首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
骆驼刺根瘤菌的超微结构研究   总被引:1,自引:0,他引:1  
用透射电子显微镜研究骆驼刺根瘤中的根瘤菌。结果表明。在成熟的骆驼刺根瘤中,根瘤菌的大小、数量、形态、分布位置及精细结构随寄主细胞的发育程度不同而异。早期侵染细胞中,根瘤菌小,数量少,一般呈球形或椭球形,位于细胞壁附近及靠近核区的地方,没有聚磷酸盐颗粒和聚羟基丁酸。成熟侵染细胞中,根瘤菌个体较大,数量较多.多呈棒状,少数为球形或椭球形。有很多根瘤菌还呈现明显的“T”形、“Y”形或“V”形,菌体占满了整个细胞,这时的根瘤菌大多数含有聚羟基丁酸和聚磷酸盐颗粒。而在衰老的侵染细胞中,根瘤菌细胞质收缩,电子密度增高.形状变得很不规则,有的根瘤菌解体,呈现膜泡状结构,菌体中含有数量不等的聚羟基丁酸和聚磷酸盐颗粒。球状根瘤菌从侵染初期到侵染细胞裂解的整个阶段中都仔在。并且观察到的处于分裂状态的根瘤菌都是球状菌,因此可以推测骆驼刺根瘤中是以球状根瘤菌来进行增殖的。  相似文献   

2.
银合欢接种根瘤菌形成根瘤后,应用光镜和电镜技术观察。银合欢根瘤由分生组织细胞、皮层组织细胞、维管束系统和侵染细胞区域四个不同部分组成。根瘤菌借助于侵染线侵染细胞,释放进入宿主细胞质中,转变成固氮类菌体。最初每个包被膜内只含单独的类菌体,随后较老的侵染细胞中,每个包被膜内含有一个以上的类菌体。因此,成熟根瘤的侵染细胞可见有2~5个类菌体群集包被膜里,并且明显地累积PHB物质,显示电子染色透明颗粒。本文还讨论了上述变化的意义与银合欢根瘤细胞结构和功能的关系。  相似文献   

3.
用光学显微镜和扫描电子显微镜明察了大豆根瘤菌1132—2对大豆子苗根愈伤组织的侵染。愈伤组织培养到第10—25d,接种根瘤菌再共同培养lO-30d光学显微镜观察发现:在愈伤组织疏松区域中有根瘤菌存在。扫描电镜观察发现:只有在细胞质较少的薄壁细胞之间和薄壁细胞内有根瘤菌存在,处在细胞间的根瘤菌许多处于分裂相,有的已经形成类菌体。  相似文献   

4.
建立新的根瘤菌──非豆科植物共生体系的研究四川师范大学细胞生物学研究室成都610066曲东明,韩善华在自然界中,根瘤菌一般只能与豆科植物形成极其精细复杂而又高度专一化的共生结构——根瘤。根瘤是根瘤菌与寄主植物之间对抗和协调的统一,是根瘤菌侵染寄主植物...  相似文献   

5.
豌豆根瘤脂质体的分布及形态特征   总被引:1,自引:1,他引:0  
韩善华  张红 《西北植物学报》2002,22(6):1396-1400,T004
豌豆根瘤中有大量的脂质体,广泛分布于非侵染细胞和侵染细胞内,它既可以存在细胞质中,也可位于液泡里面。有时单个存在,有时又多个聚集在一起。非侵染细胞与侵染细胞相比,前者中的脂质体明显多于后者。这些脂质体近似圆形或椭圆形,表面无膜,电子密度较高,内部无固定的结构,常有一些细胞器位于它的附近。讨论了脂质体的细胞发育及细胞种类的关系。  相似文献   

6.
韩善华 《西北植物学报》2007,27(10):2009-2015
用透射电镜对红豆草根瘤侵入线的超微结构进行了观察研究.结果表明,(1)红豆草根瘤侵入线由胞间隙和胞间层细胞壁内陷形成,它们的体积较小,多为管状,基质丰富,含菌很少,常有分叉和1个以上的基质区,而且不同基质区的电子密度、细菌数量和侵入线壁厚度都不相同.(2)红豆草根瘤的侵入线十分丰富,它们不仅大量存在于根瘤分生细胞和幼龄侵染细胞中,也经常出现在发育成熟的侵染细胞内.(3)红豆草根瘤中有一种近似圆形的特殊结构,表面由一层膜包围,其内电子密度较低且无固定结构,且只位于侵染细胞的细胞质中,常在侵入线附近,从不出现在侵染细胞的液泡内和非侵染细胞里面.  相似文献   

