首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Aging leads to increased cellular senescence and is associated with decreased potency of tissue‐specific stem/progenitor cells. Here, we have done an extensive analysis of cardiac progenitor cells (CPCs) isolated from human subjects with cardiovascular disease, aged 32–86 years. In aged subjects (>70 years old), over half of CPCs are senescent (p16INK4A, SA‐β‐gal, DNA damage γH2AX, telomere length, senescence‐associated secretory phenotype [SASP]), unable to replicate, differentiate, regenerate or restore cardiac function following transplantation into the infarcted heart. SASP factors secreted by senescent CPCs renders otherwise healthy CPCs to senescence. Elimination of senescent CPCs using senolytics abrogates the SASP and its debilitative effect in vitro. Global elimination of senescent cells in aged mice (INK‐ATTAC or wild‐type mice treated with D + Q senolytics) in vivo activates resident CPCs and increased the number of small Ki67‐, EdU‐positive cardiomyocytes. Therapeutic approaches that eliminate senescent cells may alleviate cardiac deterioration with aging and restore the regenerative capacity of the heart.  相似文献   

2.
3.
Vitamin E (VitE) only prevented cardiovascular diseases in some patients and the mechanisms remain unknown. VitE levels can be affected by aging and gender. We hypothesize that age and gender can influence VitE’s cardioprotective effect. Mice were divided into 4 groups according to age and gender, and each group of mice were divided into a control group and a VitE group. The mice were administered water or VitE for 21 days; Afterward, the cardiac function and myocardial infarct size and cardiomyocyte apoptosis were measured after myocardial ischemia reperfusion(MI/R). VitE may significantly improved cardiac function in young male mice and aged female mice by enhancing ERK1/2 activity and reducing JNK activity. Enhanced expression of HSP90 and Bcl-2 were also seen in young male mice. No changes in cardiac function and cardiac proteins were detected in aged male mice and VitE was even liked to exert a reverse effect in cardiac function in young mice by enhancing JNK activity and reducing Bcl-2 expression. Those effects were in accordance with the changes of myocardial infarction size and cardiomyocyte apoptosis in each group of mice. VitE may reduce MI/R injury by inhibiting cardiomyocyte apoptosis in young male mice and aged female mice but not in aged male mice. VitE was possibly harmful for young female mice, shown as increased cardiomyocyte apoptosis after MI/R. Thus, we speculated that the efficacy of VitE in cardiac protection was associated with age and gender.  相似文献   

4.
Mesenchymal stem cells (MSCs) are an attractive candidate for autologous cell therapy, but their ability to repair damaged myocardium is severely compromised with advanced age. Development of viable autologous cell therapy for treatment of heart failure in the elderly requires the need to address MSC ageing. In this study, MSCs from young (2 months) and aged (24 months) C57BL/6 mice were characterized for gene expression of IGF‐1, FGF‐2, VEGF, SIRT‐1, AKT, p16INK4a, p21 and p53 along with measurements of population doubling (PD), superoxide dismutase (SOD) activity and apoptosis. Aged MSCs displayed senescent features compared with cells isolated from young animals and therefore were pre‐conditioned with glucose depletion to enhance age affected function. Pre‐conditioning of aged MSCs led to an increase in expression of IGF‐1, AKT and SIRT‐1 concomitant with enhanced viability, proliferation and delayed senescence. To determine the myocardial repair capability of pre‐conditioned aged MSCs, myocardial infarction (MI) was induced in 24 months old C57BL/6 wild type mice and GFP expressing untreated and pre‐conditioned aged MSCs were transplanted. Hearts transplanted with pre‐conditioned aged MSCs showed increased expression of paracrine factors, such as IGF‐1, FGF‐2, VEGF and SDF‐1α. This was associated with significantly improved cardiac performance as measured by dp/dtmax, dp/dtmin, LVEDP and LVDP, declined left ventricle (LV) fibrosis and apoptosis as measured by Masson's Trichrome and TUNEL assays, respectively, after 30 days of transplantation. In conclusion, pre‐conditioning of aged MSCs with glucose depletion can enhance proliferation, delay senescence and restore the ability of aged cells to repair senescent infarcted myocardium.  相似文献   

