首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report that two mitogen‐activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate abscisic acid (ABA)‐induced stomatal closure in Arabidopsis thaliana. Yeast elicitor (YEL) induced stomatal closure accompanied by intracellular reactive oxygen species (ROS) accumulation and cytosolic free calcium concentration ([Ca2+]cyt) oscillation. In this study, we examined whether these two MAP kinases are involved in YEL‐induced stomatal closure using MAPKK inhibitors, PD98059 and U0126, and MAPK mutants, mpk9, mpk12 and mpk9 mpk12. Both PD98059 and U0126 inhibited YEL‐induced stomatal closure. YEL induced stomatal closure in the mpk9 and mpk12 mutants but not in the mpk9 mpk12 mutant, suggesting that a MAPK cascade involving MPK9 and MPK12 functions in guard cell YEL signalling. However, YEL induced extracellular ROS production, intracellular ROS accumulation and cytosolic alkalisation in the mpk9, mpk12 and mpk9 mpk12 mutants. YEL induced [Ca2+]cyt oscillations in both wild type and mpk9 mpk12 mutant. These results suggest that MPK9 and MPK12 function redundantly downstream of extracellular ROS production, intracellular ROS accumulation, cytosolic alkalisation and [Ca2+]cyt oscillation in YEL‐induced stomatal closure in Arabidopsis guard cells and are shared with ABA signalling.  相似文献   

2.
3.
Mitogen‐activated protein kinase (MAPK) cascades have important functions in plant stress responses and development and are key players in reactive oxygen species (ROS) signalling and in innate immunity. In Arabidopsis, the transmission of ROS and pathogen signalling by MAPKs involves the coordinated activation of MPK6 and MPK3; however, the specificity of their negative regulation by phosphatases is not fully known. Here, we present genetic analyses showing that MAPK phosphatase 2 (MKP2) regulates oxidative stress and pathogen defence responses and functionally interacts with MPK3 and MPK6. We show that plants lacking a functional MKP2 gene exhibit delayed wilting symptoms in response to Ralstonia solanacearum and, by contrast, acceleration of disease progression during Botrytis cinerea infection, suggesting that this phosphatase plays differential functions in biotrophic versus necrotrophic pathogen‐induced responses. MKP2 function appears to be linked to MPK3 and MPK6 regulation, as indicated by BiFC experiments showing that MKP2 associates with MPK3 and MPK6 in vivo and that in response to fungal elicitors MKP2 exerts differential affinity versus both kinases. We also found that MKP2 interacts with MPK6 in HR‐like responses triggered by fungal elicitors, suggesting that MPK3 and MPK6 are subject to differential regulation by MKP2 in this process. We propose that MKP2 is a key regulator of MPK3 and MPK6 networks controlling both abiotic and specific pathogen responses in plants.  相似文献   

4.
Insight into how plants simultaneously cope with multiple stresses, for example, when challenged with biotic stress from pathogen infection and abiotic stress from drought, is important both for understanding evolutionary trade‐offs and optimizing crop responses to these stresses. Mechanisms by which initial plant immune signaling antagonizes abscisic acid (ABA) signal transduction require further investigation. Using a chemical genetics approach, the small molecule [5‐(3,4‐dichlorophenyl)furan‐2‐yl]‐piperidine‐1‐ylmethanethione (DFPM) has previously been identified due to its ability to suppress ABA signaling via plant immune signaling components. Here, we have used forward chemical genetics screening to identify DFPM‐insensitive loci by monitoring the activity of ABA‐inducible pRAB18::GFP in the presence of DFPM and ABA. The ability of DFPM to attenuate ABA signaling was reduced in rda mutants (resistant to DFPM inhibition of ABA signaling). One of the mutants, rda2, was mapped and is defective in a gene encoding a lectin receptor kinase. RDA2 functions in DFPM‐mediated inhibition of ABA‐mediated reporter expression. RDA2 is required for DFPM‐mediated activation of immune signaling, including phosphorylation of mitogen‐activated protein kinase (MAPK) 3 (MPK3) and MPK6, and induction of immunity marker genes. Our study identifies a previously uncharacterized receptor kinase gene that is important for DFPM‐mediated immune signaling and inhibition of ABA signaling. We demonstrate that the lectin receptor kinase RDA2 is essential for perceiving the DFPM signal and activating MAPKs, and that MKK4 and MKK5 are required for DFPM interference with ABA signal transduction.  相似文献   

