首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Summary In recent times, new members of the insulin/relaxin peptide superfamily have been identified by both differential cloning strategies as well as bioinformatic searching of the EST databases. We have used the public and Celera Genomics databases to search for novel members of this peptide family. No new members of the insulin/relaxin family were identified although the human (H3) and mouse (M3) relaxin 3 genes that we recently discovered in the Celera Genomics database were identified in the public database. We were able to confirm that there are no mouse equivalents of human INSL-4 or human gene 1 relaxin. Hence, as the two human relaxin genes (H1 and H2) are localized together with INSL6 and INSL4 on chromosome 9 it is probable that INSL4 and H1 relaxin are the result of a gene duplication which did not occur in non-primates. The discovery of a full relaxin 3 sequences in a new Zebrafish brain EST library, which retains a high homology in both A and B chain peptide sequence with the H3 peptide, indicate that this novel peptide has important conserved functions.  相似文献   

2.
Relaxin-1 is a heterodimeric peptide hormone primarily produced by the pregnant corpus luteum and/or placenta and is involved in many essential physiological processes centered on its action as a potent extracellular matrix (ECM) remodeling agent. Insulin-like peptide 3 (INSL3), also known as relaxin-like factor, is predominantly expressed in the Leydig cells of the testes and is an important mediator of testicular descent. The relaxin-1 equivalent peptide in humans is actually the product of the human RLN2 gene, human 2 (H2) relaxin. Recently identified and thought to be the ancestral relaxin, relaxin-3 is specifically expressed in the nucleus incertus of the mouse and rat brain and is most likely an important neuropeptide. Each of the hormones above act on cell membrane G-protein coupled receptors (GPCRs). The relaxin-1 receptor is leucine-rich repeat-containing GPCR 7 (LGR7) whereas INSL3 acts on the closely related LGR8. These receptors have large extra-cellular domains containing multiple leucine-rich repeats (LRRs) and a unique LDL receptor-like cysteine-rich motif (LDLR-domain). Relaxin-3 will bind and activate LGR7 with 50-fold lower activity than H2 relaxin. Two relaxin-3 selective GPCRs; somatostatin and angiotensin like peptide receptor (SALPR) and GPCR 142 were recently identified, these type I GPCRs are unrelated to LGR7 and LGR8. The discovery and characterisation of these receptors is greatly aiding the quest to unravel the mechanics of these important hormones, however with three other family members, insulin-like peptides 4–6 (INSL4, INSL5 and INSL6) with unknown functions and unidentified receptors, there is still much to be learnt about this hormone family.  相似文献   

3.
4.
A new member of the insulin gene family (INSL6) was identified from an Expressed Sequence Tag database through a search for proteins containing the insulin family B-chain cysteine motif. Human and rat INSL6 encoded polypeptides of 213 and 188 amino acids, respectively. These orthologous sequences contained the B-chain, C-peptide, and A-chain motif found in other members of the insulin family. Human INSL6 was 43% identical to human relaxin H2 in the B- and A-chain regions. As with other family members, human and rat INSL6 had predicted dibasic sequences at the junction of the C-peptide and A-chain. Human INSL6 sequence had an additional dibasic site near the C-terminus of the A-chain. The presence of a single basic residue at the predicted junction of the B-chain and C-peptide suggests that multiple prohormone convertases are required to produce the fully mature hormone. INSL6 was found to be expressed at high levels in the testis as determined by Northern blot analysis and specifically within the seminiferous tubules in spermatocytes and round spermatids as detected by in situ hybridization analysis. Radiation hybrid mapping placed the human INSL6 locus at chromosome 9p24 near the placenta insulin-like homologue INSL4 and the autosomal testis-determining factor (TDFA) locus.  相似文献   

5.
Peptidomimetics are designed to overcome the poor pharmacokinetics and pharmacodynamics associated with the native peptide or protein on which they are based. The design of peptidomimetics starts from developing structure-activity relationships of the native ligand-target pair that identify the key residues that are responsible for the biological effect of the native peptide or protein. Then minimization of the structure and introduction of constraints are applied to create the core active site that can interact with the target with high affinity and selectivity. Developing peptidomimetics is not trivial and often challenging, particularly when peptides’ interaction mechanism with their target is complex. This review will discuss the challenges of developing peptidomimetics of therapeutically important insulin superfamily peptides, particularly those which have two chains (A and B) and three disulfide bonds and whose receptors are known, namely insulin, H2 relaxin, H3 relaxin, INSL3 and INSL5.  相似文献   

