首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一种植物细胞壁松驰蛋白:膨胀素   总被引:5,自引:0,他引:5  
在植物细胞的生长过程中 ,多糖和蛋白质分泌到细胞壁里层 ,并形成具有一定机械强度的网络 ,这个网络是能伸展的 ,除非细胞停止生长。在细胞的生长过程中 ,一种细胞壁蛋白—膨胀素首次被鉴定出来具有使细胞壁的多糖网络疏松的能力 ,从而使膨压驱动的细胞扩大。膨胀素由两个多基因家族即α -膨胀素和 β -膨胀素多基因家族编码 ,每种基因的表达具有部位和细胞类型的特异性 ,但最新的研究也表明拟南芥中的膨胀素可以分为三个亚家族。越来越多的膨胀素基因从各种植物中鉴定出来 ,系统分析显示它们可能从一个共同的祖先基因进化而来。膨胀素的作用机理研究的还不是很清楚 ,但因为它们具有特别的功能 ,因此展现出良好的工业化应用前景。  相似文献   

2.

Key message

Results from various expansin related studies have demonstrated that expansins present an opportunity to improve various crops in many different aspects ranging from yield and fruit ripening to improved stress tolerance.

Abstract

The recent advances in expansin studies were reviewed. Besides producing the strength that is needed by the plants, cell walls define cell shape, cell size and cell function. Expansins are cell wall proteins which consist of four sub families; α-expansin, β-expansin, expansin-like A and expansin-like B. These proteins mediate cell wall loosening and they are present in all plants and in some microbial organisms and other organisms like snails. Decades after their initial discovery in cucumber, it is now clear that these small proteins have diverse biological roles in plants. Through their ability to enable the local sliding of wall polymers by reducing adhesion between adjacent wall polysaccharides and the part they play in cell wall remodeling after cytokinesis, it is now clear that expansins are required in almost all plant physiological development aspects from germination to fruiting. This is shown by the various reports from different studies using various molecular biology approaches such as gene achieve these many roles through their non-enzymatic wall loosening ability. This paper reviews and summarizes some of the reported functions of expansins and outlines the potential uses of expansins in crop improvement programs.
  相似文献   

3.
The biochemical mechanisms underlying cell wall expansion in plants have long been a matter of conjecture. Previous work in our laboratory identified two proteins (named "expansins") that catalyze the acid-induced extension of isolated cucumber cell walls. Here we examine the mechanism of expansin action with three approaches. First, we report that expansins did not alter the molecular mass distribution or the viscosity of solutions of matrix polysaccharides. We conclude that expansins do not hydrolyze the major pectins or hemicelluloses of the cucumber wall. Second, we investigated the effects of expansins on stress relaxation of isolated walls. These studies show that expansins account for the pH-sensitive and heat-labile components of wall stress relaxation. In addition, these experiments show that expansins do not cause a progressive weakening of the walls, as might be expected from the action of a hydrolase. Third, we studied the binding of expansins to the cell wall and its components. The binding characteristics are consistent with this being the site of expansin action. We found that expansins bind weakly to crystalline cellulose but that this binding is greatly increased upon coating the cellulose with various hemicelluloses. Xyloglucan, either solubilized or as a coating on cellulose microfibrils, was not very effective as a binding substrate. Expansins were present in growing cell walls in low quantities (approximately 1 part in 5000 on a dry weight basis), suggesting that they function catalytically. We conclude that expansins bind at the interface between cellulose microfibrils and matrix polysaccharides in the wall and induce extension by reversibly disrupting noncovalent bonds within this polymeric network. Our results suggest that a minor structural component of the matrix, other than pectin and xyloglucan, plays an important role in expansin binding to the wall and, presumably, in expansin action.  相似文献   

4.
Expansins: expanding importance in plant growth and development   总被引:8,自引:0,他引:8  
Expansins were originally identified as cell wall-loosening proteins. The existence and various roles of expansins have been discovered in many plants. Expansins are encoded by a superfamily of genes comprised of subfamilies that evolved from a common ancestor and encode the α-expansins (EXPAs), the β-expansins (EXPBs), the expansin-like A (EXLA), and expansin-like B (EXLB) proteins. Several expansin-like genes have also been identified in non-plant organisms (e.g. a slime mold, fungi, nematodes, and a mollusk). Localization of EXPA and EXPB in the cell wall was confirmed by immunogold electron microscopy. Studies using transgenic plants provided evidence for a broad range of biological roles of expansins in diverse aspects of plant growth and development, such as cell wall extension, fruit softening, abscission, floral organ development, symbiosis, and the response to environmental stresses.  相似文献   