5.
The catalytic activity of mitogen‐activated protein kinases (MAPKs) is dynamically modified in plants. Since MAPKs have been shown to play important roles in a wide range of signaling pathways, the ability to monitor MAPK activity in living plant cells would be valuable. Here, we report the development of a genetically encoded MAPK activity sensor for use in Arabidopsis thaliana. The sensor is composed of yellow and blue fluorescent proteins, a phosphopeptide binding domain, a MAPK substrate domain and a flexible linker. Using in vitro testing, we demonstrated that phosphorylation causes an increase in the Förster resonance energy transfer (FRET) efficiency of the sensor. The FRET efficiency can therefore serve as a readout of kinase activity. We also produced transgenic Arabidopsis lines expressing this sensor of MAPK activity (SOMA) and performed live‐cell imaging experiments using detached cotyledons. Treatment with NaCl, the synthetic flagellin peptide flg22 and chitin all led to rapid gains in FRET efficiency. Control lines expressing a version of SOMA in which the phosphosite was mutated to an alanine did not show any substantial changes in FRET. We also expressed the sensor in a conditional loss‐of‐function double‐mutant line for the Arabidopsis MAPK genes MPK3 and MPK6. These experiments demonstrated that MPK3/6 are necessary for the NaCl‐induced FRET gain of the sensor, while other MAPKs are probably contributing to the chitin and flg22‐induced increases in FRET. Taken together, our results suggest that SOMA is able to dynamically report MAPK activity in living plant cells.  相似文献   

6.
Ultraviolet‐B (UV‐B) stress activates MAP kinases (MAPKs) MPK3 and MPK6 in Arabidopsis. MAPK activity must be tightly controlled in order to ensure an appropriate cellular outcome. MAPK phosphatases (MKPs) effectively control MAPKs by dephosphorylation of phosphothreonine and phosphotyrosine in their activation loops. Arabidopsis MKP1 is an important regulator of MPK3 and MPK6, and mkp1 knockout mutants are hypersensitive to UV‐B stress, which is associated with reduced inactivation of MPK3 and MPK6. Here, we demonstrate that MPK3 and MPK6 are hyperactivated in response to UV‐B in plants that are deficient in photorepair, suggesting that UV‐damaged DNA is a trigger of MAPK signaling. This is not due to a block in replication, as, in contrast to atr, the mkp1 mutant is not hypersensitive to the replication‐inhibiting drug hydroxyurea, hydroxyurea does not activate MPK3 and MPK6, and atr is not impaired in MPK3 and MPK6 activation in response to UV‐B. We further show that mkp1 leaves and roots are UV‐B hypersensitive, whereas atr is mainly affected at the root level. Tolerance to UV‐B stress has been previously associated with stem cell removal and CYCB1;1 accumulation. Although UV‐B‐induced stem cell death and CYCB1;1 expression are not altered in mkp1 roots, CYCB1;1 expression is reduced in mkp1 leaves. We conclude that the MKP1 and ATR pathways operate in parallel, with primary roles for ATR in roots and MKP1 in leaves.  相似文献   

