首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homologous recombination (HR) and non‐homologous end joining (NHEJ) represent distinct pathways for repairing DNA double‐strand breaks (DSBs). Previous work implicated Artemis and ATM in an NHEJ‐dependent process, which repairs a defined subset of radiation‐induced DSBs in G1‐phase. Here, we show that in G2, as in G1, NHEJ represents the major DSB‐repair pathway whereas HR is only essential for repair of ~15% of X‐ or γ‐ray‐induced DSBs. In addition to requiring the known HR proteins, Brca2, Rad51 and Rad54, repair of radiation‐induced DSBs by HR in G2 also involves Artemis and ATM suggesting that they promote NHEJ during G1 but HR during G2. The dependency for ATM for repair is relieved by depleting KAP‐1, providing evidence that HR in G2 repairs heterochromatin‐associated DSBs. Although not core HR proteins, ATM and Artemis are required for efficient formation of single‐stranded DNA and Rad51 foci at radiation‐induced DSBs in G2 with Artemis function requiring its endonuclease activity. We suggest that Artemis endonuclease removes lesions or secondary structures, which inhibit end resection and preclude the completion of HR or NHEJ.  相似文献   

2.
Engineered nucleases can be used to induce site‐specific double‐strand breaks (DSBs) in plant genomes. Thus, homologous recombination (HR) can be enhanced and targeted mutagenesis can be achieved by error‐prone non‐homologous end‐joining (NHEJ). Recently, the bacterial CRISPR/Cas9 system was used for DSB induction in plants to promote HR and NHEJ. Cas9 can also be engineered to work as a nickase inducing single‐strand breaks (SSBs). Here we show that only the nuclease but not the nickase is an efficient tool for NHEJ‐mediated mutagenesis in plants. We demonstrate the stable inheritance of nuclease‐induced targeted mutagenesis events in the ADH1 and TT4 genes of Arabidopsis thaliana at frequencies from 2.5 up to 70.0%. Deep sequencing analysis revealed NHEJ‐mediated DSB repair in about a third of all reads in T1 plants. In contrast, applying the nickase resulted in the reduction of mutation frequency by at least 740‐fold. Nevertheless, the nickase is able to induce HR at similar efficiencies as the nuclease or the homing endonuclease I–SceI. Two different types of somatic HR mechanisms, recombination between tandemly arranged direct repeats as well as gene conversion using the information on an inverted repeat could be enhanced by the nickase to a similar extent as by DSB‐inducing enzymes. Thus, the Cas9 nickase has the potential to become an important tool for genome engineering in plants. It should not only be applicable for HR‐mediated gene targeting systems but also by the combined action of two nickases as DSB‐inducing agents excluding off‐target effects in homologous genomic regions.  相似文献   

3.
Homologous recombination (HR) is a key pathway that repairs DNA double‐strand breaks (DSBs) and helps to restart stalled or collapsed replication forks. How HR supports replication upon genotoxic stress is not understood. Using in vivo and in vitro approaches, we show that the MMS22L–TONSL heterodimer localizes to replication forks under unperturbed conditions and its recruitment is increased during replication stress in human cells. MMS22L–TONSL associates with replication protein A (RPA)‐coated ssDNA, and the MMS22L subunit directly interacts with the strand exchange protein RAD51. MMS22L is required for proper RAD51 assembly at DNA damage sites in vivo, and HR‐mediated repair of stalled forks is abrogated in cells expressing a MMS22L mutant deficient in RAD51 interaction. Similar to the recombination mediator BRCA2, recombinant MMS22L–TONSL limits the assembly of RAD51 on dsDNA, which stimulates RAD51‐ssDNA nucleoprotein filament formation and RAD51‐dependent strand exchange activity in vitro. Thus, by specifically regulating RAD51 activity at uncoupled replication forks, MMS22L–TONSL stabilizes perturbed replication forks by promoting replication fork reversal and stimulating their HR‐mediated restart in vivo.  相似文献   

