首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
探究功能性状沿着环境梯度如何变化一直以来是基于性状的群落生态学的核心问题之一。尽管功能性状存在种内和种间变异, 但种内变异沿环境梯度如何变化仍有待探究。本文以鼎湖山南亚热带常绿阔叶林1.44 ha塔吊样地内16个树种的2,820个个体为研究对象, 探究4种叶功能性状(比叶面积、叶干物质含量、叶厚度和叶面积)沿群落垂直层次的种内变异。首先, 利用随机效应线性模型量化塔吊样地内的种内变异和种间变异; 其次, 利用Kmeans函数将森林的垂直层次划分为灌木层、亚冠层和林冠层, 并通过构建回归模型探究叶功能性状在群落垂直层次中的种内变异格局。最后, 应用混合线性模型和单因素方差分析的方法探究叶功能性状沿垂直层次的种内变异是否具有物种依赖性。结果表明: 在局域群落中, 并非所有叶功能性状的种内变异都低于种间变异; 叶功能性状在不同垂直层次的种内变异格局存在显著差异, 且种内变异与垂直范围呈正相关; 叶功能性状的种内变异具有较强的物种依赖性, 因此树种差异相对于小环境解释了更多的性状变异; 此外, 不同叶功能性状的种内变异沿垂直层次的变化趋势并不一致。本研究发现种内变异对于物种共存具有重要作用。  相似文献   

2.
The functional biogeography of tropical forests is expressed in foliar chemicals that are key physiologically based predictors of plant adaptation to changing environmental conditions including climate. However, understanding the degree to which environmental filters sort the canopy chemical characteristics of forest canopies remains a challenge. Here, we report on the elevation and soil‐type dependence of forest canopy chemistry among 75 compositionally and environmentally distinct forests in nine regions, with a total of 7819 individual trees representing 3246 species collected, identified and assayed for foliar traits. We assessed whether there are consistent relationships between canopy chemical traits and both elevation and soil type, and evaluated the general role of phylogeny in mediating patterns of canopy traits within and across communities. Chemical trait variation and partitioning suggested a general model based on four interconnected findings. First, geographic variation at the soil‐Order level, expressing broad changes in fertility, underpins major shifts in foliar phosphorus (P) and calcium (Ca). Second, elevation‐dependent shifts in average community leaf dry mass per area (LMA), chlorophyll, and carbon allocation (including nonstructural carbohydrates) are most strongly correlated with changes in foliar Ca. Third, chemical diversity within communities is driven by differences between species rather than by plasticity within species. Finally, elevation‐ and soil‐dependent changes in N, LMA and leaf carbon allocation are mediated by canopy compositional turnover, whereas foliar P and Ca are driven more by changes in site conditions than by phylogeny. Our findings have broad implications for understanding the global ecology of humid tropical forests, and their functional responses to changing climate.  相似文献   

3.
The assessment of leaf strategies has been a common theme in ecology, especially where multiple sources of environmental constraints (fire, seasonal drought, nutrient-poor soils) impose a strong selection pressure towards leaf functional diversity, leading to inevitable tradeoffs among leaf traits, and ultimately to niche segregation among coexisting species. As diversification on leaf functional strategies is dependent on integration at whole plant level, we hypothesized that regardless of phylogenetic relatedness, leaf trait functional syndromes in a multivariate space would be associated with the type of growth form. We measured traits related to leaf gas exchange, structure and nutrient status in 57 coexisting species encompassing all Angiosperms major clades, in a wide array of plant morphologies (trees, shrubs, sub-shrubs, herbs, grasses and palms) in a savanna of Central Brazil. Growth forms differed in mean values for the studied functional leaf traits. We extracted 4 groups of functional typologies: grasses (elevated leaf dark respiration, light-saturated photosynthesis on a leaf mass and area basis, lower values of leaf Ca and Mg), herbs (high values of SLA, leaf N and leaf Fe), palms (high values of stomatal conductance, leaf transpiration and leaf K) and woody eudicots (sub-shrubs, shrubs and trees; low SLA and high leaf Ca and Mg). Despite the large range of variation among species for each individual trait and the independent evolutionary trajectory of individual species, growth forms were strongly associated with particular leaf trait combinations, suggesting clear evolutionary constraints on leaf function for morphologically similar species in savanna ecosystems.  相似文献   