7.
Methyl jasmonate (MeJA) and abscisic acid (ABA) signalling cascades share several signalling components in guard cells. We previously showed that two guard cell‐preferential mitogen‐activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate ABA signalling in Arabidopsis thaliana. In this study, we examined whether these two MAP kinases function in MeJA signalling using genetic mutants for MPK9 and MPK12 combined with a pharmacological approach. MeJA induced stomatal closure in mpk9‐1 and mpk12‐1 single mutants as well as wild‐type plants, but not in mpk9‐1 mpk12‐1 double mutants. Consistently, the MAPKK inhibitor PD98059 inhibited the MeJA‐induced stomatal closure in wild‐type plants. MeJA elicited reactive oxygen species (ROS) production and cytosolic alkalisation in guard cells of the mpk9‐1, mpk12‐1 and mpk9‐1 mpk12‐1 mutants, as well in wild‐type plants. Furthermore, MeJA triggered elevation of cytosolic Ca2+ concentration ([Ca2+]cyt) in the mpk9‐1 mpk12‐1 double mutant as well as wild‐type plants. Activation of S‐type anion channels by MeJA was impaired in mpk9‐1 mpk12‐1. Together, these results indicate that MPK9 and MPK12 function upstream of S‐type anion channel activation and downstream of ROS production, cytosolic alkalisation and [Ca2+]cyt elevation in guard cell MeJA signalling, suggesting that MPK9 and MPK12 are key regulators mediating both ABA and MeJA signalling in guard cells.  相似文献   

8.
9.
Mitogen‐activated protein kinase (MAPK) signaling plays important roles in diverse biological processes. In Arabidopsis, MPK3/MPK6, MKK4/MKK5, and the MAPKKK YODA (YDA) form a MAPK pathway that negatively regulates stomatal development. Brassinosteroid (BR) stimulates this pathway to inhibit stomata production. In addition, MPK3/MPK6 and MKK4/MKK5 also serve as critical signaling components in plant immunity. Here, we report that MAPKKK3/MAPKKK5 form a kinase cascade with MKK4/MKK5 and MPK3/MPK6 to transduce defense signals downstream of multiple plant receptor kinases. Loss of MAPKKK3/MAPKKK5 leads to reduced activation of MPK3/MPK6 in response to different pathogen‐associated molecular patterns (PAMPs) and increased susceptibility to pathogens. Surprisingly, developmental defects caused by silencing of YDA are suppressed in the mapkkk3 mapkkk5 double mutant. On the other hand, loss of YDA or blocking BR signaling leads to increased PAMP‐induced activation of MPK3/MPK6. These results reveal antagonistic interactions between a developmental MAPK pathway and an immune signaling MAPK pathway.  相似文献   

10.
MAP kinase signaling is an integral part of plant immunity. Disruption of the MEKK1‐MKK1/2‐MPK4 kinase cascade results in constitutive immune responses mediated by the NLR protein SUMM2, but the molecular mechanism is so far poorly characterized. Here, we report that SUMM2 monitors a substrate protein of MPK4, CALMODULIN‐BINDING RECEPTOR‐LIKE CYTOPLASMIC KINASE 3 (CRCK3). Similar to SUMM2, CRCK3 was isolated from a suppressor screen of mkk1 mkk2 and is required for the autoimmunity phenotypes in mekk1, mkk1 mkk2, and mpk4 mutants. In wild‐type plants, CRCK3 is mostly phosphorylated. MPK4 interacts with CRCK3 and can phosphorylate CRCK3 in vitro. In mpk4 mutant plants, phosphorylation of CRCK3 is substantially reduced, suggesting that MPK4 phosphorylates CRCK3 in vivo. Further, CRCK3 associates with SUMM2 in planta, suggesting SUMM2 senses the disruption of the MEKK1‐MKK1/2‐MPK4 kinase cascade through CRCK3. Our study suggests that a MAP kinase substrate is used as a guardee or decoy for monitoring the integrity of MAP kinase signaling.  相似文献   

