首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The polar overdominance model of inheritance was proposed to explain the non-Mendelian expression of callipyge muscular hypertrophy in sheep. The callipyge locus (CLPG) maps to the distal portion of ovine Chromosome 18 within the DLK1GTL2 region and corresponds to human Chromosome 14q32, where uniparental disomy (UPD) of the region is associated with multiple congenital anomalies, including growth retardation and obesity. We investigated the porcine DLK1GTL2 region in a cross of two pig breeds to determine if the callipyge polar overdominance is present in another species. Analyses of the parental origin of DLK1 polymorphism in the F2 offspring found that paternal inheritance of DLK1 allele 2 and maternal inheritance of the allele 1 was significantly associated with decreased fat deposition and increased lean muscle mass, while the opposite parental inheritance of these alleles was associated with slower prenatal and postnatal growth. These results suggest that the polar overdominance mode of inheritance is present in the pig chromosomal region that is homologous to the CLPG locus in sheep. Further study in pigs can provide important insights into understanding the molecular regulation of imprinted genes that are associated with human UPD14 and sheep callipyge phenotypes.  相似文献   

5.
6.
Molecular characteristics of the porcine DLK1 and MEG3 genes   总被引:2,自引:0,他引:2  
Imprinted genes play important roles in embryo survival and postnatal growth regulation. The DLK1 and MEG3 (previously GTL2) genes are linked and reciprocally imprinted in several mammals, but their imprinting status is still unknown in pigs. In this study, we report polymorphisms, imprinting status and QTL analyses of the porcine DLK1 and MEG3 genes. Muscle and adipose DNA and RNA samples from 30-day-old animals generated with reciprocal crosses between the Korean native pig (KNP) and Yorkshire breeds were used to analyse DLK1 and MEG3 variation and expression. The samples exhibited paternal expression of DLK1 and maternal expression of MEG3 in pigs. These results indicated that the imprinting status of the DLK1 and MEG3 genes is conserved across mammalian species. By linkage analyses, we assigned the DLK1 and MEG3 genes to the telomeric region of SSC7. By QTL analyses, we confirmed a significant polar overdominance (POD) effect in DLK1 , which was previously detected for several growth traits in pigs. However, no significant POD effect was found with the MEG3 locus.  相似文献   

7.
The callipyge phenotype is an ovine muscular hypertrophy characterized by polar overdominance: only heterozygous + Mat /CLPG Pat animals receiving the CLPG mutation from their father express the phenotype. + Mat /CLPG Pat animals are characterized by postnatal, ectopic expression of Delta-like 1 homologue (DLK1) and Paternally expressed gene 11/Retrotransposon-like 1 (PEG11/RTL1) proteins in skeletal muscle. We showed previously in transgenic mice that ectopic expression of DLK1 alone induces a muscular hypertrophy, hence demonstrating a role for DLK1 in determining the callipyge hypertrophy. We herein describe newly generated transgenic mice that ectopically express PEG11 in skeletal muscle, and show that they also exhibit a muscular hypertrophy phenotype. Our data suggest that both DLK1 and PEG11 act together in causing the muscular hypertrophy of callipyge sheep.  相似文献   

8.
The underlying mechanism of the callipyge muscular hypertrophy phenotype in sheep (Ovis aries) is not presently understood. This phenotype, characterized by increased glycolytic type II muscle proportion and cell size accompanied by decreased adiposity, is not visibly detectable until approximately three to eight weeks after birth. The muscular hypertrophy results from a single nucleotide change located at the telomeric end of ovine Chromosome 18, in the region between the imprinted MATERNALLY EXPRESSED GENE 3 (MEG3) and DELTA, DROSOPHILA, HOMOLOG-LIKE 1 (DLK1) genes. The callipyge phenotype is evident only when the mutation is paternally inherited by a heterozygous individual. We have examined the pre- and postnatal expression of MEG3 and DLK1 in sheep of all four possible genotypes in affected and unaffected muscles as well as in liver. Here we show that the callipyge phenotype correlates with abnormally high DLK1 expression during the postnatal period in the affected sheep and that this elevation is specific to the hypertrophy-responsive fast-twitch muscles. These results are the first to show anomalous gene expression that coincides with both the temporal and spatial distribution of the callipyge phenotype. They suggest that the effect of the callipyge mutation is to interfere with the normal postnatal downregulation of DLK1 expression.  相似文献   

