。原归属于睡莲科的分类群仍组成睡莲目,并分别置于莼菜科和睡莲科。  相似文献   

9.
The karyotypes of B. alboglabra and B. oleracea var. capitata were analyzed by an improved technique. The diploids of the two species consist of 4 pairs of metacentric and 5 pairs of submetacentric chromosomes (1 pair of satellites). The karyotype formula is summarized as 2n =18=8m+10sm (2 SAT). But the relative positions of some similar chromosomes are different in the genomes. Four kinds of satellites were observed in B. oleracea var. capitata. C-banding patterns were obtained by BSG C-banding. The C-banding formula is: 2n= 18=CITS pattern = 10C+2CI+ +4CT+ +2CS for B. alboglabra, and 2n= 18=CITS pattern = 8C+2CI +6CT+ + 2CS for B. oleracea var. capitata. The relationship between B. alboglabra and B. oleracea was discussed based on the chromosomal characteristics.  相似文献   

10.
根据以前的报道,类叶升麻 Actaea asiatica Hara具有10条大型的中部着丝点染色体和6条较大 的近中部着丝点染色体,其核型在毛茛科中显得最为对称和原始,而类叶升麻属的其他种类具有10条 大型的中部着丝点染色体、4条较大的近中部着丝点染色体和两条没有短臂的染色体。在毛茛科中,同 一属的染色体形态通常十分相似,因此上述类叶升麻的核型分析结果十分可疑。本文重新检查子该种 的染色体。结果表明其核型与该属其他种类的核型没有明显区别。与升麻属其他4属,即 Beesia, Anemonopsis,Souliea,Cimicifuga相比,类叶升麻及该属其他种类都具有两条没有短臂的T染色体,因 此类叶升麻属 Actaea L.的核型不对称性程度在升麻族中显得最高,其核型在该族中也可能最为进化, 这两条T染色体可以作为类叶升麻属的细胞学标志,据此可以将该属与升麻族其他4属区别开来。  相似文献   

11.
加拿大引进的二倍体燕麦种质的核型鉴定   总被引:1,自引:0,他引:1  
采用常规压片法对砂燕麦、西班牙燕麦和短燕麦3个二倍体燕麦种进行了核型研究。结果表明:砂燕麦染色体核型公式为2n=2x=14=10m+4sm(2SAT),具近中部和中部着丝点染色体,第4对染色体组的短臂上有1对随体,核不对称系数为68.17%;西班牙燕麦染色体核型公式为2n=2x=14=10m+4sm(2SAT),具近中部和中部着丝点染色体,第7对染色体短臂上有1对随体,核不对称系数为59.31%;短燕麦染色体核型公式为2n=2x=14=6m+4sm+4st(2SAT),具近端部、近中部和中部着丝点染色体,第6对染色体组的短臂上有1对随体,核不对称系数为63.91%。虽然3个燕麦种的核型均为2A,但它们的染色体形态有明显不同,比较认为砂燕麦相对进化,短燕麦次之,西班牙燕麦较原始。本研究对燕麦种质资源的核型分析及进化地位研究具有参考价值。  相似文献   

12.
Cytogenetic analyses were carried out in a populational sample of Iheringichthys labrosus from the Guaraúna River (Upper Tibagi River; Paraná State, Brazil) in order to provide a karyotypic comparison with another previously studied population from the Lower Tibagi River, characterized by the presence of 32m + 8sm + 6st + 10a (2n = 56, FN = 102) and occurrence of supernumerary chromosomes (80% of individuals). The 17 specimens of I. labrosus (6 females, 10 males and 1 of unknown sex) from the Upper Tibagi River showed 2n = 56 chromosomes, a karyotype formula of 14m + 32sm + 4st + 6a (FN = 106), without evidence of sex chromosome heteromorphism or supernumerary chromosomes. The heterochromatin was detected at telomeric and centromeric positions in several chromosomal pairs. The Ag-nucleolar organizer regions were heteromorphic and located at terminal position on short arms of the 16th chromosomal pair, suggesting a positive association with heterochromatic regions. The inter-populational karyotypic differentiation reported indicates distinct evolutionary pathways within I. labrosus in the Tibagi River basin.  相似文献   