5.
While reports suggest a single dose of senolytics may improve vasomotor function, the structural and functional impact of long‐term senolytic treatment is unknown. To determine whether long‐term senolytic treatment improves vasomotor function, vascular stiffness, and intimal plaque size and composition in aged or hypercholesterolemic mice with established disease. Senolytic treatment (intermittent treatment with Dasatinib + Quercetin via oral gavage) resulted in significant reductions in senescent cell markers (TAF+ cells) in the medial layer of aorta from aged and hypercholesterolemic mice, but not in intimal atherosclerotic plaques. While senolytic treatment significantly improved vasomotor function (isolated organ chamber baths) in both groups of mice, this was due to increases in nitric oxide bioavailability in aged mice and increases in sensitivity to NO donors in hypercholesterolemic mice. Genetic clearance of senescent cells in aged normocholesterolemic INK‐ATTAC mice phenocopied changes elicited by D+Q. Senolytics tended to reduce aortic calcification (alizarin red) and osteogenic signaling (qRT–PCR, immunohistochemistry) in aged mice, but both were significantly reduced by senolytic treatment in hypercholesterolemic mice. Intimal plaque fibrosis (picrosirius red) was not changed appreciably by chronic senolytic treatment. This is the first study to demonstrate that chronic clearance of senescent cells improves established vascular phenotypes associated with aging and chronic hypercholesterolemia, and may be a viable therapeutic intervention to reduce morbidity and mortality from cardiovascular diseases.  相似文献   

6.
Senescent cells are present in premalignant lesions and sites of tissue damage and accumulate in tissues with age. In vivo identification, quantification and characterization of senescent cells are challenging tasks that limit our understanding of the role of senescent cells in diseases and aging. Here, we present a new way to precisely quantify and identify senescent cells in tissues on a single‐cell basis. The method combines a senescence‐associated beta‐galactosidase assay with staining of molecular markers for cellular senescence and of cellular identity. By utilizing technology that combines flow cytometry with high‐content image analysis, we were able to quantify senescent cells in tumors, fibrotic tissues, and tissues of aged mice. Our approach also yielded the finding that senescent cells in tissues of aged mice are larger than nonsenescent cells. Thus, this method provides a basis for quantitative assessment of senescent cells and it offers proof of principle for combination of different markers of senescence. It paves the way for screening of senescent cells for identification of new senescence biomarkers, genes that bypass senescence or senolytic compounds that eliminate senescent cells, thus enabling a deeper understanding of the senescent state in vivo.  相似文献   

7.
Gut microbiota can influence the aging process and may modulate aging‐related changes in cognitive function. Trimethylamine‐N‐oxide (TMAO), a metabolite of intestinal flora, has been shown to be closely associated with cardiovascular disease and other diseases. However, the relationship between TMAO and aging, especially brain aging, has not been fully elucidated. To explore the relationship between TMAO and brain aging, we analysed the plasma levels of TMAO in both humans and mice and administered exogenous TMAO to 24‐week‐old senescence‐accelerated prone mouse strain 8 (SAMP8) and age‐matched senescence‐accelerated mouse resistant 1 (SAMR1) mice for 16 weeks. We found that the plasma levels of TMAO increased in both the elderly and the aged mice. Compared with SAMR1‐control mice, SAMP8‐control mice exhibited a brain aging phenotype characterized by more senescent cells in the hippocampal CA3 region and cognitive dysfunction. Surprisingly, TMAO treatment increased the number of senescent cells, which were primarily neurons, and enhanced the mitochondrial impairments and superoxide production. Moreover, we observed that TMAO treatment increased synaptic damage and reduced the expression levels of synaptic plasticity‐related proteins by inhibiting the mTOR signalling pathway, which induces and aggravates aging‐related cognitive dysfunction in SAMR1 and SAMP8 mice, respectively. Our findings suggested that TMAO could induce brain aging and age‐related cognitive dysfunction in SAMR1 mice and aggravate the cerebral aging process of SAMP8 mice, which might provide new insight into the effects of intestinal microbiota on the brain aging process and help to delay senescence by regulating intestinal flora metabolites.  相似文献   