4.
5.
ku基因介导的非同源末端连接(NHEJ)途径是DNA双链断裂(DSBs)的一种修复机制,它不依赖于同源重组,且通过与之竞争而削弱同源重组。由于ku基因在生物进化过程中的高度保守性,其功能在很多微生物中已经得到研究,尤其在丝状真菌中,将ku基因敲除,在NHEJ途径缺陷的背景下,同源重组发挥主要作用,基因敲除的频率大为提高,从而方便了对基因功能的研究。  相似文献   

6.
AtRad52 homologs are involved in DNA recombination and repair, but their precise functions in different homologous recombination (HR) pathways or in gene‐targeting have not been analyzed. In order to facilitate our analyses, we generated an AtRad52‐1A variant that had a stronger nuclear localization than the native gene thanks to the removal of the transit peptide for mitochondrial localization and to the addition of a nuclear localization signal. Over‐expression of this variant increased HR in the nucleus, compared with the native AtRad52‐1A: it increased intra‐chromosomal recombination and synthesis‐dependent strand‐annealing HR repair rates; but conversely, it repressed the single‐strand annealing pathway. The effect of AtRad52‐1A over‐expression on gene‐targeting was tested with and without the expression of small RNAs generated from an RNAi construct containing homology to the target and donor sequences. True gene‐targeting events at the Arabidopsis Cruciferin locus were obtained only when combining AtRad52‐1A over‐expression and target/donor‐specific RNAi. This suggests that sequence‐specific small RNAs might be involved in AtRad52‐1A‐mediated HR.  相似文献   

7.
锌指核酸酶(zinc finger nuclease,ZFN)技术是近年来发展起来的一种对基因组DNA实现靶向修饰的新技术。ZFN通过作用于基因组DNA上特异的靶位点产生DNA双链切口(double strand break,DSB),然后经过非同源末端连接(non-homologous end joining,NHEJ)或同源重组(homologous recombination,HR)途径实现对基因组DNA的靶向敲除或者替换。该技术近些年来已经被广泛应用于基因靶向修饰的研究。本文在简要介绍ZFN技术的基础上,重点综述了目前该技术在基因靶向修饰中的应用研究进展,并同时对该技术目前所需解决的一些问题以及未来的研究方向进行了分析。  相似文献   

8.
The CRISPR/Cas nuclease is becoming a major tool for targeted mutagenesis in eukaryotes by inducing double‐strand breaks (DSBs) at pre‐selected genomic sites that are repaired by non‐homologous end joining (NHEJ) in an error‐prone way. In plants, it could be demonstrated that the Cas9 nuclease is able to induce heritable mutations in Arabidopsis thaliana and rice. Gene targeting (GT) by homologous recombination (HR) can also be induced by DSBs. Using a natural nuclease and marker genes, we previously developed an in planta GT strategy in which both a targeting vector and targeting locus are activated simultaneously via DSB induction during plant development. Here, we demonstrate that this strategy can be used for natural genes by CRISPR/Cas‐mediated DSB induction. We were able to integrate a resistance cassette into the ADH1 locus of A. thaliana via HR. Heritable events were identified using a PCR‐based genotyping approach, characterised by Southern blotting and confirmed on the sequence level. A major concern is the specificity of the CRISPR/Cas nucleases. Off‐target effects might be avoided using two adjacent sgRNA target sequences to guide the Cas9 nickase to each of the two DNA strands, resulting in the formation of a DSB. By amplicon deep sequencing, we demonstrate that this Cas9 paired nickase strategy has a mutagenic potential comparable with that of the nuclease, while the resulting mutations are mostly deletions. We also demonstrate the stable inheritance of such mutations in A. thaliana.  相似文献   

9.
DNA double‐strand breaks (DSBs) can be repaired by two major pathways: non‐homologous end‐joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)‐based approach, we identify 11 high‐confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ‐mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1‐, RIF1‐, and REV7‐dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR. Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision‐making process during DSB repair.  相似文献   