13.
角叶铁破锣的核型及其系统学意义   总被引:6,自引:4,他引:2  
本文首次报道了角叶铁破锣的核形态。其静止核和有丝分裂前期染色体分别属于复杂中央染色微粒型和中间型;中期染色体数目为2n=16;核型公式为2n=10m+4st十2t(2sat)。根据上述结果并结合有关资料,本文讨论了铁破锣和角叶铁破锣之间的核型差异以及铁破锣属的系统位置,指出铁破锣属可能与升麻属等类群关系较近而与金莲花属等类群关系较远,因此将该属置于升麻族中比置于金莲花族中合理。  相似文献   

14.
金伟  陈辰  王恩波 《植物研究》1998,18(2):163-172
对我国辽宁地区毛莨科(Ranunculaceae)乌头属(Aconitum) 6个种的染色体的数目和形态进行了研究,并进行了核型分析。其染色体基数为X=8,核型公式为:两色乌头:2n=2x=2m+10sm+4st;蛇岛乌头为:2n=4x=10m+20sm(SAT)+2st+2B;黄花乌头为:2n=4x=4m+12sm(SAT)+8st+1B;北乌头三倍体为:2n=3x=2M+4m+18sm;北乌头4倍体为2n=4x=4m+28sm。同时,对乌头属下某些种的分类学问题进行了探讨。  相似文献   

15.
A species complex in Spirogyra consists of the series of filament morphotypes of various ploidal levels arising from an original morphotype within a clonal culture or in nature. A clonal culture of filaments identified as Spirogyra maxima (Hassall) Kützing produced several morphotypes, i.e. filament types of distinctly different widths and ploidal levels. Banding patterns and satellites were visible on chromosomes stained at mitotic prophase and metaphase. The original culture of S. maxima contained filaments averaging 127 μ wide. Vegetative cells of the original culture contained six large chromosomes (>4 μ long), identifiable as three distinct pairs based on banding patterns and presence of satellites: (1) one pair of short chromosomes (ca. 5.0 μ); (2) one pair of long chromosomes (ca. 8.0 μm); and (3) a second pair of long chromosomes (ca. 9.0 μm) including a nucleolar organizing region and satellite. A larger morphotype averaging 175 μm in width contained 12 chromosomes, with two pairs of short chromosomes and four pairs of long chromosomes (satellites were usually indistinct). Aneuploid chromosome numbers ranging from 5 to 13 were observed in a few cells. Binucleate and trinucleate cells were also observed. A twobanded chromosome fragment was observed in a few cells with 6 chromosomes and a few cells with 12 chromosomes. The variety of morphotypes derived in this study could be identified as four different species of Spirogyra by conventional taxonomic criteria. The banding patterns and satellites on chromosomes suggest that three pairs of homologous chromosomes are present in filaments of the original clonal culture and that these filaments are themselves autopolyploid (diploid) descendants of ancestral form with a base chromosome number of x = 3.  相似文献   