8.
Angiogenesis is critical for re‐establishing the blood supply to the surviving myocardium after myocardial infarction (MI) in patients with acute coronary syndrome (ACS). MicroRNAs are recognised as important epigenetic regulators of endothelial function. The aim of this study was to determine the roles of microRNAs in angiogenesis. Eighteen circulating microRNAs including miR‐185‐5p were differently expressed in plasma from patients with ACS by high‐throughput RNA sequencing. The expressional levels of miR‐185‐5p were dramatically reduced in hearts isolated from mice following MI and cultured human umbilical vein endothelial cells (HUVECs) under hypoxia, as determined by fluorescence in situ hybridisation and quantitative RT‐PCR. Evidence from computational prediction and luciferase reporter gene activity indicated that cathepsin K (CatK) mRNA is a target of miR‐185‐5p. In HUVECs, miR‐185‐5p mimics inhibited cell proliferations, migrations and tube formations under hypoxia, while miR‐185‐5p inhibitors performed the opposites. Further, the inhibitory effects of miR‐185‐5p up‐regulation on cellular functions of HUVECs were abolished by CatK gene overexpression, and adenovirus‐mediated CatK gene silencing ablated these enhancive effects in HUVECs under hypoxia. In vivo studies indicated that gain‐function of miR‐185‐5p by agomir infusion down‐regulated CatK gene expression, impaired angiogenesis and delayed the recovery of cardiac functions in mice following MI. These actions of miR‐185‐5p agonists were mirrored by in vivo knockdown of CatK in mice with MI. Endogenous reductions of miR‐185‐5p in endothelial cells induced by hypoxia increase CatK gene expression to promote angiogenesis and to accelerate the recovery of cardiac function in mice following MI.  相似文献   

9.
Senescent cells accumulate in tissues during aging and are considered to underlie several aging‐associated phenotypes and diseases. We recently reported that the elimination of p19ARF‐expressing senescent cells from lung tissue restored tissue function and gene expression in middle‐aged (12‐month‐old) mice. The aging of lung tissue increases the risk of pulmonary diseases such as emphysema, and cellular senescence is accelerated in emphysema patients. However, there is currently no direct evidence to show that cellular senescence promotes the pathology of emphysema, and the involvement of senescence in the development of this disease has yet to be clarified. We herein demonstrated that p19ARF facilitated the development of pulmonary emphysema in mice. The elimination of p19ARF‐expressing cells prevented lung tissue from elastase‐induced lung dysfunction. These effects appeared to depend on reduced pulmonary inflammation, which is enhanced after elastase stimulation. Furthermore, the administration of a senolytic drug that selectively kills senescent cells attenuated emphysema‐associated pathologies. These results strongly suggest the potential of senescent cells as therapeutic/preventive targets for pulmonary emphysema.  相似文献   