11.
Plant recognition of pathogen‐associated molecular patterns (PAMPs) such as bacterial flagellin‐derived flg22 triggers rapid activation of mitogen‐activated protein kinases (MAPKs) and generation of reactive oxygen species (ROS). Arabidopsis has at least four PAMP/pathogen‐responsive MAPKs: MPK3, MPK6, MPK4 and MPK11. It was speculated that these MAPKs may function downstream of ROS in plant immunity because of their activation by exogenously added H2O2. MPK3/MPK6 or their orthologs in other plant species have also been reported to be involved in the ROS burst from the plant respiratory burst oxidase homolog (Rboh) of the human neutrophil gp91phox. However, detailed genetic analysis is lacking. Using a chemical genetic approach, we generated a conditional loss‐of‐function mpk3 mpk6 double mutant. Consistent with results obtained using a conditionally rescued mpk3 mpk6 double mutant generated previously, the results obtained using the new conditional loss‐of‐function mpk3 mpk6 double mutant demonstrate that the flg22‐triggered ROS burst is independent of MPK3/MPK6. In Arabidopsis mutants lacking a functional AtRbohD, the flg22‐induced ROS burst was completely blocked. However, activation of MPK3/MPK6 was not affected. Based on these results, we conclude that the rapid ROS burst and MPK3/MPK6 activation are two independent early signaling events in plant immunity, downstream of FLS2. We also found that MPK4 negatively affects the flg22‐induced ROS burst. In addition, salicylic acid pre‐treatment enhances the AtRbohD‐mediated ROS burst, which is again independent of MPK3/MPK6 based on analysis of the mpk3 mpk6 double mutant. The establishment of an mpk3 mpk6 double mutant system using a chemical genetic approach provides a powerful tool to investigate the function of MPK3/MPK6 in the plant defense signaling pathway.  相似文献   

12.
Pseudomonas syringae delivers a plethora of effector proteins into host cells to sabotage immune responses and modulate physiology to favor infection. The P. syringae pv. tomato DC3000 effector HopF2 suppresses Arabidopsis innate immunity triggered by multiple microbe‐associated molecular patterns (MAMP) at the plasma membrane. We show here that HopF2 possesses distinct mechanisms for suppression of two branches of MAMP‐activated MAP kinase (MAPK) cascades. In addition to blocking MKK5 (MAPK kinase 5) activation in the MEKK1 (MAPK kinase kinase 1)/MEKKs–MKK4/5–MPK3/6 cascade, HopF2 targets additional component(s) upstream of MEKK1 in the MEKK1–MKK1/2–MPK4 cascade and the plasma membrane‐localized receptor‐like cytoplasmic kinase BIK1 and its homologs. We further show that HopF2 directly targets BAK1, a plasma membrane‐localized receptor‐like kinase that is involved in multiple MAMP signaling. The interaction between BAK1 and HopF2 and between two other P. syringae effectors, AvrPto and AvrPtoB, was confirmed in vivo and in vitro. Consistent with BAK1 as a physiological target of AvrPto, AvrPtoB and HopF2, the strong growth defects or lethality associated with ectopic expression of these effectors in wild‐type Arabidopsis transgenic plants were largely alleviated in bak1 mutant plants. Thus, our results provide genetic evidence to show that BAK1 is a physiological target of AvrPto, AvrPtoB and HopF2. Identification of BAK1 as an additional target of HopF2 virulence not only explains HopF2 suppression of multiple MAMP signaling at the plasma membrane, but also supports the notion that pathogen virulence effectors act through multiple targets in host cells.  相似文献   

13.
14.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN‐SENSITIVE 2 (FLS2) induces the activation of mitogen‐activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin‐triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7‐mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.  相似文献   