5.
6.
Expansins are wall-loosening proteins that induce wall stress relaxation and irreversible wall extension in a pH-dependent manner. Despite a substantial body of work has been performed on the characterization of many expansins genes in different plant species, the knowledge about their precise biological roles during plant development remains scarce. To yield insights into the expansion process in Petunia hybrida, PhEXPA1, an expansin gene preferentially expressed in petal limb, has been characterized. The constitutive overexpression of PhEXPA1 significantly increased expansin activity, cells size and organ dimensions. Moreover, 35S::PhEXPA1 transgenic plants exhibited an altered cell wall polymer composition and a precocious timing of axillary meristem development compared with wild-type plants. These findings supported a previous hypothesis that expansins are not merely structural proteins involved in plant cell wall metabolism but they also take part in many plant development processes. Here, to support this expansins dual role, we discuss about differential cell wall-related genes expressed in PhEXPA1 expression mutants and gradients of altered petunia branching pattern.  相似文献   

7.
Expansins are wall‐loosening proteins that promote the extension of primary cell walls without the hydrolysis of major structural components. Previously, proteins from the EXPA (α–expansin) family were found to loosen eudicot cell walls but to be less effective on grass cell walls, whereas the reverse pattern was found for EXPB (β–expansin) proteins obtained from grass pollen. To understand the evolutionary and structural bases for the selectivity of EXPB action, we assessed the extension (creep) response of cell walls from diverse monocot families to EXPA and EXPB treatments. Cell walls from Cyperaceae and Juncaceae (families closely related to grasses) displayed a typical grass response (‘β–response’). Walls from more distant monocots, including some species that share with grasses high levels of arabinoxylan, responded preferentially to α–expansins (‘α–response’), behaving in this regard like eudicots. An expansin with selective activity for grass cell walls was detected in Cyperaceae pollen, coinciding with the expression of genes from the divergent EXPB–I branch that includes grass pollen β–expansins. The evolutionary origin of this branch was located within Poales on the basis of phylogenetic analyses and its association with the ‘sigma’ whole‐genome duplication. Accelerated evolution in this branch has remodeled the protein surface in contact with the substrate, potentially for binding highly substituted arabinoxylan. We propose that the evolution of the divergent EXPB–I group made a fundamental change in the target and mechanism of wall loosening in the grass lineage possible, involving a new structural role for xylans and the expansins that target them.  相似文献   

8.
The expansin superfamily   总被引:8,自引:0,他引:8       下载免费PDF全文
The expansin superfamily of plant proteins is made up of four families, designated α-expansin, β-expansin, expansin-like A and expansin-like B. α-Expansin and β-expansin proteins are known to have cell-wall loosening activity and to be involved in cell expansion and other developmental events during which cell-wall modification occurs. Proteins in these two families bind tightly to the cell wall and their activity is typically assayed by their stimulation of cell-wall extension and stress relaxation; no bona fide enzymatic activity has been detected for these proteins. α-Expansin proteins and some, but not all, β-expansin proteins are implicated as catalysts of 'acid growth', the enlargement of plant cells stimulated by low extracellular pH. A divergent group of β-expansin genes are expressed at high levels in the pollen of grasses but not of other plant groups. They probably function to loosen maternal cell walls during growth of the pollen tube towards the ovary. All expansins consist of two domains; domain 1 is homologous to the catalytic domain of proteins in the glycoside hydrolase family 45 (GH45); expansin domain 2 is homologous to group-2 grass pollen allergens, which are of unknown biological function. Experimental evidence suggests that expansins loosen cell walls via a nonenzymatic mechanism that induces slippage of cellulose microfibrils in the plant cell wall.  相似文献   

9.
Expansins   总被引:4,自引:0,他引:4  
Biochemical dissection of the "acid-growth" process of plant cell walls led to the isolation of a new class of wall loosening proteins, called expansins. These proteins affect the rheology of growing walls by permitting the microfibril matrix network to slide, thereby enabling the wall to expand. Molecular sequence analysis suggests that expansins might have a cryptic glycosyl transferase activity, but biochemical results suggest that expansins disrupt noncovalent bonding between microfibrils and the matrix. Recent discoveries of a new expansin family and gene expression in fruit meristems and cotton fibers have enlarged our view of the developmental functions of this group of wall loosening proteins.  相似文献   