10.
The decline of cell function caused by ageing directly impacts the therapeutic effects of autologous stem cell transplantation for heart repair. The aim of this study was to investigate whether overexpression of neuron‐derived neurotrophic factor (NDNF) can rejuvenate the adipose‐derived stem cells in the elderly and such rejuvenated stem cells can be used for cardiac repair. Human adipose‐derived stem cells (hADSCs) were obtained from donors age ranged from 17 to 92 years old. The effects of age on the biological characteristics of hADSCs and the expression of ageing‐related genes were investigated. The effects of transplantation of NDNF over‐expression stem cells on heart repair after myocardial infarction (MI) in adult mice were investigated. The proliferation, migration, adipogenic and osteogenic differentiation of hADSCs inversely correlated with age. The mRNA and protein levels of NDNF were significantly decreased in old (>60 years old) compared to young hADSCs (<40 years old). Overexpression of NDNF in old hADSCs significantly improved their proliferation and migration capacity in vitro. Transplantation of NDNF‐overexpressing old hADSCs preserved cardiac function through promoting angiogenesis on MI mice. NDNF rejuvenated the cellular function of aged hADSCs. Implantation of NDNF‐rejuvenated hADSCs improved angiogenesis and cardiac function in infarcted mouse hearts.  相似文献   

11.
Elderly individuals have an increased susceptibility to microbial infections because of age‐related anatomical, physiological, and environmental factors. However, the mechanism of aging‐dependent susceptibility to infection is not fully understood. Here, we found that caveolae‐dependent endocytosis is elevated in senescent cells. Thus, we focused on the implications of caveolae‐dependent endocytosis using Salmonella typhimurium, which causes a variety of diseases in humans and animals by invading the eukaryotic host cell. Salmonella invasion increased in nonphagocytotic senescent host cells in which caveolin‐1 was also increased. When caveolae structures were disrupted by methyl‐β‐cyclodextrin or siRNA of caveolin‐1 in the senescent cells, Salmonellae invasion was reduced markedly compared to that in nonsenescent cells. In contrast, the over‐expression of caveolin‐1 led to increased Salmonellae invasion in nonsenescent cells. Moreover, in aged mice, caveolin‐1 was found to be highly expressed in Peyer’s patch and spleen, which are targets for infection by Salmonellae. These results suggest that high levels of caveolae and caveolin‐1 in senescent host cells might be related to the increased susceptibility of elderly individuals to microbial infections.  相似文献   

12.
Heart failure following myocardial infarction (MI) is the leading cause of death in diabetic patients. Angiogenesis contributes to cardiac repair and functional recovery in post‐MI. Our previous study shows that apelin (APLN) increases Sirtuin 3 (Sirt3) expression and ameliorates diabetic cardiomyopathy. In this study, we further investigated the direct role of Sirt3 in APLN‐induced angiogenesis in post‐MI model of diabetes. Wild‐type (WT) and Sirt3 knockout (Sirt3KO) mice were induced into diabetes by i.p. streptozotocin (STZ). STZ mice were then subjected to MI followed by immediate intramyocardial injection with adenovirus‐apelin (Ad‐APLN). Our studies showed that Sirt3 expression was significantly reduced in the hearts of STZ mice. Ad‐APLN treatment resulted in up‐regulation of Sirt3, angiopoietins/Tie‐2 and VEGF/VEGFR2 expression together with increased myocardial vascular densities in WT‐STZ+MI mice, but these alterations were not observed in Sirt3KO‐STZ+MI mice. In vitro, overexpression of APLN increased Sirt3 expression and angiogenesis in endothelial progenitor cells (EPC) from WT mice, but not in EPC from Sirt3KO mice. APLN gene therapy increases angiogenesis and improves cardiac functional recovery in diabetic hearts via up‐regulation of Sirt3 pathway.  相似文献   

13.
Excessive immune‐mediated inflammatory reaction plays a deleterious role in ventricular remodelling after myocardial infarction (MI). Interleukin (IL)‐38 is a newly characterized cytokine of the IL‐1 family and has been reported to exert a protective effect in some autoimmune diseases. However, its role in cardiac remodelling post‐MI remains unknown. In this study, we found that the expression of IL‐38 was increased in infarcted heart after MI induced in C57BL/6 mice by permanent ligation of the left anterior descending artery. In addition, our data showed that ventricular remodelling after MI was significantly ameliorated after recombinant IL‐38 injection in mice. This amelioration was demonstrated by better cardiac function, restricted inflammatory response, attenuated myocardial injury and decreased myocardial fibrosis. Our results in vitro revealed that IL‐38 affects the phenotype of dendritic cells (DCs) and IL‐38 plus troponin I (TNI)‐treated tolerogenic DCs dampened adaptive immune response when co‐cultured with CD4+T cells. In conclusion, IL‐38 plays a protective effect in ventricular remodelling post‐MI, one possibility by influencing DCs to attenuate inflammatory response. Therefore, targeting IL‐38 may hold a new therapeutic potential in treating MI.  相似文献   