10.
The role of rice (Oryza sativa) COM1 in meiotic homologous recombination (HR) is well understood, but its part in somatic double‐stranded break (DSB) repair remains unclear. Here, we show that for rice plants COM1 conferred tolerance against DNA damage caused by the chemicals bleomycin and mitomycin C, while the COM1 mutation did not compromise HR efficiencies and HR factor (RAD51 and RAD51 paralogues) localization to irradiation‐induced DSBs. Similar retarded growth at the post‐germination stage was observed in the com1‐2 mre11 double mutant and the mre11 single mutant, while combined mutations in COM1 with the HR pathway gene (RAD51C) or classic non‐homologous end joining (NHEJ) pathway genes (KU70, KU80, and LIG4) caused more phenotypic defects. In response to γ‐irradiation, COM1 was loaded normally onto DSBs in the ku70 mutant, but could not be properly loaded in the MRE11RNAi plant and in the wortmannin‐treated wild‐type plant. Under non‐irradiated conditions, more DSB sites were occupied by factors (MRE11, COM1, and LIG4) than RAD51 paralogues (RAD51B, RAD51C, and XRCC3) in the nucleus of wild‐type; protein loading of COM1 and XRCC3 was increased in the ku70 mutant. Therefore, quite differently to its role for HR in meiocytes, rice COM1 specifically acts in an alternative NHEJ pathway in somatic cells, based on the Mre11–Rad50–Nbs1 (MRN) complex and facilitated by PI3K‐like kinases. NHEJ factors, not HR factors, preferentially load onto endogenous DSBs, with KU70 restricting DSB localization of COM1 and XRCC3 in plant somatic cells.  相似文献   

11.
Aims: To establish a system that greatly increases the gene‐targeting frequency in Aspergillus parasiticus. Methods and Results: The ku70 gene, a gene of the nonhomologous end‐joining (NHEJ) pathway, was replaced by the nitrate reductase gene (niaD) in A. parasiticus RHN1 that accumulates O‐methylsterigmatocystin (OMST). The NHEJ‐deficient strain, RHΔku70, produced conidia, sclerotia and OMST normally. It had identical sensitivity as RHN1 to the DNA‐topoisomerase I complex inhibitor, camptothecin, and the DNA‐damaging agent, melphalan. For targeting an aflatoxin biosynthetic pathway gene, adhA, partial restriction enzyme recognition sequences in its flanking regions were manipulated to create homologous ends for integration. Using a linearized DNA fragment that contained Aspergillus oryzae pyrithiamine resistance gene (ptr) marker the adhA‐targeting frequency in RHΔku70 reached 96%. Conclusions: The homologous recombination pathway is primarily responsible for repair of DNA damages in A. parasiticus. The NHEJ‐deficient RHΔku70, easy creation of homologous ends for integration, and the ptr‐based selection form a highly efficient gene‐targeting system. It substantially reduces the time and workload necessary to obtain knockout strains for functional studies. Significance and Impact of the Study: The developed system not only streamlines targeted gene replacement and disruption but also can be used to target specific chromosomal locations like promoters or intergenic regions. It will expedite the progresses in the functional genomic studies of A. parasiticus and Aspergilllus flavus.  相似文献   

12.
Ribonuclease activity of topoisomerase I (Top1) causes DNA nicks bearing 2′,3′‐cyclic phosphates at ribonucleotide sites. Here, we provide genetic and biochemical evidence that DNA double‐strand breaks (DSBs) can be directly generated by Top1 at sites of genomic ribonucleotides. We show that RNase H2‐deficient yeast cells displayed elevated frequency of Rad52 foci, inactivation of RNase H2 and RAD52 led to synthetic lethality, and combined loss of RNase H2 and RAD51 induced slow growth and replication stress. Importantly, these phenotypes were rescued upon additional deletion of TOP1, implicating homologous recombination for the repair of Top1‐induced damage at ribonuclelotide sites. We demonstrate biochemically that irreversible DSBs are generated by subsequent Top1 cleavage on the opposite strand from the Top1‐induced DNA nicks at ribonucleotide sites. Analysis of Top1‐linked DNA from pull‐down experiments revealed that Top1 is covalently linked to the end of DNA in RNase H2‐deficient yeast cells, supporting this model. Taken together, these results define Top1 as a source of DSBs and genome instability when ribonucleotides incorporated by the replicative polymerases are not removed by RNase H2.  相似文献   