6.
Insulin-like peptide 5 (INSL5) is a two-chain, three-disulfide bonded member of insulin/relaxin superfamily of peptides that includes insulin, insulin-like growth factor I and II (IGFI and IGFII), insulin-like peptide 3, 4, 5 and 6 (INSL3, 4, 5 and 6), relaxin-1 (H1 relaxin), -2 (H2 relaxin) and -3 (H3 relaxin). Although it is expressed in relatively high levels in the gut, its biological function remains unclear. However, recent reports suggest a significant orexigenic action and a role in the regulation of insulin secretion and β-cell homeostasis, which implies that both agonists and antagonists of the peptide may have significant therapeutic applications. Modern solid phase synthesis techniques together with regioselective disulfide bond formation were employed for a preliminary structure–function relationship study of mouse INSL5. Two point mutated analogues, mouse INSL5 A-B(R24A, W25A) and mouse INSL5 A-B(K6A, R14A, Y18A) were chemically prepared, where the residues in the B-chain that may be involved in receptor activation and affinity binding, were respectively mutated. Synthetic mouse INSL5 A-B(R24A, W25A) analogue was inactive on RXFP4, the native receptor for INSL5, suggesting ArgB24 and TrpB25 are probably directly involved in INSL5 receptor activation. Mouse INSL5 A-B(K6A, R14A, Y18A) analogue had both decreased affinity and potency on RXFP4 (pIC50 7.7 ± 0.2, pEC50 7.87 ± 0.18) which indicated that one or more of these residues are critical for the binding to the receptor.  相似文献   

7.
Insulin-like peptide 3 (INSL3) is a reproduction-related peptide hormone belonging to the insulin/relaxin superfamily, which mediates testicular descent in the male fetus, suppresses male germ cell apoptosis and promotes oocyte maturation in adults by activating the relaxin family peptide receptor 2 (RXFP2). To establish an ultrasensitive receptor-binding assay for INSL3−RXFP2 interaction studies, in the present work we labeled a recombinant INSL3 peptide with a newly developed nanoluciferase (NanoLuc) reporter through a convenient chemical conjugation approach, including the introduction of an active disulfide bond to INSL3 by chemical modification and engineering of a 6× His-Cys-NanoLuc carrying a unique exposed cysteine at the N-terminus. The bioluminescent NanoLuc-conjugated INSL3 retained high binding affinity with the target receptor RXFP2 (Kd = 2.0 ± 0.1 nM, n = 3) and was able to sensitively monitor the receptor-binding of a variety of ligands, representing a novel ultrasensitive tracer for non-radioactive receptor-binding assays. Our present chemical conjugation approach could readily be adapted for conjugation of NanoLuc with other proteins, even other macrobiomolecules, for various highly sensitive bioluminescent assays.  相似文献   

8.
Polypeptide growth factors play an important role in the regulation of human embryonic development. Insulin-like 4 gene (INSL4) is a member of the insulin family, which includes insulin, IGF-I, IGF-II, relaxin, and INSL3. Using RT-PCR, we previously found abundant INSL4 mRNA in the human placenta. In this study, we examined the chronology and spatial expression of this gene in sections of human placenta and conceptus by means of in situ hybridization. Expression of the IGF-II gene was studied as a positive control. INSL4 distribution was tissue- and cell-specific. Indeed, INSL4 mRNA was most abundant in syncytiotrophoblast cells. In fetal tissues, INSL4 mRNA was identified in the perichondrium of all four limbs, vertebrae, and ribs. Moreover, INSL4 mRNA was abundant in interbone ligaments. These findings indicate that the INSL4 gene may play an important role in trophoblast development and regulation of bone formation. IGF-II mRNA, in agreement with the literature, are mainly located in the mesodermal core in the villous trophoblast and in most embryonic tissues. Mol. Reprod. Dev. 51:123–129, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
The relaxin peptides are a family of hormones that share a structural fold characterized by two chains, A and B, that are cross-braced by three disulfide bonds. Relaxins signal through two different classes of G-protein-coupled receptors (GPCRs), leucine-rich repeat-containing GPCRs LGR7 and LGR8 together with GPCR135 and GPCR142, now referred to as the relaxin family peptide (RXFP) receptors 1-4, respectively. Although key binding residues have been identified in the B-chain of the relaxin peptides, the role of the A-chain in their activity is currently unknown. A recent study showed that INSL3 can be truncated at the N terminus of its A-chain by up to 9 residues without affecting the binding affinity to its receptor RXFP2 while becoming a high affinity antagonist. This suggests that the N terminus of the INSL3 A-chain contains residues essential for RXFP2 activation. In this study, we have synthesized A-chain truncated human relaxin-2 and -3 (H2 and H3) relaxin peptides, characterized their structure by both CD and NMR spectroscopy, and tested their binding and cAMP activities on RXFP1, RXFP2, and RXFP3. In stark contrast to INSL3, A-chain-truncated H2 relaxin peptides lost RXFP1 and RXFP2 binding affinity and concurrently cAMP-stimulatory activity. H3 relaxin A-chain-truncated peptides displayed similar properties on RXFP1, highlighting a similar binding mechanism for H2 and H3 relaxin. In contrast, A-chain-truncated H3 relaxin peptides showed identical activity on RXFP3, highlighting that the B-chain is the sole determinant of the H3 relaxin-RXFP3 interaction. Our results provide new insights into the action of relaxins and demonstrate that the role of the A-chain for relaxin activity is both peptide- and receptor-dependent.  相似文献   

