首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Chloroplast and mitochondrial DNA encodes genes that are essential for photosynthesis and respiration, respectively. Thus, loss of integrity of the genomic DNA of organelles leads to a decline in organelle function and alteration of organelle genetic information. RECA (RECA1 and RECA2) and RECG, which are homologs of bacterial homologous recombination repair (HRR) factors RecA and RecG, respectively, play an important role in the maintenance of integrity of the organelle genome by suppressing aberrant recombination between short dispersed repeats (SDRs) in the moss Physcomitrella patens. On the other hand, MutS homolog 1 (MSH1), a plant‐specific MSH with a C‐terminal GIY‐YIG endonuclease domain, is involved in the maintenance of integrity of the organelle genome in the angiosperm Arabidopsis thaliana. Here, we address the role of the duplicated MSH1 genes, MSH1A and MSH1B, in P. patens, in which MSH1A lacks the C‐terminal endonuclease domain. MSH1A and MSH1B localized to both chloroplast and mitochondrial nucleoids in protoplast cells. Single and double knockout (KO) mutants of MSH1A and MSH1B showed no obvious morphological defects; however, MSH1B KO and double KO mutants, as well as MSH1B GIY‐YIG deletion mutants, exhibited genomic instability due to recombination between SDRs in chloroplasts and mitochondria. Creating double KO mutations of each combination of MSH1B, RECA2 and RECG synergistically increased recombination between SDRs in chloroplasts and mitochondria. These results show the role of MSH1 in the maintenance of integrity of the organelle genome and the genetic interaction between MSH1 and homologs of HRR factors in the basal land plant P. patens.  相似文献   

2.
3.
RecA and its ubiquitous homologs are crucial components in homologous recombination. Besides their eukaryotic nuclear counterparts, plants characteristically possess several bacterial-type RecA proteins localized to chloroplasts and/or mitochondria, but their roles are poorly understood. Here, we analyzed the role of the only mitochondrial RecA in the moss Physcomitrella patens. Disruption of the P. patens mitochondrial recA gene RECA1 caused serious defects in plant growth and development and abnormal mitochondrial morphology. Analyses of mitochondrial DNA in disruptants revealed that frequent DNA rearrangements occurred at multiple loci. Structural analysis suggests that the rearrangements, which in some cases were associated with partial deletions and amplifications of mitochondrial DNA, were due to aberrant recombination between short (<100 bp) direct and inverted repeats in which the sequences were not always identical. Such repeats are abundant in the mitochondrial genome, and interestingly many are located in group II introns. These results suggest that RECA1 does not promote but rather suppresses recombination among short repeats scattered throughout the mitochondrial genome, thereby maintaining mitochondrial genome stability. We propose that RecA-mediated homologous recombination plays a crucial role in suppression of short repeat-mediated genome rearrangements in plant mitochondria.  相似文献   

4.
5.
In gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. Gene replacement in the moss Physcomitrella patens is extremely efficient, but often large amounts of additional DNA are integrated at the target locus. A detailed analysis of recombination junctions of PpCOL2 gene knockout mutants shows that the integrated DNA can be highly rearranged. Our data suggest that the replaced sequences were excised by HR and became integrated back into the genome by non‐homologous end‐joining (NHEJ). RAD51‐mediated strand‐invasion and subsequent strand‐exchange is central to the two‐end invasion pathway, the major gene replacement pathway in yeast. In this pathway, integration is initiated by the free ends of a single replacement vector‐derived donor molecule which then integrates as an entity. Gene replacement in P. patens is entirely RAD51‐dependent suggesting the existence of a pathway mechanistically similar to two‐end invasion. However, invasion of the two ends does not seem to be stringently coordinated in P. patens. Actually, often only one fragment end became integrated by HR, or one‐sided integration of two independent donor fragments occurred simultaneously leading to a double‐strand break that is subsequently sealed by NHEJ and thus causes the observed rearrangements.  相似文献   