4.
  1. Trait‐based ecology holds the promise to explain how plant communities work, for example, how functional diversity may support community productivity. However, so far it has been difficult to combine field‐based approaches assessing traits at the level of plant individuals with limited spatial coverage and approaches using remote sensing (RS) with complete spatial coverage but assessing traits at the level of vegetation pixels rather than individuals. By delineating all individual‐tree crowns within a temperate forest site and then assigning RS‐derived trait measures to these trees, we combine the two approaches, allowing us to use general linear models to estimate the influence of taxonomic or environmental variation on between‐ and within‐species variation across contiguous space.
  2. We used airborne imaging spectroscopy and laser scanning to collect individual‐tree RS data from a mixed conifer‐angiosperm forest on a mountain slope extending over 5.5 ha and covering large environmental gradients in elevation as well as light and soil conditions. We derived three biochemical (leaf chlorophyll, carotenoids, and water content) and three architectural traits (plant area index, foliage‐height diversity, and canopy height), which had previously been used to characterize plant function, from the RS data. We then quantified the contributions of taxonomic and environmental variation and their interaction to trait variation and partitioned the remaining within‐species trait variation into smaller‐scale spatial and residual variation. We also investigated the correlation between functional trait and phylogenetic distances at the between‐species level. The forest consisted of 13 tree species of which eight occurred in sufficient abundance for quantitative analysis.
  3. On average, taxonomic variation between species accounted for more than 15% of trait variation in biochemical traits but only around 5% (still highly significant) in architectural traits. Biochemical trait distances among species also showed a stronger correlation with phylogenetic distances than did architectural trait distances. Light and soil conditions together with elevation explained slightly more variation than taxonomy across all traits, but in particular increased plant area index (light) and reduced canopy height (elevation). Except for foliage‐height diversity, all traits were affected by significant interactions between taxonomic and environmental variation, the different responses of the eight species to the within‐site environmental gradients potentially contributing to the coexistence of the eight abundant species.
  4. We conclude that with high‐resolution RS data it is possible to delineate individual‐tree crowns within a forest and thus assess functional traits derived from RS data at individual level. With this precondition fulfilled, it is then possible to apply tools commonly used in field‐based trait ecology to partition trait variation among individuals into taxonomic and potentially even genetic variation, environmental variation, and interactions between the two. The method proposed here presents a promising way of assessing individual‐based trait information with complete spatial coverage and thus allowing analysis of functional diversity at different scales. This information can help to better understand processes shaping community structure, productivity, and stability of forests.
  相似文献   

5.
分析不同树种叶片性状的变化有助于了解植物群落结构。该文通过对典型阔叶红松(Pinus koraiensis)林15种阔叶树种的比叶质量、叶片厚度、叶干物质含量、叶绿素含量指数、叶片碳、氮、磷含量的测定, 分析了冠层高度对叶性状及叶性状间相关关系的影响。结果表明, 水曲柳(Fraxinus mandshurica)和大青杨(Populus ussuriensis)上层的比叶质量显著大于下层, 而其他树种冠层间的比叶质量无显著变化; 叶绿素含量指数在白桦(Betula platyphylla)和春榆(Ulmus japonica)冠层间的分布分别为上层显著大于下层和上层显著大于中层; 单位质量氮含量在水曲柳的中层显著大于上层。叶片性状间存在着广泛的相关性, 比叶质量与叶片厚度、干物质含量在三层间均呈显著正相关关系, 而有些性状, 只在一或二个冠层中存在一定的相关性。山杨(Populus davidiana)和大青杨的叶片倾向于选择光合能力较低、营养浓度较低、呼吸速率较慢的一端, 而黄檗(Phellodendron amurense)和山槐(Maackia amurensis)叶片更倾向于光合能力强、营养物质浓度高的一端。不同树种对光照响应的差异可能会改变不同冠层中叶片的形态和化学性状, 从而有助于群落构建和物种共存。  相似文献   