16.
The karyotypes of 10 species of the Liliaceae from the Qinling Range are reported as follows. I. Polygonatum Mill. (1) P. odoratum ( Mill. ) Druce was found to have the karyotype 2n=20=12m+8sm ( Plate 3, Fig. I), which belongs to Stebbins’ (1971) karyotype classification 2B. The chromosomes range from 3.88 to 11.26μm in size. Table 2 shows the karyotypes and number fundamentals (N.F.) of 13 materials from 12 different localities. The N. F. of these materials can be classified into two groups: N.F. =36 and N.F.=40, besides one (N.F. =38) from Beijing. N. F. =36 covers all the materials with 2n= 18 which have relatively symmetrical karyotypes ( all consisting of m and sm chromosomes), one with 2n=20 (10m+6sm+4st) and one with 2n=22 (14m+8st). N.F. =40 include four materials with 2n= 20 (all of m and sm chromosomes ) and 3 with 2n= 22 (10m+ 8sm+ 4st). ¥ It is considered that there are two original karyotypes, 2n= 18 with N. F. = 36 and 2n= 20 with N.F. =40, which are relatively symmetrical. All the more asymmetrical karyotypes with some st chromosomes have probably evolved from the symmetrical karyotypes without st chromosomes by centric fission. (2) P. zanlanscianense Pamp. has the karyotype 2n=30=18m(2SAT) + 4sm+ 6st+ 2t (Plate 1, Fig. 1) which belongs to 2C. The chromosomes range from 2.16 to 9.76μm. ¥ II. Asparagus filicinus Buch.-Ham. ex D.Don. The karyotype of this species is 2n = 16= 8m(2SAT )+ 6sm + 2st (Plate 1, Fig. 1 and Table 3 ) , which belongs to 2B. The chromosomes range from 2.33 to 5.30μm. Most species in Asparagus, including A.Filicinus, are reported to have basic number x= 10, and therefore 2n= 16 is a new chromosome number for A.filicinus. EL-Saded et.al.(1972) gave a report of n=8 for A. stipularis from Egypt, while Delay (1947) reported 2n = 24 for A. trichophyllus and A. verticillatus, Sinla(1972 ) gave a report of 2n=48 for A.racemosus. It is certain that there are two basic numbers in the genus Asparagus. III. Cardiocrinum giganteum (Wall.) Makino was found to have the karyotype 2n=24=4m+8st+12t (Plate 1, Fig. 1 ), which belongs to 3B. The chromosomes range from 8.71 to 20.24μm. IV. Smilax discotis Warb. was shown to have the karyotype 2n=32=4m+22sm+4st (2SAT)+2t (Plate 1, Fig. 1 and Table 3), which belongs to 3C. The first pair is much longer than others. The chromosomes range from 1.79 to 9.21μm. The chromosome number and karyotype of S. discotis are both reported for the first time. V. Reineckia carnea (Andr.) Kunth is of the karyotype 2n=38=28m+10sm (Plate 2, Fig. 1 ), which belongs to 2B. The chromosomes range from 5.65 to 12.75μm. VI. Tupistra chinensis Baker was found to have the karyotype 2n=38=25m+ 13sm (Plate 2, Fig. 1), which belongs to 2B. The chromosomes range from 8.11 to 23.82μm. A pair of heterozygous chromosomes is arranged at the end of the idiogram. The eighth pair possesses an intercalary satellite. Huang et al. (1989) reported the karyotype of T. chinensis from Yunnan as 2n = 38 = 24m+ 14sm without any intercalary satellite. Nagamatsu and Noda (1970) gave a report on the karyotype of T. nutans from Bhutan, which consists of 18 pairs of median to submedian chromosomes and one pair of subterminal chromosomes. And one pair of submedian chromosomes possess intercalary satellites on their short arms. VII. Rohdea japonica (Thunb) Roth. was found to have the karyotype 2n=38=30m+6sm+2st ( Plate 2, Fig. 1), which belongs to 2B. The chromosomes range from 7.94 to 18.29μm. Nagamatsu and Noda (1970) reported that the karyotype of R.japonica from Japan was the same as that of Tupistra nutans from Bhutan. But we have not discov ered any chromosome with an intercalary satellite. VIII. Hosta Tratt. (1) H. plantaginea (Lam.) Aschers was shown to have 2n=60. The 60 chromosomes are in 30 pairs,which can be classified into 4 pairs of large chromosomes (7.32- 8.72μm ), 3 pairs of medium-sized ones (4.72-5.60μm), and 23 pairs of small ones (1.40-3.64μm), (Plate 3 ,Table 4 ). The karyotype of H. plantaginea is reported for the first time. (2) H. ventricosa (Salisb.) Stearn was counted to have 2n=120, The 120 chromosomes are in 60 pairs, which can be classified into 8 pairs of large chromosomes (7.00- 8.40μm ), 6 pairs of medium-sized ones(4.40- 6.15um ), 46 pairs of small ones (1.20- 3.85μm), (Plate 3, Table 4). Based on the karyotypes of H. plantaginea and H. ventricosa, the latter is probably a tetraploid in the genus Hosta. Kaneko (1968b) gave a report on the karyotype of H. ventricosa, which is of8 pairs of large chromosomes, 4 pairs of medium-sized and 48 pairs of small ones.  相似文献   