6.
7.
Plant mitochondria have very active DNA recombination activities that are responsible for its plastic structures and that should be involved in the repair of double-strand breaks in the mitochondrial genome. Little is still known on plant mitochondrial DNA repair, but repair by recombination is believed to be a major determinant in the rapid evolution of plant mitochondrial genomes. In flowering plants, mitochondria possess at least two eubacteria-type RecA proteins that should be core components of the mitochondrial repair mechanisms. We have performed functional analyses of the two Arabidopsis (Arabidopsis thaliana) mitochondrial RecAs (RECA2 and RECA3) to assess their potential roles in recombination-dependent repair. Heterologous expression in Escherichia coli revealed that RECA2 and RECA3 have overlapping as well as specific activities that allow them to partially complement bacterial repair pathways. RECA2 and RECA3 have similar patterns of expression, and mutants of either display the same molecular phenotypes of increased recombination between intermediate-size repeats, thus suggesting that they act in the same recombination pathways. However, RECA2 is essential past the seedling stage and should have additional important functions. Treatment of plants with several DNA-damaging drugs further showed that RECA3 is required for different recombination-dependent repair pathways that significantly contribute to plant fitness under stress. Replication repair of double-strand breaks results in the accumulation of crossovers that increase the heteroplasmic state of the mitochondrial DNA. It was shown that these are transmitted to the plant progeny, enhancing the potential for mitochondrial genome evolution.  相似文献   

8.
Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole‐genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C‐genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts.  相似文献   

9.
The nature and importance of the DNA repair system in the chloroplasts of higher plants under oxidative stress or UV radiation‐induced genotoxicity was investigated via gain‐of‐functional approaches exploiting bacterial RecAs. For this purpose, transgenic tobacco (Nicotiana tabacum) plants and cell suspensions overexpressing Escherichia coli or Pseudomonas aeruginosa RecA fused to a chloroplast‐targeting transit peptide were first produced. The transgenic tobacco plants maintained higher amounts of chloroplast DNA compared with wild‐type (WT) upon treatments with methyl viologen (MV), a herbicide that generates reactive oxygen species (ROS) in chloroplasts. Consistent with these results, the transgenic tobacco leaves showed less bleaching than WT following MV exposure. Similarly, the MV‐treated transgenic Arabidopsis plants overexpressing the chloroplast RecA homologue RECA1 showed weak bleaching, while the recA1 mutant showed opposite results upon MV treatment. In addition, when exposed to UV‐C radiation, the dark‐grown E. coli RecA‐overexpressing transgenic tobacco cell suspensions, but not their WT counterparts, resumed growth and greening after the recovery period under light conditions. Measurements of UV radiation‐induced chloroplast DNA damage using DraI assays (Harlow et al. 1994) with the chloroplast rbcL DNA probe and quantitative PCR analyses showed that the transgenic cell suspensions better repaired their UV‐C radiation‐induced chloroplast DNA lesions compared with WT. Taken all together, it was concluded that RecA‐overexpressing transgenic plants are endowed with an increased chloroplast DNA maintenance capacity and enhanced repair activities, and consequently have a higher survival tolerance to genotoxic stresses. These observations are made possible by the functional compatibility of the bacterial RecAs in chloroplasts.  相似文献   

10.
Myriophyllum, among the most species‐rich genera of aquatic angiosperms with ca. 68 species, is an extensively distributed hydrophyte lineage in the cosmopolitan family Haloragaceae. The chloroplast (cp) genome is useful in the study of genetic evolution, phylogenetic analysis, and molecular dating of controversial taxa. Here, we sequenced and assembled the whole chloroplast genome of Myriophyllum spicatum L. and compared it to other species in the order Saxifragales. The complete chloroplast genome sequence of M. spicatum is 158,858 bp long and displays a quadripartite structure with two inverted repeats (IR) separating the large single copy (LSC) region from the small single copy (SSC) region. Based on sequence identification and the phylogenetic analysis, a 4‐kb phylogenetically informative inversion between trnE‐trnC in Myriophyllum was determined, and we have placed this inversion on a lineage specific to Myriophyllum and its close relatives. The divergence time estimation suggested that the trnE‐trnC inversion possibly occurred between the upper Cretaceous (72.54 MYA) and middle Eocene (47.28 MYA) before the divergence of Myriophyllum from its most recent common ancestor. The unique 4‐kb inversion might be caused by an occurrence of nonrandom recombination associated with climate changes around the K‐Pg boundary, making it interesting for future evolutionary investigations.  相似文献   