6.
林窗是森林更新演替的重要环节, 揭示林窗环境下功能性状变异来源及其相对贡献, 有助于阐明植物对林窗环境的响应。该研究以中亚热带格氏栲(Castanopsis kawakamii)天然林为对象, 设置9个不同大小的林窗样地, 运用方差分解探讨林窗、物种和个体对叶性状变异的相对贡献, 采用线性回归分析不同大小林窗下群落性状变化及种间和种内性状变异的重要性。研究发现: (1)格氏栲天然林林窗植物比叶面积、叶干物质含量、叶厚和叶绿素含量由种间性状变异主导, 叶氮含量由种内性状变异主导, 叶磷含量受林窗大小影响最大。(2)群落叶磷含量与林窗大小具有显著正相关关系, 土壤温度和水解氮含量对群落叶磷含量具有显著正效应, 土壤有效磷含量具有显著负效应。(3)沿林冠开放度的群落叶磷含量变化主要由种内性状变异引起, 优势种扮演着重要角色。结果表明, 格氏栲天然林林窗环境下植物功能性状仍以种间性状变异为主(平均41%), 但沿林窗环境梯度的群落性状变化主要源自种内性状变异, 通过植物表型可塑性响应环境改变, 优势种作用明显。  相似文献   

7.
《植物生态学报》1958,44(7):730
分析不同树种叶片性状的变化有助于了解植物群落结构。该文通过对典型阔叶红松(Pinus koraiensis)林15种阔叶树种的比叶质量、叶片厚度、叶干物质含量、叶绿素含量指数、叶片碳、氮、磷含量的测定, 分析了冠层高度对叶性状及叶性状间相关关系的影响。结果表明, 水曲柳(Fraxinus mandshurica)和大青杨(Populus ussuriensis)上层的比叶质量显著大于下层, 而其他树种冠层间的比叶质量无显著变化; 叶绿素含量指数在白桦(Betula platyphylla)和春榆(Ulmus japonica)冠层间的分布分别为上层显著大于下层和上层显著大于中层; 单位质量氮含量在水曲柳的中层显著大于上层。叶片性状间存在着广泛的相关性, 比叶质量与叶片厚度、干物质含量在三层间均呈显著正相关关系, 而有些性状, 只在一或二个冠层中存在一定的相关性。山杨(Populus davidiana)和大青杨的叶片倾向于选择光合能力较低、营养浓度较低、呼吸速率较慢的一端, 而黄檗(Phellodendron amurense)和山槐(Maackia amurensis)叶片更倾向于光合能力强、营养物质浓度高的一端。不同树种对光照响应的差异可能会改变不同冠层中叶片的形态和化学性状, 从而有助于群落构建和物种共存。  相似文献   

8.
Two opposing niche processes have been shown to shape the relationship between ecological traits and species distribution patterns: habitat filtering and competitive exclusion. Habitat filtering is expected to select for similar traits among coexisting species that share similar habitat conditions, whereas competitive exclusion is expected to limit the ecological similarity of coexisting species leading to trait differentiation. Here, we explore how functional traits vary among 19 understory palm species that differ in their distribution across a gradient of soil resource availability in lower montane forest in western Panama. We found evidence that habitat filtering influences species distribution patterns and shifts community-wide and intraspecific trait values. Differences in trait values among sites were more strongly related to soil nutrient availability than to variation in light or rainfall. Soil nutrient availability explained a significant amount of variation in site mean trait values for 4 of 15 functional traits. Site mean values of leaf nitrogen and phosphorus increased 37 and 64%, respectively, leaf carbon:nitrogen decreased 38%, and specific leaf area increased 29% with increasing soil nutrient availability. For Geonoma cuneata, the only species occurring at all sites, leaf phosphorus increased 34% and nitrogen:phosphorus decreased 42% with increasing soil nutrients. In addition to among-site variation, most morphological and leaf nutrient traits differed among coexisting species within sites, suggesting these traits may be important for niche differentiation. Hence, a combination of habitat filtering due to turnover in species composition and intraspecific variation along a soil nutrient gradient and site-specific niche differentiation among co-occurring species influences understory palm community structure in this lower montane forest.  相似文献   