13.
《Fungal biology》2014,118(9-10):846-854
Inactivating the non-homologous end joining (NHEJ) pathway is a well established method to increase gene replacement frequency (GRF) in filamentous fungi because NHEJ is predominant for the repair of DNA double strand breaks (DSBs), while gene targeting is based on homologous recombination (HR). DNA ligase IV, a component of the NHEJ system, is strictly required for the NHEJ in Saccharomyces cerevisiae and Neurospora crassa. To enhance the GRF in Monascus ruber M7, we deleted the Mrlig4 gene encoding a homolog of N. crassa DNA ligase IV. The obtained mutant (MrΔlig4) showed no apparent defects in vegetative growth, colony phenotype, microscopic morphology, spore yield, and production of Monascus pigments and citrinin compared with the wild-type strain (M. ruber M7). Gene targeting of ku70 and triA genes revealed that GRF in the MrΔlig4 strain increased four-fold compared with that in the wild-type strain, reached 68 % and 85 %, respectively. Thus, the MrΔlig4 strain is a promising host for efficient genetic manipulation. In addition, the MrΔlig4 strain is more sensitive than M. ruber M7 to a DNA-damaging agent, methyl methanesulfonate.  相似文献   

14.
DNA non-homologous end joining (NHEJ) and homologous recombination (HR) function to repair DNA double-strand breaks (DSBs) in G2 phase with HR preferentially repairing heterochromatin-associated DSBs (HC-DSBs). Here, we examine the regulation of repair pathway usage at two-ended DSBs in G2. We identify the speed of DSB repair as a major component influencing repair pathway usage showing that DNA damage and chromatin complexity are factors influencing DSB repair rate and pathway choice. Loss of NHEJ proteins also slows DSB repair allowing increased resection. However, expression of an autophosphorylation-defective DNA-PKcs mutant, which binds DSBs but precludes the completion of NHEJ, dramatically reduces DSB end resection at all DSBs. In contrast, loss of HR does not impair repair by NHEJ although CtIP-dependent end resection precludes NHEJ usage. We propose that NHEJ initially attempts to repair DSBs and, if rapid rejoining does not ensue, then resection occurs promoting repair by HR. Finally, we identify novel roles for ATM in regulating DSB end resection; an indirect role in promoting KAP-1-dependent chromatin relaxation and a direct role in phosphorylating and activating CtIP.  相似文献   

15.
Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double‐strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error‐free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I‐SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR‐white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals.  相似文献   

16.
The controlled change of plant genomes by homologous recombination (HR) is still difficult to achieve. We previously developed the in planta gene targeting (ipGT) technology which depends on the simultaneous activation of the target locus by a double‐strand break and the excision of the target vector. Whereas the use of SpCas9 resulted in low ipGT frequencies in Arabidopsis, we were recently able to improve the efficiency by using egg cell‐specific expression of the potent but less broadly applicable SaCas9 nuclease. In this study, we now tested whether we could improve ipGT further, by either performing it in cells with enhanced intrachromosomal HR efficiencies or by the use of Cas12a, a different kind of CRISPR/Cas nuclease with an alternative cutting mechanism. We could show before that plants possess three kinds of DNA ATPase complexes, which all lead to instabilities of homologous genomic repeats if lost by mutation. As these proteins act in independent pathways, we tested ipGT in double mutants in which intrachromosomal HR is enhanced 20–80‐fold. However, we were not able to obtain higher ipGT frequencies, indicating that mechanisms for gene targeting (GT) and chromosomal repeat‐induced HR differ. However, using LbCas12a, the GT frequencies were higher than with SaCas9, despite a lower non‐homologous end‐joining (NHEJ) induction efficiency, demonstrating the particular suitability of Cas12a to induce HR. As SaCas9 has substantial restrictions due to its longer GC rich PAM sequence, the use of LbCas12a with its AT‐rich PAM broadens the range of ipGT drastically, particularly when targeting in CG‐deserts like promoters and introns.  相似文献   