9.
《Epigenetics》2013,8(4):181-187
Human chromosome 14q32.2 carries a cluster of imprinted genes including paternally expressed genes (PEGs) such as DLK1 and RTL1, and maternally expressed genes (MEGs) such as GTL2 (alias, MEG3), RTL1as (RTL1 antisense), and MEG8. Consistent with this, paternal and maternal uniparental disomies for chromosome 14 (upd(14)pat and upd(14)mat) cause distinct phenotypes. In this report, we review the current knowledge about the underlying factors for the development of clinical features in upd(14)pat and upd(14)mat. The data available suggest that the DLK1–GTL2 IG-DMR functions as a regulator for the maternally inherited imprinted region, and that excessive RTL1 expression and decreased DLK1 and RTL1 expression play a major role in the development of upd(14)pat-like and upd(14)mat-like phenotypes, respectively  相似文献   

10.

Background  

The callipyge mutation is located within an imprinted gene cluster on ovine chromosome 18. The callipyge trait exhibits polar overdominant inheritance due to the fact that only heterozygotes inheriting a mutant paternal allele (paternal heterozygotes) have a phenotype of muscle hypertrophy, reduced fat and a more compact skeleton. The mutation is a single A to G transition in an intergenic region that results in the increased expression of several genes within the imprinted cluster without changing their parent-of-origin allele-specific expression.  相似文献   

11.
Although recent studies in patients with paternal uniparental disomy 14 [upd(14)pat] and other conditions affecting the chromosome 14q32.2 imprinted region have successfully identified underlying epigenetic factors involved in the development of upd(14)pat phenotype, several matters, including regulatory mechanism(s) for RTL1 expression, imprinting status of DIO3 and placental histological characteristics, remain to be elucidated. We therefore performed molecular studies using fresh placental samples from two patients with upd(14)pat. We observed that RTL1 expression level was about five times higher in the placental samples of the two patients than in control placental samples, whereas DIO3 expression level was similar between the placental samples of the two patients and the control placental samples. We next performed histological studies using the above fresh placental samples and formalin-fixed and paraffin-embedded placental samples obtained from a patient with a maternally derived microdeletion involving DLK1, the-IG-DMR, the MEG3-DMR and MEG3. Terminal villi were associated with swollen vascular endothelial cells and hypertrophic pericytes, together with narrowed capillary lumens. DLK1, RTL1 and DIO3 proteins were specifically identified in vascular endothelial cells and pericytes, and the degree of protein staining was well correlated with the expression dosage of corresponding genes. These results suggest that RTL1as-encoded microRNA functions as a repressor of RTL1 expression, and argue against DIO3 being a paternally expressed gene. Furthermore, it is inferred that DLK1, DIO3 and, specially, RTL1 proteins, play a pivotal role in the development of vascular endothelial cells and pericytes.  相似文献   

12.
To identify the callipyge mutation, we have resequenced 184 kb spanning the DLK1-, GTL2-, PEG11-, and MEG8-imprinted domain and have identified an A-to-G transition in a highly conserved dodecamer motif between DLK1 and GTL2. This was the only difference found between the callipyge (CLPG) allele and a phylogenetically closely related wild-type allele. We report that this SNP is in perfect association with the callipyge genotype. The demonstration that Solid Gold-the alleged founder ram of the callipyge flock-is mosaic for this SNP virtually proves the causality of this SNP in the determinism of the callipyge phenotype.  相似文献   