10.
Summary Insulin-like peptide 3 (INSL3) is one of ten members of the human insulin superfamily and consists of two peptide chains that contain the characteristic insulin fold and disulfide bond pairings. It is primarily produced in the Leydig cells of the testes, and gene knockout experiments have identified a key biological role as initiating testes descent during foetal development. Its receptor has recently been shown to be a member of the leucine-rich repeat-containing G-protein-coupled receptor family (LGR) and is known as LGR8. Considerable work has recently been undertaken with the aim of studying the mechanism of INSL3 downstream action on responsive cells and, towards this goal, the use of synthetic peptides has proved particularly beneficial. This mini-review outlines how these together with basic structure-function studies are beginning to reveal not only its molecular actions but also its potential new biological actions.  相似文献   

11.

Background  

The relaxin-like peptide family belongs in the insulin superfamily and consists of 7 peptides of high structural but low sequence similarity; relaxin-1, 2 and 3, and the insulin-like (INSL) peptides, INSL3, INSL4, INSL5 and INSL6. The functions of relaxin-3, INSL4, INSL5, INSL6 remain uncharacterised. The evolution of this family has been contentious; high sequence variability is seen between closely related species, while distantly related species show high similarity; an invertebrate relaxin sequence has been reported, while a relaxin gene has not been found in the avian and ruminant lineages.  相似文献   

12.
RLF (relaxin-like factor), also known as INSL3 (insulin-like peptide 3), is a novel member of the relaxin/insulin gene family that is expressed in testicular Leydig cells. Despite the implicated role of RLF/INSL3 in testis development, its native conformation remains unknown. In the present paper we demonstrate for the first time that boar testicular RLF/INSL3 is isolated as a monomeric structure with full biological activity. Using a series of chromatography steps, the native RLF/INSL3 was highly purified as a single peak in reverse-phase HPLC. MS/MS (tandem MS) analysis of the trypsinized sample provided 66% sequence coverage and revealed a distinct monomeric structure consisting of the B-, C- and A-domains deduced previously from the RLF/INSL3 cDNA. Moreover, the N-terminal peptide was four amino acid residues longer than predicted previously. MS analysis of the intact molecule and PMF (peptide mass fingerprinting) analysis at 100% sequence coverage confirmed this structure and indicated the existence of three site-specific disulfide bonds. RLF/INSL3 retained full bioactivity in HEK (human embryonic kidney)-293 cells expressing RXFP2 (relaxin/insulin-like family peptide receptor 2), the receptor for RLF/INSL3. Furthermore, RLF/INSL3 was found to be secreted from Leydig cells into testicular venous blood. Collectively, these results indicate that boar RLF/INSL3 is secreted from testicular Leydig cells as a B-C-A monomeric structure with full biological activity.  相似文献   