14.
Some studies show eliminating senescent cells rejuvenate aged mice and attenuate deleterious effects of chemotherapy. Nevertheless, it remains unclear whether senescence affects immune cell function. We provide evidence that exposure of mice to ionizing radiation (IR) promotes the senescent‐associated secretory phenotype (SASP) and expression of p16INK4a in splenic cell populations. We observe splenic T cells exhibit a reduced proliferative response when cultured with allogenic cells in vitro and following viral infection in vivo. Using p16‐3MR mice that allow elimination of p16INK4a‐positive cells with exposure to ganciclovir, we show that impaired T‐cell proliferation is partially reversed, mechanistically dependent on p16INK4a expression and the SASP. Moreover, we found macrophages isolated from irradiated spleens to have a reduced phagocytosis activity in vitro, a defect also restored by the elimination of p16INK4a expression. Our results provide molecular insight on how senescence‐inducing IR promotes loss of immune cell fitness, which suggest senolytic drugs may improve immune cell function in aged and patients undergoing cancer treatment.  相似文献   

15.
Ventricular remodeling following myocardial infarction (MI) is a major cause of heart failure, a condition prevalent in older individuals. Following MI, immune cells are mobilized to the myocardium from peripheral lymphoid organs and play an active role in orchestrating repair. While the effect of aging on mouse bone marrow (BM) has been studied, less is known about how aging affects human BM cells and their ability to regulate repair processes. In this study, we investigate the effect aging has on human BM cell responses post‐MI using a humanized chimeric mouse model. BM samples were collected from middle aged (mean age 56.4 ± 0.97) and old (mean age 72.7 ± 0.59) patients undergoing cardiac surgery, CD34+/− cells were isolated, and NOD‐scid‐IL2rγnull (NSG) mice were reconstituted. Three months following reconstitution, the animals were examined at baseline or subjected to coronary artery ligation (MI). Younger patient cells exhibited greater repopulation capacity in the BM, blood, and spleen as well as greater lymphoid cell production. Following MI, CD34+ cell age impacted donor and host cellular responses. Mice reconstituted with younger CD34+ cells exhibited greater human CD45+ recruitment to the heart compared to mice reconstituted with old cells. Increased cellular responses were primarily driven by T‐cell recruitment, and these changes corresponded with greater human IFNy levels and reduced mouse IL‐1β in the heart. Age‐dependent changes in BM function led to significantly lower survival, increased infarct expansion, impaired host cell responses, and reduced function by 4w post‐MI. In contrast, younger CD34+ cells helped to limit remodeling and preserve function post‐MI.  相似文献   

16.
Senescent cells accumulate with age in multiple tissues and may cause age‐associated disease and functional decline. In vitro, senescent cells induce senescence in bystander cells. To see how important this bystander effect may be for accumulation of senescent cells in vivo, we xenotransplanted senescent cells into skeletal muscle and skin of immunocompromised NSG mice. 3 weeks after the last transplantation, mouse dermal fibroblasts and myofibres displayed multiple senescence markers in the vicinity of transplanted senescent cells, but not where non‐senescent or no cells were injected. Adjacent to injected senescent cells, the magnitude of the bystander effect was similar to the increase in senescence markers in myofibres between 8 and 32 months of age. The age‐associated increase of senescence markers in muscle correlated with fibre thinning, a widely used marker of muscle aging and sarcopenia. Senescent cell transplantation resulted in borderline induction of centrally nucleated fibres and no significant thinning, suggesting that myofibre aging might be a delayed consequence of senescence‐like signalling. To assess the relative importance of the bystander effect versus cell‐autonomous senescence, we compared senescent hepatocyte frequencies in livers of wild‐type and NSG mice under ad libitum and dietary restricted feeding. This enabled us to approximate cell‐autonomous and bystander‐driven senescent cell accumulation as well as the impact of immunosurveillance separately. The results suggest a significant impact of the bystander effect for accumulation of senescent hepatocytes in liver and indicate that senostatic interventions like dietary restriction may act as senolytics in immunocompetent animals.  相似文献   