9.
Hurricane Dean, a category 4 storm, impacted the forests along the western coast of Martinique on August 17, 2007. In March 2008, plots were selected in the rainforest of the Plateau Concorde, which presented a range of post-hurricane damage. The study focused on climber community patterns in two extreme ranges of disturbance (HIP: highly damaged plots; LIP: lightly damaged plots). The objectives of the study were to i) obtain data on forest architecture and light regime, ii) determine the species diversity and abundance among climbers, and iii) identify recurrent patterns of association among traits within this flora. Fisheye photos showed significant differences in canopy geometry and light microclimate between HIP and LIP. One transect in each extreme range of disturbance showed that the floors were similarly covered but the distribution of foliar density in the vertical structure was evenly distributed from the floor to the canopy in LIP and was exclusively concentrated within the first meter in HIP. Five hundred and eleven climbers were counted, measured and identified in 12 plots (30?m?×?30?m). Correspondence analysis of the selected traits revealed four functional groups (C1 to C4). C1 and C2 included understory climbers and C3 and C4 were composed of overstory climbers showing differences in stem or leaf nature. We identified eight species among the 161 trees >5?cm dbh (diameter at breast height) assessed in the 12 plots supporting climbers. A linear regression showed that large trees were more colonized than smaller trunks. The mean number of climbers per host trunk was 2.7, with no significant difference between HIP and LIP plots. In spite of the great differences in forest architecture, canopy openness and light regime, the 16 climber species were present in all plots. Five species, all belonging to one of the four functional groups, varied in abundance. In the HIP plots, the dramatic expansion of Cayaponia americana (C1), a ruderal plant frequently observed at lower altitudes, was noteworthy. Our results suggest that climbers present highly efficient morphological adaptations to hurricanes. Indeed, they are mostly linked to a single host, they strongly reiterate after breakage, and they show low clumping.  相似文献   

10.
While foliar photosynthetic relationships with light, nitrogen, and water availability have been well described, environmental factors driving vertical gradients of foliar traits within forest canopies are still not well understood. We, therefore, examined how light availability and vapour pressure deficit (VPD) co-determine vertical gradients (between 12 and 42 m and in the understorey) of foliar photosynthetic capacity (Amax), 13C fractionation (∆), specific leaf area (SLA), chlorophyll (Chl), and nitrogen (N) concentrations in canopies of Fagus sylvatica and Abies alba growing in a mixed forest in Switzerland in spring and summer 2017. Both species showed lower Chl/N and lower SLA with higher light availability and VPD at the top canopy. Despite these biochemical and morphological acclimations, Amax during summer remained relatively constant and the photosynthetic N-use efficiency (PNUE) decreased with higher light availability for both species, suggesting suboptimal N allocation within the canopy. ∆ of both species were lower at the canopy top compared to the bottom, indicating high water-use efficiency (WUE). VPD gradients strongly co-determined the vertical distribution of Chl, N, and PNUE in F. sylvatica, suggesting stomatal limitation of photosynthesis in the top canopy, whereas these traits were only related to light availability in A. alba. Lower PNUE in F. sylvatica with higher WUE clearly indicated a trade-off in water vs. N use, limiting foliar acclimation to high light and VPD at the top canopy. Species-specific trade-offs in foliar acclimation to environmental canopy gradients may thus be considered for scaling photosynthesis from leaf to canopy to landscape levels.  相似文献   

11.
古田山不同干扰程度森林的群落恢复动态   总被引:1,自引:0,他引:1  
森林采伐后次生林的恢复过程对于生物多样性的保护和生态系统功能的重建具有重要意义。作者以古田山不同干扰程度的12个1 ha 森林样地为研究对象, 运用群落多元统计方法, 探讨了自然恢复过程中森林群落组成及物种多样性的动态变化及趋势。结果表明: 不同恢复阶段森林样地的群落组成存在显著性差异, 而同一恢复阶段的样地具有高度的相似性。物种丰富度随恢复进程有增加的趋势, 但各阶段差异并不显著; 物种均匀度除人工林较低以外, 其他恢复阶段之间无显著性差异。不同恢复阶段研究样地的群落组成及物种多样性的差异主要存在于林冠层。灌木及更新层具有各自的指示种, 人工林的指示种为落叶灌木或阳性乔木, 幼龄次生林的指示种为常绿灌木或小乔木, 老次生林的指示种为亚乔木层常绿树种, 老龄林的指示种为林冠层树种。上述结果表明古田山不同人为干扰程度森林群落的物种多样性具有较强的自我恢复能力。尽管物种组成难以预测, 但处于同一恢复阶段的森林, 其幼树的生活型组成呈现出一致的变化趋势。  相似文献   