17.
18.
Eukaryotic DNA polymerase mu of the PolX family can promote the association of the two 3′‐protruding ends of a DNA double‐strand break (DSB) being repaired (DNA synapsis) even in the absence of the core non‐homologous end‐joining (NHEJ) machinery. Here, we show that terminal deoxynucleotidyltransferase (TdT), a closely related PolX involved in V(D)J recombination, has the same property. We solved its crystal structure with an annealed DNA synapsis containing one micro‐homology (MH) base pair and one nascent base pair. This structure reveals how the N‐terminal domain and Loop 1 of Tdt cooperate for bridging the two DNA ends, providing a templating base in trans and limiting the MH search region to only two base pairs. A network of ordered water molecules is proposed to assist the incorporation of any nucleotide independently of the in trans templating base. These data are consistent with a recent model that explains the statistics of sequences synthesized in vivo by Tdt based solely on this dinucleotide step. Site‐directed mutagenesis and functional tests suggest that this structural model is also valid for Pol mu during NHEJ.  相似文献   

19.
Backup pathways of NHEJ are suppressed by DNA-PK   总被引:1,自引:0,他引:1  
In cells of higher eukaryotes double strand breaks (DSBs) induced in the DNA after exposure to ionizing radiation (IR) are rapidly rejoined by a pathway of non-homologous end joining (NHEJ) that requires DNA dependent protein kinase (DNA-PK) and is therefore termed here D-NHEJ. When this pathway is chemically or genetically inactivated, cells still remove the majority of DSBs using an alternative, backup pathway operating independently of the RAD52 epistasis group of genes and with an order of magnitude slower kinetics (B-NHEJ). Here, we investigate the role of DNA-PK in the functional coordination of D-NHEJ and B-NHEJ using as a model end joining by cell extracts of restriction endonuclease linearized plasmid DNA. Although DNA end joining is inhibited by wortmannin, an inhibitor of DNA-PK, the degree of inhibition depends on the ratio between DNA ends and DNA-PK, suggesting that binding of inactive DNA-PK to DNA ends not only blocks processing by D-NHEJ, but also prevents the function of B-NHEJ. Residual end joining under conditions of incomplete inhibition, or in cells lacking DNA-PK, is attributed to the function of B-NHEJ operating on DNA ends free of DNA-PK. Thus, DNA-PK suppresses alternative pathways of end joining by efficiently binding DNA ends and shunting them to D-NHEJ.  相似文献   

20.
Plants have various defense mechanisms against environmental stresses that induce DNA damage. Genetic and biochemical analyses have revealed the sensing and signaling of DNA damage, but little is known about subnuclear dynamics in response to DNA damage in living plant cells. Here, we observed that the chromatin remodeling factor RAD54, which is involved in DNA repair via the homologous recombination pathway, formed subnuclear foci (termed RAD54 foci) in Arabidopsis thaliana after induction of DNA double‐strand breaks. The appearance of RAD54 foci was dependent on the ATAXIA‐TELANGIECTASIA MUTATED–SUPPRESSOR OF GAMMA RESPONSE 1 pathway, and RAD54 foci were co‐localized with γH2AX signals. Laser irradiation of a subnuclear area demonstrated that in living cells RAD54 was specifically accumulated at the damaged site. In addition, the formation of RAD54 foci showed specificity for cell type and region. We conclude that RAD54 foci correspond to DNA repair foci in A. thaliana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号