11.
Summary With the goal of studying directly the inheritance and recombination of physically mapped markers on the chloroplast genome, we have recently identified and localized physical differences between the chloroplast DNAs (cpDNAs) of the interfertile algae Chlamydomonas eugametos and C. moewusii. Here we report the inheritance patterns of 24 polymorphic loci mapping throughout the chloroplast genome in hybrids recovered from reciprocal crosses between the two algae. Most polymorphic loci were found to be inherited mainly from the mt + parent, with no apparent preference for one or the other parental alternatives in reciprocal crosses. Virtually all hybrids, however, inherited exclusively the long alleles of three loci; i.e. an intron in the large subunit ribosomal RNA gene of C. eugametos, a 21 kbp sequence addition in the inverted repeat of the C. moewusii cpDNA and a 5.8 kbp sequence addition in one of the single-copy regions of C. moewusii cpDNA. As these alleles are derived from opposite parental strains, their unidirectional inheritance in hybrids results necessarily from interspecific recombination of cpDNA molecules. We propose that gene conversion events led to the spreading of the long alleles of the three loci.  相似文献   

12.
Jatropha curcas is an important non-edible oil seed tree species and is considered a promising source of biodiesel. The complete nucleotide sequence of J. curcas chloroplast genome (cpDNA) was determined by pyrosequencing and gaps filled by Sanger sequencing. The cpDNA is a circular molecule of 163,856 bp in length and codes for 110 distinct genes (78 protein coding, four rRNA and 28 distinct tRNA). Genome organisation and arrangement are similar to the reported angiosperm chloroplast genome. However, in Jatropha, the infA and the rps16 genes are non-functional. The inverted repeat (IR) boundary is within the rpl2 gene, and the 13 nucleotides at the ends of the two duplicate genes are different. Repeat analysis suggests the presence of 72 repeat regions (>30 bp) apart from the IR; of these, 48 were direct and 24 were palindromic repeats. Phylogenetic analysis of 81 protein coding chloroplast genes from 65 taxa by maximum parsimony, maximum likelihood and minimum evolution analyses at 100 bootstraps provide strong support for the placement of inaperturate crotonoids of which Jatropha is a member as sister to articulated crotonoids of which Manihot is a member.  相似文献   

13.
RecA protein is widespread in bacteria, and it plays a crucial role in homologous recombination. We have identified two bacterial-type recA gene homologs (PprecA1, PprecA2) in the cDNA library of the moss Physcomitrella patens. N-terminal fusion of the putative organellar targeting sequence of PpRecA2 to the green fluorescent protein (GFP) caused a targeting of PpRecA2 to the chloroplasts. Mutational analysis showed that the first AUG codon acts as initiation codon. Fusion of the full-length PpRecA2 to GFP caused the formation of foci that were colocalized with chloroplast nucleoids. The amounts of PprecA2 mRNA and protein in the cells were increased by treatment with DNA damaging agents. PprecA2 partially complemented the recA mutation in Escherichia coli. These results suggest the involvement of PpRecA2 in the repair of chloroplast DNA.  相似文献   

14.
In Arabidopsis thaliana the ANGUSTIFOLIA (AN) gene regulates the width of leaves by controlling the diffuse growth of leaf cells in the medio‐lateral direction. In the genome of the moss Physcomitrella patens, we found two normal ANs (PpAN1‐1 and 1‐2). Both PpAN1 genes complemented the A. thaliana an‐1 mutant phenotypes. An analysis of spatiotemporal promoter activity of each PpAN1 gene, using transgenic lines that contained each PpAN1‐promoter– uidA (GUS) gene, showed that both promoters are mainly active in the stems of haploid gametophores and in the middle to basal region of the young sporophyte that develops into the seta and foot. Analyses of the knockout lines for PpAN1‐1 and PpAN1‐2 genes suggested that these genes have partially redundant functions and regulate gametophore height by controlling diffuse cell growth in gametophore stems. In addition, the seta and foot were shorter and thicker in diploid sporophytes, suggesting that cell elongation was reduced in the longitudinal direction, whereas no defects were detected in tip‐growing protonemata. These results indicate that both PpAN1 genes in P. patens function in diffuse growth of the haploid and diploid generations but not in tip growth. To visualize microtubule distribution in gametophore cells of P. patens, transformed lines expressing P. patens α‐tubulin fused to sGFP were generated. Contrary to expectations, the orientation of microtubules in the tips of gametophores in the PpAN1‐1/1‐2 double‐knockout lines was unchanged. The relationships among diffuse cell growth, cortical microtubules and AN proteins are discussed.  相似文献   