12.
In plant ecology, community-weighted trait means are often used as predictors for ecosystem functions. More recently, also within-species trait variation has been confirmed to contribute to ecosystem functioning. We here go even further and assess within-individual trait variation, assuming that every leaf in a plant individually adjusts to its micro-environment. Using forest plots varying in tree species richness (Sardinilla experiment, Panama), we analysed how leaf traits within individual trees vary along the vertical crown gradient. Furthermore, we tested whether niche partitioning in mixed stands results in a decrease of within-species leaf trait variation and whether niche partitioning can be also observed at the level of individual trees. We focused on leaf traits that describe the growth strategy along the conservative-acquisitive spectrum of growth. We found a decrease in within-species variation of specific leaf area (SLA) with increasing neighbourhood species richness. Both sampling height and local neighbourhood richness contributed to explaining within-species leaf trait variation, which however, varied in importance among different species and traits. With increasing sampling height, leaf dry matter content (LDMC), carbon to nitrogen ratio and lignin content increased, while leaf nitrogen concentration (leaf N), SLA, cellulose and hemicellulose decreased. Variation in leaf N decreased with increasing neighbourhood species richness, while the magnitude of within-individual variation of most traits was unaffected by neighbourhood species richness. Our results suggest an increased niche partitioning with increasing species richness both in a plant community and at the level of individual plants. Our findings highlight the importance of including within-individual trait variation to understand biodiversity-ecosystem functioning relationships.  相似文献   

13.
水力结构是植物应对环境形成的与水分运输相关的形态策略.探索不同演替阶段和群落不同高度层植物的水力结构特征, 有助于理解植物的水分运输和利用策略.该研究以浙江天童常绿阔叶林演替前中后期群落的上层木(占据林冠层的树种)和下层木(灌木层物种)为对象, 测定了演替共有种(至少存在于两个演替阶段的物种)和更替种(仅存在于某一演替阶段的物种)的枝边材比导率,叶比导率和胡伯尔值, 以及边材疏导面积,末端枝总叶面积和枝条水势, 分析植物水力结构在群落上层木和下层木间以及在演替阶段间的差异, 及其与枝叶性状的相关关系.结果显示: (1)上层木植物边材比导率和叶比导率显著高于下层木植物(p < 0.05); (2)上层木和下层木的边材比导率与叶比导率在演替阶段间均无显著差异(p > 0.05); 上层木的胡伯尔值在演替阶段间无显著差异, 下层木的胡伯尔值随演替显著下降(p < 0.05); (3)上层木共有种仅边材比导率随演替进行显著降低(p < 0.05), 更替种的3个水力结构参数在演替阶段间无显著差异; 下层木共有种水力结构参数在演替阶段间无明显差异, 更替种仅胡伯尔值随演替减小(p < 0.05); (4)植物边材比导率与枝疏导面积和末端枝所支撑的总叶面积显著正相关(p < 0.01), 胡伯尔值与枝条水势及末端枝总叶面积显著负相关(p < 0.01).以上结果表明: 天童常绿阔叶林演替各阶段上层木比下层木具有更大的输水能力和效率; 随着演替进行, 上层木与下层木的共有种和更替种边材比导率的相反变化表明上层木水力结构的变化可能由微生境变化引起, 而下层木水力结构特征的变化可能由物种更替造成.  相似文献   

14.
In plant ecology, community-weighted trait means are often used as predictors for ecosystem functions. More recently, also within-species trait variation has been confirmed to contribute to ecosystem functioning. We here go even further and assess within-individual trait variation, assuming that every leaf in a plant individually adjusts to its micro-environment. Using forest plots varying in tree species richness (Sardinilla experiment, Panama), we analysed how leaf traits within individual trees vary along the vertical crown gradient. Furthermore, we tested whether niche partitioning in mixed stands results in a decrease of within-species leaf trait variation and whether niche partitioning can be also observed at the level of individual trees. We focused on leaf traits that describe the growth strategy along the conservative-acquisitive spectrum of growth. We found a decrease in within-species variation of specific leaf area (SLA) with increasing neighbourhood species richness. Both sampling height and local neighbourhood richness contributed to explaining within-species leaf trait variation, which however, varied in importance among different species and traits. With increasing sampling height, leaf dry matter content (LDMC), carbon to nitrogen ratio and lignin content increased, while leaf nitrogen concentration (leaf N), SLA, cellulose and hemicellulose decreased. Variation in leaf N decreased with increasing neighbourhood species richness, while the magnitude of within-individual variation of most traits was unaffected by neighbourhood species richness. Our results suggest an increased niche partitioning with increasing species richness both in a plant community and at the level of individual plants. Our findings highlight the importance of including within-individual trait variation to understand biodiversity-ecosystem functioning relationships.  相似文献   