10.
Expanisns     
Biochemical dissection of the “acid-growth” process of plant cell walls led to the isolation of a new class of wall loosening proteins, called expansins. These proteins affect the rheology of growing walls by permitting the microfibril-matrix network to slide, thereby enabling the wall to expand. Molecular sequence analysis suggests that expansins might have a cryptic glycosyl transferase activity, but biochemical results suggest that expansins disrupt noncovalent bonding between microfibrils and the matrix. Recent discoveries of a new expansin family and gene expression in fruit, meristerms and cotton fibers have enlarged our view of the developmental functions of this group of wall loosening proteins.  相似文献   

11.
12.
13.
We investigated the involvement of expansin action in determining the growth rate of internodes of floating rice (Oryza sativa L.). Floating rice stem segments in which rapid internodal elongation had been induced by submergence for 2 days were exposed to air or kept in submergence for 2 more days. Both treatments reduced the elongation rate of the internodes, and the degree of reduction was much greater in air-exposed stem segments than in continually submerged segments. These rates of internodal elongation were correlated with acid-induced cell wall extensibility and cell wall susceptibility to expansins in the cell elongation zone of the internodes, but not with extractable expansin activity. These results suggest that the reduced growth rate of internodes must be due, at least in part, to the decrease in acid-induced cell wall extensibility, which can be modulated through changes in the cell wall susceptibility to expansins rather than through expansin activity. Analysis of the cell wall composition of the internodes showed that the cellulosic and noncellulosic polysaccharide contents increased in response to exposure to air, but they remained almost constant under continued submergence although the cell wall susceptibility to expansins gradually declined even under continued submergence. The content of xylose in noncellulosic neutral sugars in the cell walls of internodes was closely and negatively correlated with changes in the susceptibility of the walls to expansins. These results suggest that the deposition of xylose-rich polysaccharides into the cell walls may be related to a decrease in acid-induced cell wall extensibility in floating rice internodes through the modulation of cell wall susceptibility to expansins.  相似文献   

14.
15.
Plant cells are caged within a distended polymeric network (the cell wall), which enlarges by a process of stress relaxation and slippage (creep) of the polysaccharides that make up the load-bearing network of the wall. Protein mediators of wall creep have recently been isolated and characterized. These proteins, called expansins, appear to disrupt the noncovalent adhesion of matrix polysaccharides to cellulose microfibrils, thereby permitting turgor-driven wall enlargement. Expansin activity is specifically expressed in the growing tissues of dicotyledons and monocotyledons. Sequence analysis of cDNAs indicates that expansins are novel proteins, without previously known functional motifs. Comparison of expansin cDNAs from cucumber, pea, Arabidopsis and rice shows that the proteins are highly conserved in size and amino acid sequence. Phylogenetic analysis of expansin sequences suggests that this multigene family diverged before the evolution of angiosperms. Speculation is presented about the role of this gene family in plant development and evolution.  相似文献   

16.
Growing plant cell walls characteristically exhibit a property known as ''acid growth'', by which we mean they are more extensible at low pH (< 5) 1. The plant hormone auxin rapidly stimulates cell elongation in young stems and similar tissues at least in part by an acid-growth mechanism 2, 3. Auxin activates a H+ pump in the plasma membrane, causing acidification of the cell wall solution. Wall acidification activates expansins, which are endogenous cell wall-loosening proteins 4, causing the cell wall to yield to the wall tensions created by cell turgor pressure. As a result, the cell begins to enlarge rapidly. This ''acid growth'' phenomenon is readily measured in isolated (nonliving) cell wall specimens. The ability of cell walls to undergo acid-induced extension is not simply the result of the structural arrangement of the cell wall polysaccharides (e.g. pectins), but depends on the activity of expansins 5. Expansins do not have any known enzymatic activity and the only way to assay for expansin activity is to measure their induction of cell wall extension. This video report details the sources and preparation techniques for obtaining suitable wall materials for expansin assays and goes on to show acid-induced extension and expansin-induced extension of wall samples prepared from growing cucumber hypocotyls.To obtain suitable cell wall samples, cucumber seedlings are grown in the dark, the hypocotyls are cut and frozen at -80 °C. Frozen hypocotyls are abraded, flattened, and then clamped at constant tension in a special cuvette for extensometer measurements. To measure acid-induced extension, the walls are initially buffered at neutral pH, resulting in low activity of expansins that are components of the native cell walls. Upon buffer exchange to acidic pH, expansins are activated and the cell walls extend rapidly. We also demonstrate expansin activity in a reconstitution assay. For this part, we use a brief heat treatment to denature the native expansins in the cell wall samples. These inactivated cell walls do not extend even in acidic buffer, but addition of expansins to the cell walls rapidly restores their ability to extend.Open in a separate windowClick here to view.(58M, flv)  相似文献   