13.
14.
15.
《Epigenetics》2013,8(10):1142-1150
Although recent studies in patients with paternal uniparental disomy 14 [upd(14)pat] and other conditions affecting the chromosome 14q32.2 imprinted region have successfully identified underlying epigenetic factors involved in the development of upd(14)pat phenotype, several matters, including regulatory mechanism(s) for RTL1 expression, imprinting status of DIO3 and placental histological characteristics, remain to be elucidated. We therefore performed molecular studies using fresh placental samples from two patients with upd(14)pat. We observed that RTL1 expression level was about five times higher in the placental samples of the two patients than in control placental samples, whereas DIO3 expression level was similar between the placental samples of the two patients and the control placental samples. We next performed histological studies using the above fresh placental samples and formalin-fixed and paraffin-embedded placental samples obtained from a patient with a maternally derived microdeletion involving DLK1, the-IG-DMR, the MEG3-DMR and MEG3. Terminal villi were associated with swollen vascular endothelial cells and hypertrophic pericytes, together with narrowed capillary lumens. DLK1, RTL1 and DIO3 proteins were specifically identified in vascular endothelial cells and pericytes, and the degree of protein staining was well correlated with the expression dosage of corresponding genes. These results suggest that RTL1as-encoded microRNA functions as a repressor of RTL1 expression, and argue against DIO3 being a paternally expressed gene. Furthermore, it is inferred that DLK1, DIO3 and, specially, RTL1 proteins, play a pivotal role in the development of vascular endothelial cells and pericytes.  相似文献   

16.
Human chromosome 14q32.2 harbors the germline-derived primary DLK1-MEG3 intergenic differentially methylated region (IG-DMR) and the postfertilization-derived secondary MEG3-DMR, together with multiple imprinted genes. Although previous studies in cases with microdeletions and epimutations affecting both DMRs and paternal/maternal uniparental disomy 14-like phenotypes argue for a critical regulatory function of the two DMRs for the 14q32.2 imprinted region, the precise role of the individual DMR remains to be clarified. We studied an infant with upd(14)pat body and placental phenotypes and a heterozygous microdeletion involving the IG-DMR alone (patient 1) and a neonate with upd(14)pat body, but no placental phenotype and a heterozygous microdeletion involving the MEG3-DMR alone (patient 2). The results generated from the analysis of these two patients imply that the IG-DMR and the MEG3-DMR function as imprinting control centers in the placenta and the body, respectively, with a hierarchical interaction for the methylation pattern in the body governed by the IG-DMR. To our knowledge, this is the first study demonstrating an essential long-range imprinting regulatory function for the secondary DMR.  相似文献   

17.
18.
19.
基因组内三个信息层相互作用决定美臀表型产生   总被引:1,自引:0,他引:1  
绵羊callipyge(美臀)是一种可遗传的肌肉肥厚体征,该表型以独特的方式“极化超显性”遗传给子代.绵羊18号染色体的DLK1-GTL2印记化结构域内存在1个远距离调控元件(long-range control element,LRCE),该元件发生单个碱基突变(A→G).A→G突变顺式作用于印记化结构域内的相关基因,印记化基因的产物包括蛋白质及非编码RNA分子,它们相互作用导致美臀表型产生.美臀表型产生及其独特的遗传方式是绵羊基因组内的蛋白质编码基因、非编码RNA基因以及表观遗传效应等3个信息层相互作用的结果,说明以前被忽略的隐藏信息发挥了极其重要的调控功能.这些现象对经典的中心法则形成了挑战,但是为基因组研究拓展了新的领域.  相似文献   

20.
哺乳动物的基因组以发育调控模式进行转录,生成长的和短的非编码RNAs(non-coding RNA,ncRNAs).ncRNAs占到人类转录组的98%,与生物体进化复杂程度显著相关.MicroRNAs(miRNAs)是目前研究比较透彻的,长度大约为20~24个核苷酸的ncRNAs,其通过与靶基因mRNA的结合在转录后水平负调控基因的表达.人类基因组中一个最大的miRNA簇位于14号染色体(14q32)的DLK1-DIO3印记区域,包括了54个miRNAs.这些miRNAs通过参与调节重要的信号通路在许多病理过程中发挥作用.充分了解DLK1-DIO3印记区域中这个大的miRNA簇,在病理生理过程中的重要性将有助于为相关疾病的治疗提供新的策略.本文比较深入地分析了DLK1-DIO3印记区域中的miRNAs在调控组织动态平衡以及多种癌症发生中的作用,同时对其潜在的临床应用价值进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号