15.
《植物生态学报》2016,40(2):116
Aims Hydraulic architecture is a morphological strategy in plants to transport water in coping with environmental conditions. Change of hydraulic architecture for plants occupying different canopy layers within community and for the same plant at different successional stages reflect existence and adaptation in plant's water transportation strategies. The objective of this study was to examine how hydraulic architecture varies with canopy layers within a community and with forest succession.Methods The study site is located in Tiantong National Forest Park, Zhejiang Province, China. Hydraulic architectural traits studied include sapwood-specific hydraulic conductivity, leaf-specific hydraulic conductivity, Huber value, sapwood channel area of twigs, total leaf area per terminal twig, and water potential of twigs. We measured those traits for species that occur in multiple successional stages (we called it "overlapping species") and for species that occur only in one successional stage (we called it "turnover species") along a successional series of evergreen broadleaved forests. For a given species, we sampled both overstory and understory trees. Hydraulic architectural traits between overstory and understory trees in the same community and at successional stages were compared. Pearson correlation was used to exam the relationship between hydraulic architectural traits and the twig/leaf traits.Important findings Sapwood-specific hydraulic conductivities and leaf-specific hydraulic conductivities were significantly higher in overstory trees than those in understory trees, but did not significantly differ from successional stages. Huber value decreased significantly for understory trees, but did not change for overstory trees through forest successional stages. For overstory trees, a trend of decreasing sapwood-specific hydraulic conductivity was observed for overlapping species but not for turnover species with successional stages. In contrast, for understory trees, a trend of decreasing Huber values was observed for turner species but not for overlapping species with successional stages. Across tree species, sapwood-specific hydraulic conductivity was positively correlated with sapwood channel area and total leaf area per terminal twig size. Huber value was negatively correlated to water potential of twigs and total leaf area per terminal twig size. These results suggest that water transportation capacity and efficiency are higher in overstory trees than in understory trees across successional stages in evergreen broadleaved forests in Tiantong region. The contrasting trends of sapwood-specific hydraulic conductivity between overlapping species and turnover species indicate that shift of microenvironment conditions might lead to changes of hydraulic architecture in overstory trees, whereas species replacement might result in changes of hydraulic architecture in understory trees.  相似文献   

16.
Analysing how species modify their trait expression along a diversity gradient brings insight about the role that intraspecific variability plays over species interactions, e.g. competition versus complementarity. Here, we evaluated the functional trait space of nine tree species dominant in three types of European forests (a continental‐Mediterranean, a mountainous mixed temperate and a boreal) growing in communities with different species richness in the canopy, including pure stands. We compiled whole‐plant and leaf traits in 1719 individuals, and used them to quantify species trait hypervolumes in communities with different tree species richness. We investigated changes along the species richness gradient to disentangle species responses to the neighbouring environment, in terms of hypervolume size (trait variance), shape (trait relative importance) and centroid translation (shifts of mean trait values) using null models. Our main results showed differences in trait variance and shifts of mean values along the tree diversity gradient, with shorter trees but with larger crowns in mixed stands. We found constrained functional spaces (trait convergence) in pure stands, suggesting an important intraspecific competition, and expanded functional spaces (trait divergence) in two‐species admixtures, suggesting competition release due to interspecific complementarity. Nevertheless, further responses to increasing species richness were different for each forest type, waning species complementarity in sites with limiting conditions for growth. Our results demonstrate that tree species phenotypes respond to the species richness in the canopy in European forests, boosting species complementarity at low level of canopy diversity and with a site‐specific pattern at greater level of species richness. These outcomes evidence the limitation of functional diversity measures based only on traits from pure stands or general trait database values.  相似文献   

17.
Niche differentiation and ecological filtering are primary ecological processes that shape community assembly, but their relative importance remains poorly understood. Analyses of the distributions of functional traits can provide insight into the community structure generated by these processes. We predicted the trait distributions expected under the ecological processes of niche differentiation and environmental filtering, then tested these predictions with a dataset of 4672 trees located in nine 1‐ha plots of tropical rain forest in French Guiana. Five traits related to leaf function (foliar N concentration, chlorophyll content, toughness, tissue density and specific leaf area), and three traits related to stem function (trunk sapwood density, branch sapwood density, and trunk bark thickness), as well as laminar surface area, were measured on every individual tree. There was far more evidence for environmental filtering than for niche differentiation in these forests. Furthermore, we contrasted results from species‐mean and individual‐level trait values. Analyses that took within‐species trait variation into account were far more sensitive indicators of niche differentiation and ecological filtering. Species‐mean analyses, by contrast, may underestimate the effects of ecological processes on community assembly. Environmental filtering appeared somewhat more intense on leaf traits than on stem traits, whereas niche differentiation affected neither strongly. By accounting for within‐species trait variation, we were able to more properly consider the ecological interactions among individual trees and between individual trees and their environment. In so doing, our results suggest that the ecological processes of niche differentiation and environmental filtering may be more pervasive than previously believed.  相似文献   