7.
[目的]对弯果胡卢巴根瘤增殖特性、根瘤显微结构、根瘤菌遗传聚类以及根瘤菌各种抗性进行观察、分析和鉴定.[方法]分别利用不同基质培养、石蜡切片和树脂半超薄切片以及16S rRNA基因序列扩增和序列分析等技术方法对弯果胡卢巴根瘤和根瘤菌进行研究.[结果]①在混合土(养花土:白杨林下土:沙土=1:1:1)中有明显结瘤且植株结荚最多,多数根瘤呈掌状和姜形;②显微结构显示根瘤由表及里分为表层、皮层、维管束、已侵染细胞与未侵染细胞几部分;③对根瘤菌16S rRNA基因全长序列(1377bp)测序并分析,结果显示其与苜蓿中华根瘤菌16S rRNA基因的同源性达99.9%;④根瘤菌抗逆性鉴定结果显示,在温度为4℃~60℃(20 Min)、pH值为6.0~12.0、NaCl浓度为0%~2%的范围内根瘤菌均可正常生长;低浓度的卡那霉素、链霉素及头孢霉素等抗生素(25μg/mL,)就能完全抑制根瘤菌的生长,但仍能在100μg/mL的氨苄青霉素中正常生长.[结论]弯果胡卢巴结瘤需要较好的土壤及通气条件;根瘤簇生,瘤内含大量被根瘤菌侵染的细胞;弯果胡卢巴根瘤菌与苜蓿中华根瘤菌(sinorhizobium meliloti,)同源性最高,是一类较耐高温和强碱的菌株.  相似文献   

8.
应用透射电子显微镜观察到缺损胞外多糖根瘤菌突变体侵染莒蓿根的方式与前人描述的一般根瘤菌的侵染有明显不同。突变菌贴近根毛时,根毛外层壁被降解,突变菌陷入根毛外层壁中。突变菌由外层壁移入内层壁后,在菌体周围形成大量新的壁物质。被新沉积的壁物质形成细胞内生包被的突变菌进一步形成宽的感染线,这种感染线内不舍有细的颗粒基质,突变菌被包埋在壁物质中,以后感染线解体。说明突变菌感染线的发生与一般根瘤菌在巳降解的根毛壁侵染原位直接发生感染线是不一样的。突变菌诱导的根瘤起始于根的维管柱中的薄壁细胞不规则分裂,以及与木质部极相对的皮层细胞。随着根瘤进一步发育在皮层细胞内形成一个宽的分生组织带,根瘤细胞内不含突变菌,说明突变菌诱导的根瘤与野生苜蓿根瘤菌诱导的根瘤的发育途径是十分不同的。  相似文献   

9.
将带有三叶草根瘤菌寄主范围基因的豌豆根瘤菌(转移接合子182和290)接种白三叶草,观察比较它们对白三叶草早期侵染特征和结瘤情况。转移接合子182虽然诱导白三叶草根毛细胞弯曲,但未观察到侵染,也无侵染线形成;而转移接合子290能诱导白三叶草根毛形成紧密的弯曲,溶解根毛细胞壁和侵染白三叶草。结瘤试验表明,白三叶草接种转移接合子290所诱导的结瘤情况与接种三叶草根瘤菌野生型菌株ANU 843的情况很相似。转移接合子182只能诱导个别无效瘤,290和ANU843一样都能在白三叶草上结瘤。由此说明转移接合子如果只携带三叶草根瘤菌的部分寄主范围基因(FEL)仍不能在白三叶草上诱导侵染和正常结瘤,而必需携带全部寄主范围基因(FELMN)才能在白三叶草上正常结瘤。  相似文献   

10.
根瘤菌在大麦和水稻根上形成拟瘤的细胞结构   总被引:1,自引:1,他引:0  
用3种方法使紫云英根瘤菌(Rhizobium astragali Huikui)、田菁根瘤菌(R.sesbania sp.)分别入侵大麦(hordeum vulgare L.)和水稻(Oryza sativa L.),形成拟瘤状组织。一是用一定磁场强度处理根瘤菌和植物,并接种培养。二是用含有水稻幼苗根提取物的培养基培养根瘤菌,接种水稻。三是重复别人用2,4-D外源激素处理植物,接种根瘤菌。镜检观察,用紫云英根瘤菌接种形成的大麦根拟瘤细胞结构非常精细,保持各种细胞器。有侵入线结构和根瘤菌从侵入线释放。根瘤菌被宿主细胞来源的膜包围,成为拟菌体。这些形态结构与豆科根瘤细胞相似,有共生状态特征,但拟菌体有泡状化现象。田菁根瘤菌入侵水稻根形成的拟瘤,在细胞间隙和细胞内都有细菌分布。受侵染的细胞结构粗糙,根瘤菌裸露,无胞膜包围。用2,4-D处理接种根瘤菌的拟瘤细胞结构也如此,但在维管系统内有大量密集的细菌存在。这种结构完全不同于豆科根瘤细胞结构,细菌与植物细胞的形态学相互关系是一种非共生联合作用。  相似文献   