15.
Mitogen-activated protein kinase (MAPK) signal transduction pathways are ubiquitous ineukaryotic cells,which transfer signals from the cell surface to the nucleus,controlling multiple cellularprograms.MAPKs are activated by MAPK kinases [MAP2Ks or MAP/extracellular signal-regulated kinase(ERK) kinases (MEK)],which in turn are activated by MAPK kinase kinases (MAP3Ks).TAO2 is a MAP3Klevel kinase that activates the MAP2Ks MEK3 and MEK6 to activate p38 MAPKs.Because p38 MAPKs arekey regulators of expression of inflammatory cytokines,they appear to be involved in human diseases suchas asthma and autoimmunity.As an upstream activator of p38s,TAO2 represents a potential drug target.Here we report the crystal structure of active TAO2 kinase domain in complex with staurosporine,a broad-range protein kinase inhibitor that inhibits TAO2 with an IC_(50) of 3 μM.The structure reveals that staurosporineoccupies the position where the adenosine of ATP binds in TAO2,and the binding of the inhibitor mimicsmany features of ATP binding.Both polar and nonpolar interactions contribute to the enzyme-inhibitorrecognition.Staurosporine induces conformational changes in TAO2 residues that surround the inhibitormolecule,but causes very limited global changes in the kinase.The structure provides atomic details forTAO2-staurosporine interactions,and explains the relatively low potency of staurosporine against TAO2.The structure presented here should aid in the design of inhibitors specific to TAO2 and related kinases.  相似文献   

16.
Mitogen‐activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin‐related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1‐1 as a mutant that displays hypersensitivity in auxin‐responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin‐responsive cell expansion assays, suggesting that this MPK cascade affects auxin‐influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho‐like GTPases from Plants (ROP) small GTPase family. Similar to mpk1‐1 and mkk3‐1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin‐responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin‐responsive cell expansion are mediated through phosphorylation‐dependent modulation of ROP activity. Our data suggest a MKK3 ? MPK1 ? RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion.  相似文献   

17.
18.
19.
The Arabidopsis MEKK1‐MKK1/MKK2‐MPK4 kinase cascade is monitored by the nucleotide‐binding leucine‐rich‐repeat immune receptor SUMM2. Disruption of this kinase cascade leads to activation of SUMM2‐mediated immune responses. MEKK2, a close paralog of MEKK1, is required for defense responses mediated by SUMM2, the molecular mechanism of which is unclear. In this study, we showed that MEKK2 serves as a negative regulator of MPK4. It binds to MPK4 to directly inhibit its phosphorylation by upstream MKKs. Activation of SUMM2‐mediated defense responses induces the expression of MEKK2, which in turn blocks MPK4 phosphorylation to further amplify immune responses mediated by SUMM2. Intriguingly, MEKK2 locates in a tandem repeat consisting of MEKK1, MEKK2 and MEKK3, which was generated from a recent gene duplication event, suggesting that MEKK2 evolved from a MAPKKK to become a negative regulator of MAP kinases.  相似文献   

20.
Histone H2B monoubiquitination (H2Bub1) is recognized as a regulatory mechanism that controls a range of cellular processes. We previously showed that H2Bub1 was involved in responses to biotic stress in Arabidopsis. However, the molecular regulatory mechanisms of H2Bub1 in controlling responses to abiotic stress remain limited. Here, we report that HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 played important regulatory roles in response to salt stress. Phenotypic analysis revealed that H2Bub1 mutants confer decreased tolerance to salt stress. Further analysis showed that H2Bub1 regulated the depolymerization of microtubules (MTs), the expression of PROTEIN TYROSINE PHOSPHATASE1 (PTP1) and MAP KINASE PHOSPHATASE (MKP) genes – DsPTP1, MKP1, IBR5, PHS1, and was required for the activation of mitogen‐activated protein kinase3 (MAP kinase3, MPK3) and MPK6 in response to salt stress. Moreover, both tyrosine phosphorylation and the activation of MPK3 and MPK6 affected MT stability in salt stress response. Thus, the results indicate that H2Bub1 regulates salt stress‐induced MT depolymerization, and the PTP–MPK3/6 signalling module is responsible for integrating signalling pathways that regulate MT stability, which is critical for plant salt stress tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号