17.
不同地域乌拉尔甘草基因组的FISH分析与染色体识别   总被引:1,自引:1,他引:0  
在核型分析与染色体识别基础上,分别以番茄45S和5S rDNA为探针,对3种不同地域的乌拉尔甘草进行FISH分析.结果表明:内蒙古鄂托克前旗的乌拉尔甘草核型公式为2n=2x=16=6m+10sm (2SAT),新疆阿勒泰地区的乌拉尔甘草核型公式为2n=2x=16=4m+12sm(2SAT),内蒙古喀喇沁旗乌拉尔甘草核型公式为2n=2x=16=4m+12sm(2SAT);其第8染色体均带有随体.3种乌拉尔甘草基因组内均有1对5S rDNA和1对45S rDNA杂交位点.核型分析显示,5S rDNA杂交位点均位于第2染色体的短臂部位,45S rDNA杂交位点均位于第8染色体的次缢痕和随体部位.45S与5S rDNA在3种乌拉尔甘草中期分裂相上的位点数和分布情况高度一致,表明来自3种不同地域的乌拉尔甘草在染色体结构水平上没有较大的分化.  相似文献   

18.
Karyotype analysis for the species Reineckia carnea (Andr.) Kunth of the monotypic genus Reineckia Kunth is given for the first time. The number of chromosomes in root-tip cell was found to be 38, which is in accord with those reported by most of the previous authors[5,7,8,9,11,12,]. The somatic complement shows a slight variation in size, i.e., the 2, 3, 5, 6, 7th pairs of the chromosomes have submedian constrictions, while the other pairs have median centromeres. The karyotype is therefore a rather symmetrical one, and according to the chromosomal terminology defined by Levan et al[4], the karyotype formula of the species is 2n=38=28 m+10 sm. In spite of the presence of two nucleoli in the telophase as observed by the authors and Noguchi[8] as well, the two corresponding Sat-chromosomes have not been found. Photomicrograph of the chromosome complement and idiogram are given in Fig. 1 and 2 respectively.  相似文献   