13.
Relaxin-3 is a member of the human relaxin peptide family, the gene for which, RLN3, is predominantly expressed in the brain. Mapping studies in the rodent indicate a highly developed network of RLN3, RLN1, and relaxin receptor-expressing cells in the brain, suggesting that relaxin peptides have important functional roles in the central nervous system. A regioselective disulfide-bond synthesis protocol was developed and used for the chemical synthesis of human (H3) relaxin-3. The selectively S-protected A and B chains were combined by stepwise formation of each of the three insulin-like disulfides via aeration, thioloysis, and iodolysis. Judicious positioning of the three sets of S-protecting groups was crucial for acquisition of synthetic H3 relaxin in a good overall yield. The activity of the peptide was tested against relaxin family peptide receptors. Although the highest activity was demonstrated on the human relaxin-3 receptor (GPCR135), the peptide also showed high activity on relaxin receptors (LGR7) from various species and variable activity on the INSL3 receptor (LGR8). Recombinant mouse prorelaxin-3 demonstrated similar activity to H3 relaxin, suggesting that the presence of the C peptide did not influence the conformation of the active site. H3 relaxin was also able to activate native LGR7 receptors. It stimulated increased MMP-2 expression in LGR7-expressing rat ventricular fibroblasts in a dose-dependent manner and, following infusion into the lateral ventricle of the brain, stimulated water drinking in rats, activating LGR7 receptors located in the subfornical organ. Thus, H3 relaxin is able to interact with the relaxin receptor LGR7 both in vitro and in vivo.  相似文献   

14.
Yegorov S  Good S 《PloS one》2012,7(3):e32923
Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL) and relaxin family peptide receptors (RXFP). Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's) and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R) followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of incorporating paleogenomics data into understanding the evolution of gene families.  相似文献   

15.
Two human relaxin genes are on chromosome 9.   总被引:4,自引:0,他引:4       下载免费PDF全文
We have recently cloned two different human relaxin gene sequences. One of these (H1) was isolated from a human genomic clone bank and the other (H2) from a cDNA library prepared from human pregnant ovarian tissue. Southern gel analysis of the relaxin genes within the genomes of several unrelated individuals showed that all genomes contained both relaxin genes. Hence it is unlikely (p less than 0.001) that the two relaxin gene sequences are alleles. Rather, it is probable that there are two relaxin genes within the human genome. It is likely that relaxin and insulin genes have evolved from a common ancestral gene by gene duplication, since structural similarities between insulin and relaxin are evident at both the peptide and gene level. To investigate the evolutionary relationship between the two human relaxin genes and the insulin gene, we have determined the chromosomal position of the relaxin genes using mouse/human cell hybrids. We found that the human insulin and relaxin genes are on different chromosomes. Both human relaxin genes are located on the short arm region of chromosome 9.  相似文献   

16.
Insulin-like peptide 5 (INSL5) is a member of insulin/relaxin superfamily of peptides. It has recently been identified as the cognate ligand for the G-protein-coupled receptor, RXFP4. Although the complete physiological role of this naturally occurring peptide is still under investigation, there is evidence that it acts to both stimulate appetite and activate colon motility. This suggests that both agonists and antagonists of the peptide may have potential therapeutic applications. To further investigate the physiological role of this peptide and because of the ready availability of the mouse as an experimental animal, the preparation of mouse INSL5 was undertaken. Because of its complex structure and the intractable nature of the two constituent chains, different solid phase synthesis strategies were investigated, including the use of a temporary B-chain solubilizing tag. Unfortunately, none provided significantly improved yield of purified mouse INSL5 which reflects the complexity of this peptide. In addition to the native peptide, two mouse INSL5 analogues were also prepared. One had its two chains as C-terminal amides, and the other contained a europium chelate monolabel for use in RXFP4 receptor assays. It was found that the INSL5 amide was substantially less potent than the native acid form. A similar observation was made for the human peptide acid and amide, highlighting the necessity for free C-terminal carboxylates for function. Two additional human INSL5 analogues were prepared to further investigate the necessity of a free C-terminal. The results together provide a first insight into the mechanism whereby INSL5 binds to and activates RXFP4.  相似文献   