15.
The nucleotide sequence of the complete chloroplast genome of a basal angiosperm, Calycanthus fertilis, has been determined. The circular 153337 bp long cpDNA is colinear with those of tobacco, Arabidopsis and spinach. A total of 133 predicted genes (115 individual gene species, 18 genes duplicated in the inverted repeats) including 88 potential protein-coding genes (81 gene species), 8 ribosomal RNA genes (4 gene species) and 37 tRNA genes (30 gene species) representing 20 amino acids were identified based on similarity to their homologs from other chloroplast genomes. This is the highest gene number ever registered in an angiosperm plastome. Calycanthus fertilis cpDNA also contains a homolog of the recently discovered mitochondrial ACRS gene. Since no gene transfer from mitochondria to the chloroplast has ever been documented, we investigated the evolutionary affinity of this gene in detail. Phylogenetic analysis of the protein-coding subset of the plastome suggests that the ancient line of Laurales emerged after the split of the angiosperms into monocots and dicots. Calycanthus fertilis Walter var. ferax (Michy.) Rehder is a synonym of C. floridus L. var. glaucus (Willd.) Torr. & A. Gray.Data deposition: The sequence reported in this paper has been deposited in the EMBL database (accession no. AJ428413).  相似文献   

16.
In the moss Physcomitrella patens integrative transformants from homologous recombination are obtained at an efficiency comparable to that found for yeast. This property, unique in the plant kingdom, allows the knockout of specific genes. It also makes the moss a convenient model to study the regulation of homologous recombination in plants. We used degenerate oligonucleotides designed from AtMSH2 from Arabidopsis thaliana and other known MutS homologues to isolate the P. patens MSH2 (PpMSH2) cDNA. The deduced sequence of the PpMSH2 protein is respectively 60.8% and 59.6% identical to the maize and A. thaliana MSH2. Phylogenic studies show that PpMSH2 is closely related to the group of plant MSH2 proteins. Southern analysis reveals that the gene exists as a single copy in the P. patens genome.  相似文献   

17.
Summary A 3.4-kbp nuclear (n) DNA sequence has greater than 99% sequence homology to three segments of the chloroplast (cp) genes rps2, psbD/C, and psaA respectively. Each of these cpDNA segments is less than 3 kbp in length and appears to be integrated, at least in part, into several (>5) different sites flanked by unique sequences in the nuclear genome. Some of these sites contain longer homologies to the particular genes, while others are only homologous to smaller parts of the cp genes. Both the cpDNA fragments found in the nuclear genome and their flanking nDNA sequences are invested with short repeated A-T rich sequences but, apart from a hexanucleotide sequence and a palindromic sequence identified near each recombination point, there is no obvious structure that can suggest a mechanism of DNA transfer from the chloroplast to the nucleus in spinach.  相似文献   