19.
This paper reports chromosome numbers and karyotypes of five species of the genus Fritillaria from south Anhui. The origin of the material used in this work is provided in Table 1, micrographs of mitotic metaphase in Plate 1,2, and the parameters of chromosomes in Table 2. Except F. thunbergii Miq., the karyotypes and chromosome numbers of all the species in this paper were studied for the first time. The results are shown as follows: 1. Fritillaria qimenensis D. C. Zhang et J. Z. Shao Collected from Qimen, Anhui, it has the karyotype formula 2n = 24+4Bs = 3m+lsm+8st (2sc)+12t (2sc)+4Bs (Plate 1:1, 2). The chromosomes range in length 8.72-19.13μm, with the ratio of the longest to the shortest 2.19. Therefore, the karyotype belongs to Stebbins’ (1971) 3B. The secondary constrictions are found on the long arms of 7th and 10th pairs. All the five B-chromosomes are of terminal centromeres. The two chromosomes of the second pair show heteromorphy (Fig. 1, E) with arm ratios 1.86 and 1.56 respectively. 2. Fritillaria monantha Miq. var. tonglingensis S. C. Chen et S. F. Yin Collected from Tongling, Anhui, this species is shown to have three chromosome numbers, 2n =24+5Bs, 2n=24+2Bs and 2n=24. This paper reports 2 cytotypes: Type I: 2n = 24+5Bs = 4m+8st (2sc) +12t (2sc) +5Bs (Plate 1: 3, 4). The chromosomes range in length from 10.40 to 22.19μm, with the ratio of the longest to the shortest 2.13. It belongs to 3B of stebbins’(1971) karyotypic symmetry. The secondary constrictions are found on the short arms of 7th and the long arms of 9th chromosome pairs. The metacentric B-chromosomes and the small satellites located on the short arms are major characters of this cytotype. Type II: 2n=24=2m+2sm+8st(2sc)+12t(2sc) (Plate 1:5, 6). The chromosomes range in length from 13.84 to 29.81μm, with the ratio of the longest to the shortest 2.15. The karyotype belongs to Stebbins’3B. The secondary constrictions are found on the long arms of 5th and 10th pairs. No B-chromosomes are found. 3. Fritillaria xiaobeimu Y. K. Yang, J. Z. Shao et M. M. Fang Collected from Ningguo, Anhui, it has karyotype formula 2n = 24 = 2m+2sm+10st (4sc) + 10t (Plate 2:7, 8). The chromosomes range in length from 13.86 to 26.27μm, with the ratio of the longest to the shortest 1.89. The karyotype belongs to stebbins’3A. The secondary constrictions are found on the long arms of 7th and 9th pairs. 4. Fritillaria ningguoensis S. C. Chen et S. F. Yin Collected from Ningguo, Anhui, it is of karyotype formula 2n = 24 = 2m+2sm+8st (2sc) +12t (Plate 2: 9, 10). The chromosomes range in length from 9.11 to 23.23μm, with the ratio of the longest to the shortest 2.55. The karyotype belongs to Stebbins’3B. The secondary constrictions are only found on the long arms of the 10 th pair. 5. Fritillaria thunbergii Miq. Collected from Ningguo, Anhui, it is of karyotype formula 2n = 24 = 2m+2sm+8st(2sc) +12t(2sc)(Plate 2:11, 12). The chromosomes range in length from 8.83 to 19.85μm, with the ratio of the longest to the shortest 2.25. The karyotype belongs to stebbins’3B. There are secondary constrictions on the long arms of 5th and 7th pairs. The karyotype of the Ningguo material is similar to that of the Huoqiu (Anhui) material reported by Xu Jin-lin et al. (1987), but it is obviously different from 2n=2m(sc)+2sm+4st(2sc)+16t (2sc) reported byZhai et al. (1985) for the material from Xingjiang, Northwest China.  相似文献   

20.
海岛棉原位杂交及核型比较   总被引:15,自引:2,他引:13  
采用A染色体组(A genome)棉种亚洲基因组DNA(gDNA)为探针,对海岛棉体细胞染色体进行荧光原位杂交(FISH),结果发现52条染色体中有杂交信号与否的刚好各一半,从而直观地证实了海岛棉异源双二倍体起源的理论,但是,染色体的长度A亚组的并非全部大于D亚组的。海岛棉基于FISH图像的核型公式为:2n=4x=52=38m 14sm(sat)。3对随体染色体序号分别是A亚组第11、D亚组第22和25,均属于近中部着丝点(sm)类型,随体均在各自杂色体的短臂上,而且与所有染色体无关晨同一亚组起源。A亚组第5、6和9对染色体长臂发生长了片段的易位,易位的片段较大,占所在染色体和蔗的百分率依次为19.21%、17.69%和12.88%,在D亚组13对染色体中,最少5对的着丝点区域多或少地显示出与亚洲棉gDNA探针杂交的红色荧光信号,意味着有A亚组染色体的交换。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号