17.
Expansins are non-enzymatic cell wall proteins that mediate plant growth by catalyzing loosening of cell walls without lysing the wall polymers. Advances in the field of bioinformatics have facilitated the prediction of the members of expansin gene family across several model plants. Expansins constitutes into four sub-families; α-expansin, β-expansin, expansin-like A and expansin-like B. Biological functions of expansin gene family include diverse aspects of plant growth and development, shoot and root elongation, leaf morphogenesis, flower and fruit development, embryogenesis, pollen tube growth, stress tolerance, etc. Recent studies have demonstrated the role of expansins in plant-symbiotic interactions. The present review reveals the factors that govern plant-arbuscular mycorrhizal fungi (AMF) and legume-rhizobia symbioses; and the genes that participate in these diverse symbiont interactions. Further, we focus on the expression profiles and the functions of expansins during plant-AMF and legume-rhizobia interactions. The key roles of expansin proteins during AMF invasion, arbuscule formation, rhizobial infection and nodule organogenesis were uncovered during symbioses. This review summarizes discoveries that support the key and versatile roles of various expansin members in the plant-mycorrhizal and legume-rhizobial symbioses.  相似文献   

18.
Expansins in Plant Growth and Development: an Update on an Emerging Topic   总被引:4,自引:0,他引:4  
Abstract: Expansins are a class of proteins identified by their ability to induce the extension of isolated plant cell walls. Expansins are encoded by an extensive multigene family in higher plants, several members of which have been shown to be expressed in a tissue-specific manner. Besides playing an apparently key role in wall expansion, and hence in cell growth, expansins have been implicated in an increasing number of processes during plant growth and development. These include: leaf organogenesis, fruit softening, and wall disassembly. A second class of closely related proteins (referred to as β-expansins) has been identified. Other recent advances in expansin research include the recovery of transgenic plants with altered level of expansins, and the production of recombinant expansins in het-erologous expression systems.  相似文献   

19.
Lipid transfer proteins enhance cell wall extension in tobacco   总被引:1,自引:0,他引:1       下载免费PDF全文
Plant cells are enclosed by a rigid cell wall that counteracts the internal osmotic pressure of the vacuole and limits the rate and direction of cell enlargement. When developmental or physiological cues induce cell extension, plant cells increase wall plasticity by a process called loosening. It was demonstrated previously that a class of proteins known as expansins are mediators of wall loosening. Here, we report a type of cell wall-loosening protein that does not share any homology with expansins but is a member of the lipid transfer proteins (LTPs). LTPs are known to bind a large range of lipid molecules to their hydrophobic cavity, and we show here that this cavity is essential for the cell wall-loosening activity of LTP. Furthermore, we show that LTP-enhanced wall extension can be described by a logarithmic time function. We hypothesize that LTP associates with hydrophobic wall compounds, causing nonhydrolytic disruption of the cell wall and subsequently facilitating wall extension.  相似文献   

20.
Expansins: ever-expanding numbers and functions   总被引:24,自引:0,他引:24  
Expansins were first identified as cell-wall-loosening proteins that, at least in part, mediate pH-dependent extension of the plant cell wall and growth of the cell. More recently, it has been realized that expansins belong to two protein families, the alpha-and beta-expansins, and that they appear to be involved in regulating, besides cell expansion, a variety of plant processes, including morphogenesis, softening of fruits, and growth of the pollen tube of grasses through the stigma and the style. The Arabidopsis genome contains 26 alpha-expansin genes and the rice genome at least 26. There are more beta-expansin genes in monocots than in dicots, at least 14 in rice and five in Arabidopsis. Expansin genes are differentially regulated by environmental and hormonal signals, and hormonal regulatory elements have been found in their promoter regions. An analysis of exon/intron structure led to the hypothesis that alpha-and beta-expansins evolved from a common ancestral gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号