18.
Recently, we reported the chloroplast genome‐wide association of oligonucleotide repeats, indels and nucleotide substitutions in aroid chloroplast genomes. We hypothesized that the distribution of oligonucleotide repeat sequences in a single representative genome can be used to identify mutational hotspots and loci suitable for population genetic, phylogenetic and phylogeographic studies. Using information on the location of oligonucleotide repeats in the chloroplast genome of taro (Colocasia esculenta), we designed 30 primer pairs to amplify and sequence polymorphic loci. The primers have been tested in a range of intra‐specific to intergeneric comparisons, including ten taro samples (Colocasia esculenta) from diverse geographical locations, four other Colocasia species (C. affinis, C. fallax, C. formosana, C. gigantea) and three other aroid genera (represented by Remusatia vivipara, Alocasia brisbanensis and Amorphophallus konjac). Multiple sequence alignments for the intra‐specific comparison revealed nucleotide substitutions (point mutations) at all 30 loci and microsatellite polymorphisms at 14 loci. The primer pairs reported here reveal levels of genetic variation suitable for high‐resolution phylogeographic and evolutionary studies of taro and other closely related aroids. Our results confirm that information on repeat distribution can be used to identify loci suitable for such studies, and we expect that this approach can be used in other plant groups.  相似文献   

19.
陈模舜  杨仲毅 《广西植物》2022,42(10):1703-1716
天台鹅耳枥为中国特有的濒危植物,仅间断分布于浙江省境内,种群数量稀少,已处于极危状态。该文通过对6个自然居群(包含所有居群的母株)叶绿体基因组(cpDNA)单核苷酸多态性(SNP)研究,探讨天台鹅耳枥谱系结构与系统分化,以评估濒危状况,并提出相应的保护策略。使用TIANGEN试剂盒法提取基因组DNA,用Illumina NovaSeq 6000进行高通量测序,对获得叶绿体全基因组序列,使用在线程序OGDRAW制作cpDNA图谱,用DnaSP分析核苷酸多样性,用PopART软件进行单倍型网络构建,使用RAxML软件构建极大似然树(ML tree),用MrBayes构建 Bayes tree。结果表明:(1)通过天台鹅耳枥叶绿体全基因组序列分析,发现大多数蛋白质编码基因和氨基酸序列显示出明显的密码子偏好,检测到cpLTR正向重复32个、回文重复25个、反转重复22个; SSR重复序列不同类型87个,其中大多数富含A/T,单核苷酸的数量最多。(2)在cpDNA中鉴定了314条SNPs,单核苷酸取代显示天台鹅耳枥群体属单系,分为天台县居群(THS)和景宁县居群(JST),居群单倍型之间演化关系呈现星状中心辐射。(3)所有居群核苷酸多样性的变异均较低(Pi<0.005),JST居群和THS居群单倍型多样性较低(Hd为0.5~0.6),显示出天台鹅耳枥在历史上遇到瓶颈后曾发生局部扩张,居群间呈现较大的遗传分化,居群内具有较低的遗传变异与居群间较高的分化水平。通过对cpDNA SNP的研究,揭示天台鹅耳枥的遗传多样性和谱系分化,为濒危植物天台鹅耳枥种质资源保护和遗传拯救提供理论依据。  相似文献   

20.
The phylogeny of the genus Picea was investigated by sequencing three loci from the paternally inherited chloroplast genome (trnK, rbcL and trnTLF) and the intron 2 of the maternally transmitted mitochondrial gene nad1 for 35 species. Significant topological differences were found between the trnK tree and the rbcL and trnTLF phylogenetic trees, and between cpDNA and mtDNA phylogenies. None of the phylogenies matched morphological classifications. The mtDNA phylogeny was geographically more structured than cpDNA phylogenies, reflecting the different inheritance of the two cytoplasmic genomes in the Pinaceae and their differential dispersion by seed only and seed and pollen, respectively. Most North American taxa formed a monophyletic group on the mtDNA tree, with topological patterns suggesting geographic speciation by range fragmentation or by dispersal and isolation. Similar patterns were also found among Asian taxa. Such a trend towards geographic speciation is anticipated in other Pinaceae genera with similar life history, autecology and reproductive system. Incongruences between organelle phylogenies suggested the occurrence of mtDNA capture by invading cpDNA. Incongruences between cpDNA partitions further suggested heterologous recombination presumably also linked to ancient reticulate evolution. Whilst cpDNA appears potentially valuable for molecular taxonomy and systematics purposes, these results emphasize the reduced value of cpDNA to infer vertical descent and the speciation history for plants with paternal transmission and high dispersal of their chloroplast genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号