11.
采用磷酸铅技术,对烟草类根瘤中ATPase的活性变化及分布特征进行了研究。分生细胞中没有磷酸铅颗粒,非含菌细胞的细胞质和细胞器中有少量的磷酸铅颗粒,但在年轻和成熟根瘤菌中却未见它们。相反,当非含菌细胞和根瘤菌开始衰老后,有大量的磷酸铅颗粒位于细胞的质膜和细胞壁上以及根瘤菌表面的内侧。随着它们进一步衰老,磷酸铅颗粒越来越多,广泛分布在细胞的液泡膜、质膜、细胞壁、胞间层、胞间隙及根瘤菌的表面、细胞质和拟核中。由于细胞的解体,磷酸铅颗粒明显减少,一般只位于质膜和由细胞器解体而来的膜泡状结构上。  相似文献   

12.
采用磷酸铅技术,对烟草类根瘤中ATPase的活性变化及分布特征进行了研究。分生细胞中没有磷酸铅颗粒,非含菌细胞的细胞质和细胞器中有少量的磷酸铅颗粒,但在年轻和成熟根瘤菌中却未见它们。相反,当非含菌细胞和根瘤菌开始衰老后,有大量的磷酸铅颗粒位于细胞的质膜和细胞壁上以及根瘤菌表面的内侧。随着它们进一步衰老,磷酸铅颗粒越来越多,广泛分布在细胞的液泡膜、质膜、细胞壁、胞间层、胞间隙及根瘤菌的表面、细胞质和拟核中。由于细胞的解体,磷酸铅颗粒明显减少,一般只位于质膜和由细胞器解体而来的膜泡状结构上。  相似文献   

13.
本文初次报道紫云英根瘤的超微结构。用根瘤中段的中心组织作实验材料,以显示受根瘤菌侵染的宿主细胞的一般结构。细菌借助于侵入线进入宿主细胞,发育成拟菌体,为包囊膜所裹。一个包囊膜内一般只有一个拟菌体。包囊膜可以与细胞质内的囊泡和小液泡融合而扩增,导致膜对拟菌体的包裹由紧密到疏松的变化。包囊膜和拟菌体表面都有突起,两者的突起相对接触和融合。对拟菌体包囊膜的动态变化与衰老的关系以及宿主细胞和拟菌体之间物质交换的关系进行了讨论。作者指出包囊膜的扩增和电子透明区域的存在,是拟菌体发育成熟的一个阶段,包囊膜和拟菌体通过互相突起、融合沟通的结构,可能是宿主细胞和细菌之间物质交换功能的一种表现。  相似文献   

14.
The relation between the endoplasmic reticulum and peribacteroid membranes during the development of infected cells of Chinese soybean (Glycine max L. cv. Harvest 11) root nodules by transmission electron microscopy was observed. After the host cells are infected by bacteria, the ultrastructures of the infected cells appear to have many changes, such as that their cytoplasm becomes thicker, the vacuoles decrease in size and organelles rapidly increase in number, among these organelle changes are more obvious than the others. However, changes of endoplasmic reticulum is mostly striking. It is not only increases greatly in number but often swells and forms wider inter-spaces. The swelling of endoplasmic reticulum is especially conspicuous at its ends and often form various vesicles. Sometimes, the front part of the endoplasmic reticulum also forms a gourd-shaped structure, which together with the vesicles usually contain fibrillar material. After they are released from the endoplasmic reticulum to the host cytoplasm, they continuously move towards neighbouring bacteria and close to the peribacteroid membranes. The gourd-shaped structures always locate near but never fuse with the peribacteroid membranes. However, the vesicles can do that and form a kind of papillae, often containing fibrillar material, on the peri bacteroid membranes. These papillae and their fibrillar material gradually disappear whilst the membrane of the vesicle derived from endoplasmic reticulum becomes one part of the peribacteroid membrane by way of fusing with the latter to form a papilla on it.  相似文献   