17.
The relaxin/insulin-like gene family is related to the insulin gene family, and includes two separate types of peptides: relaxins (RLNs) and insulin-like peptides (INSLs) that perform a variety of physiological roles including testicular descent, growth and differentiation of the mammary glands, trophoblast development, and cell differentiation. In vertebrates, these genes are found on three separate genomic loci, and in mammals, variation in the number and nature of genes in this family is mostly restricted to the Relaxin Family Locus B. For example, this locus contains a single copy of RLN in platypus and opossum, whereas it contains copies of the INSL6, INSL4, RLN2 and RLN1 genes in human and chimp. The main objective of this research is to characterize changes in the size and membership composition of the RLN/INSL gene family in primates, reconstruct the history of the RLN/INSL genes of primates, and test competing evolutionary scenarios regarding the origin of INSL4 and of the duplicated copies of the RLN gene of apes. Our results show that the relaxin/INSL-like gene family of primates has had a more dynamic evolutionary history than previously thought, including several examples of gene duplications and losses which are consistent with the predictions of the birth-and-death model of gene family evolution. In particular, we found that the differential retention of relatively old paralogs played a key role in shaping the gene complement of this family in primates. Two examples of this phenomenon are the origin of the INSL4 gene of catarrhines (the group that includes Old World monkeys and apes), and of the duplicate RLN1 and RLN2 paralogs of apes. In the case of INSL4, comparative genomics and phylogenetic analyses indicate that the origin of this gene, which was thought to represent a catarrhine-specific evolutionary innovation, is as old as the split between carnivores and primates, which took place approximately 97 million years ago. In addition, in the case of the RLN1 and RLN2 genes of apes our phylogenetic trees and topology tests indicate that the duplication that gave rise to these two genes maps to the last common ancestor of anthropoid primates. All these genomic changes in gene complement, which are particularly prevalent among anthropoid primates, might be linked to the many physiological and anatomical changes found in this group. Given the various roles of members of the RLN/INSL-like gene family in reproductive biology, it might be that changes in this gene family are associated to changes in reproductive traits.  相似文献   

18.
EPS8 codes for a protein essential in Ras to Rac signaling leading to actin remodeling. Three genes highly homologous to EPS8 were discovered, thereby defining a novel gene family. Here, we report the genomic structure of EPS8 and the EPS8-related genes in human and mouse. We performed BLASTN searches against the Celera Human Genome and Mouse Fragments Database. The mouse fragments were manually assembled, and the organization of both human and mouse genes was reconstructed. The gene structures in Celera annotations of the human and mouse genomes were compared to outline correspondences and divergences. We also compared the EPS8 family gene structures predicted by Celera with those predicted by NCBI. Moreover, we performed a virtual analysis of the expression of the EPS8 gene family members by using the SAGEmap Database in NCBI. Finally, we analyzed the domain organization of the gene products and their evolutionary conservation to define novel putative domains, thereby helping to predict novel modality of action for the members of this gene family. The data obtained will be instrumental in directing further experimental functional characterization of these genes.  相似文献   

19.
A new member of the insulin gene superfamily (INSL5) was identified by searching EST databases for the presence of the conserved insulin B-chain cysteine motif. Human and murine INSL5 are both polypeptides of 135 amino acids, matching the classical signature of the insulin superfamily. Through the B- and A-chain regions, human INSL5 has 48% identity to shark relaxin, 40% identity to human relaxin, and 34% identity to human Leydig insulin-like factor. Northern blot analysis detected expression of human INSL5 in rectal, colon, and uterine tissue and of murine INSL5 only in thymic tissue. Using quantitative RT-PCR, expression of murine INSL5 was detected in the highest quantity in colon followed by thymus, and minimal expression was seen in testis. By radiation hybrid mapping and the use of surrounding markers, human INSL5 maps to chromosome 1 in the 1p31.1 to 1p22.3 region.  相似文献   

20.
Chudin  Eugene  Walker  Randal  Kosaka  Alan  Wu  Sue X  Rabert  Douglas  Chang  Thomas K  Kreder  Dirk E 《Genome biology》2002,4(1):1-10

Background

The availability of both mouse and human draft genomes has marked the beginning of a new era of comparative mammalian genomics. The two available mouse genome assemblies, from the public mouse genome sequencing consortium and Celera Genomics, were obtained using different clone libraries and different assembly methods.

Results

We present here a critical comparison of the two latest mouse genome assemblies. The utility of the combined genomes is further demonstrated by comparing them with the human 'golden path' and through a subsequent analysis of a resulting conserved sequence element (CSE) database, which allows us to identify over 6,000 potential novel genes and to derive independent estimates of the number of human protein-coding genes.

Conclusion

The Celera and public mouse assemblies differ in about 10% of the mouse genome. Each assembly has advantages over the other: Celera has higher accuracy in base-pairs and overall higher coverage of the genome; the public assembly, however, has higher sequence quality in some newly finished bacterial artifical chromosome clone (BAC) regions and the data are freely accessible. Perhaps most important, by combining both assemblies, we can get a better annotation of the human genome; in particular, we can obtain the most complete set of CSEs, one third of which are related to known genes and some others are related to other functional genomic regions. More than half the CSEs are of unknown function. From the CSEs, we estimate the total number of human protein-coding genes to be about 40,000. This searchable publicly available online CSEdb will expedite new discoveries through comparative genomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号