18.
将植物划分为不同的生长型来统计植物功能性状特征,是当前植物性状研究中常用的方法;但生长型分类方案的不同很可能造成植物功能性状统计分析的偏差,对此偏差的评估却尚未见报道。根据植物志描述及野外调查实际情况,将生长型划分为3种不同的分类方案:分类1:根据植物志信息划分为传统意义的乔木和灌木;分类2:根据树高和胸径划分乔木、小乔木和灌木;分类3:仅根据树高划分乔木层与灌木层的乔木和灌木。以东部亚热带常绿阔叶林区域的浙江金华北山35种优势阔叶木本植物的枝叶性状为研究对象,比较不同生长型分类对植物枝叶性状统计数据的影响。结果表明:(1)与传统的分类1相比,分类2对乔木植物枝叶性状影响的显著程度要高于分类3,而对灌木植物枝叶性状的影响程度低于分类3;但不同生长型分类方案中乔木和灌木的枝叶性状总体差异不显著。而与分类2小乔木相比,分类1以及分类2内部的乔木和灌木生长型的性状与分类2小乔木差异非常明显;(2)将不同生长型植物再划分为不同生活型后,不同生长型分类方案对性状统计的影响增大。无论是常绿还是落叶生活型的小乔木,其与不同生活型乔木和灌木的性状差异仍然显著。可见,不同的生长型分类方案可造成植物功能性状统计的差异;把小乔木植物这一功能类群划分出来,能更好地反映森林生态系统性状特征的差异性。  相似文献   

19.
Question: Do traits of liana regeneration differ among secondary forest types of varying land‐use history and primary forest? Location: Eighty kilometers north of Manaus, Brazil. Methods: We compared plant functional traits and growth rates of liana regeneration (<1.7‐m length) among two secondary forest types and primary forest. Secondary forest types were: Vismia (on land formerly clear‐cut, used for pasture and intensively burned) and Cecropia (no pasture usage or intensive fires after clear‐cut). Results: A principal components analysis indicated that most of the primary forest species exhibited a similar habit and were characterized by short shoots and small, round leaves with low specific leaf area, whereas secondary forest species had a broad range of trait values. At the plot level, primary and secondary forest communities were separated mainly by plant length and leaf size. Plant size varied more within secondary than within primary forest plots. The two secondary forest types could not be separated based on the traits of liana regeneration. Relative growth rate (RGR) did not correlate significantly with any measured plant trait, except for a negative relation to initial length. RGR increased with decreasing canopy cover and was highest in Vismia forest plots. Conclusion: Plant functional traits of liana regeneration were more similar in the primary forest and differed substantially from secondary forests, yet canopy cover only partly explained the observed differences.  相似文献   

20.
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species richness and community heterogeneity within a mosaic of grassland, oak savanna, oak woodland, and forest communities. Species richness was assessed for all vascular plant species and for three plant functional groups: grasses, forbs, and woody plants. Understory species richness and community heterogeneity were maximized at biennial fire frequencies, consistent with predictions of the intermediate disturbance hypothesis. However, overstory tree species richness was highest in unburned units and declined with increasing fire frequency. Maximum species richness was observed in unburned units for woody species, with biennial fires for forbs, and with near-annual fires for grasses. Savannas and woodlands with intermediate and spatially variable tree canopy cover had greater species richness and community heterogeneity than old-field grasslands or closed-canopy forests. Functional group species richness was positively correlated with functional group cover. Our results suggest that annual to biennial fire frequencies prevent shrubs and trees from competitively excluding grasses and prairie forbs, while spatially variable shading from overstory trees reduces grass dominance and provides a wider range of habitat conditions. Hence, high species richness in savannas is due to both high sample point species richness and high community heterogeneity among sample points, which are maintained by intermediate fire frequencies and variable tree canopy cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号