15.
Rhizobial infection occurred on the stem of Aeschynomene afrasperaat the site of emergence of adventitious root primordia. Rhizobiainvaded cortical cells at the base of the root primordium. Thefirst infected cell enlarged and collapsed after rhizobia hadmultiplied in large numbers. At this time, a meristematic zonewas initiated some distance beneath the first infected cell.Rhizobial penetration into the deeper cortex was by progressivecollapse of infected cells towards the meristematic zone; rhizobiaentering the cortical cells by invagination of the host cellwall. At the entry point, rhizobia were embedded in digitatecell wall material. These infection structures were restricted,always originating from the cell wall of an adjacent infectedcell. Soon after infection, the cell collapsed progressivelyforming infection strand-like structures which developed upto the meristematic zone. When infection had reached the meristematiczone, invaded host cells ceased to collapse but divided repeatedlyto form the nodule. Key words: Aeschynomene afraspera, stem nodulation  相似文献   

16.
根瘤菌在根瘤宿主细胞内有两种形式:一种为拟菌体、被宿主细胞来源的财膜包裹;另一种为自由生活的营养细胞。前者色大多数,后者只有少数。随着根瘤的衰老,其命运是:拟菌体及其宿主细胞同时衰老以致最终解体,拟菌体不能再入土壤复生;以自由生活的营养细胞形式存在的细菌,不随其宿主细胞的解体而亡,可回复到土壤,一方面在豆科植物和土壤之间循环,一方面维持根瘤菌在土壤中天然的群体生态平衡。  相似文献   

17.
There were two forms of rhizobial bacteria present in infected host cells of nodules. One was bacteroids which were enclosed in peribacteroid membrane originated from the infected host cells. The other was rhizobia as vegetative cells. The infected host cells were occupied by most of the bacteroids and a certain number of the vegetative cells respectively. With the nodule senescence, there were two kinds of fate of the bacteria: The bacteroids degenerated togather with the infected host cells at the same time and further disintegrated completely, so it is not possible that the disintegrated bacteroids could be returned into soil to revive: the vegetative cells did not disintegrate and die when the infected host cells senesced, eventually could be turned back into soil. The vegetative cells may play an important role, on the one hand, in cycle between legume and soil, on the other hand, maintain rhizobia in natural balance of population ecosystem.  相似文献   

18.
The anatomy and ultrastructure of root nodules of Anadenanthera peregrina var. falcata (Leguminosae-Mimosoideae) were analysed, as was plant growth. To ensure that nodules developed, seedlings were inoculated with a mixture of six strains of rhizobia. Nodules were produced that differed in appearance-and probably also effectiveness-but their structure was similar and they showed characteristics typical of indeterminate nodules, such as persistent meristematic tissue and a gradient of cells at different stages of development. Many starch grains were present in inner cortex cells and interstitial cells of infected tissue. Infected cells were densely packed with bacteroids, which contained many poly-beta-hydroxybutyrate granules. The high incidence of these granules, together with high levels of starch accumulation in interstitial cells, suggested low N2-fixation efficiency of the rhizobia isolates used for inoculation. In the symbiosomes of early-senescent infected cells, reticulum-like structures, small vesicles and a fibrillar material were observed; these may be related to bacteroid degradation. In the cytoplasm of late-senescent infected cells, many vesicles and membrane-like structures were observed, probably associated with membrane degradation of bacteroids and peribacteroids. The total biomass of plants inoculated with rhizobia was low and their xylopodia and shoots had low levels of N compared with noninoculated plants fertilized with ammonium nitrate. However, inoculated plants did not show N-deficiency symptoms and grew better than non-inoculated plants without N fertilization. These growth results, together with ultrastructural observations of nodules, suggest that nitrogen fixation of rhizobia isolates associated with Anadenanthera peregrina var. falcata roots is poor.  相似文献   

19.
The structure of nitrogen-fixing nodules produced by Rhizobium infection of the non-legume Parasponia andersonii was examined by light and electron (both SEM and TEM) microscopy. Comparisons were made with the nodules previously described on P. rugosa. Like the nodules on different non-legumes formed by other types of endophytes, the Rhizobium nodules on Parasponia resembled modified roots by having a central vascular bundle surrounded by an endophyte-infected zone. The intimate association between the Rhizobium and the host nodule cell was compared with the Rhizobium association found in legumes. The rhizobia were not released from the infection thread as happens in the legume. The infection thread, which propagates the Rhizobium infection to new cells, was transformed within a nodule cell from a darkly stained (light microscopy) or very electron-dense (TEM) structure to a number of thread types. The walls of the threads varied greatly in thickness and often the thread structures were without rigid walls and were only enclosed by a plasma membrane. If the rhizobia are transformed into bacteroids, as in the legumes, it would have to occur when the threads had reached their mature size, when bacterial division had ceased. Nitrogen fixation was considered to occur in all thread types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号