17.
Extracellular vesicles (EVs) have emerged as important regulators of inter‐cellular and inter‐organ communication, in part via the transfer of their cargo to recipient cells. Although circulating EVs have been previously studied as biomarkers of aging, how circulating EVs change with age and the underlying mechanisms that contribute to these changes are poorly understood. Here, we demonstrate that aging has a profound effect on the circulating EV pool, as evidenced by changes in concentration, size, and cargo. Aging also alters particle function; treatment of cells with EV fractions isolated from old plasma reduces macrophage responses to lipopolysaccharide, increases phagocytosis, and reduces endothelial cell responses to vascular endothelial growth factor compared to cells treated with young EV fractions. Depletion studies indicate that CD63+ particles mediate these effects. Treatment of macrophages with EV‐like particles revealed that old particles increased the expression of EV miRNAs in recipient cells. Transfection of cells with microRNA mimics recapitulated some of the effects seen with old EV‐like particles. Investigation into the underlying mechanisms using bone marrow transplant studies revealed circulating cell age does not substantially affect the expression of aging‐associated circulating EV miRNAs in old mice. Instead, we show that cellular senescence contributes to changes in particle cargo and function. Notably, senolytic treatment of old mice shifted plasma particle cargo and function toward that of a younger phenotype. Collectively, these results demonstrate that senescent cells contribute to changes in plasma EVs with age and suggest a new mechanism by which senescent cells can affect cellular functions throughout the body.  相似文献   

18.
Exercise training (ET) is a safe and efficacious therapeutic approach for myocardial infarction (MI). Given the numerous benefits of exercise, exercise‐induced mediators may be promising treatment targets for MI. C57BL/6 mice were fed 1‐trifluoromethoxyphenyl‐3‐(1‐propionylpiperidine‐4‐yl) urea (TPPU), a novel soluble epoxide hydrolase inhibitor (sEHI), to increase epoxyeicosatrienoic acid (EET) levels, for 1 week before undergoing MI surgery. After 1‐week recovery, the mice followed a prescribed exercise programme. Bone marrow‐derived endothelial progenitor cells (EPCs) were isolated from the mice after 4 weeks of exercise and cultured for 7 days. Angiogenesis around the ischaemic area, EPC functions, and the expression of microRNA‐126 (miR‐126) and its target gene Spred1 were measured. The results were confirmed in vitro by adding TPPU to EPC culture medium. ET significantly increased serum EET levels and promoted angiogenesis after MI. TPPU enhanced the effects of ET to reduce the infarct area and improve cardiac function after MI. ET increased EPC function and miR‐126 expression, which were further enhanced by TPPU, while Spred1 expression was significantly down‐regulated. Additionally, the protein kinase B/glycogen synthase kinase 3β (AKT/GSK3β) signalling pathway was activated after the administration of TPPU. EETs are a potential mediator of exercise‐induced cardioprotection in mice after MI. TPPU enhances exercise‐induced cardiac recovery in mice after MI by increasing EET levels and promoting angiogenesis around the ischaemic area.  相似文献   

19.
Myocardial infarction is one of the leading causes of mortality in aged people. Whether age of donors of mesenchymal stem cells (MSCs) affects its ability to repair the senescent heart tissue is unknown. In the present study, MSCs from young (2 months) and aged (18 months) green fluorescent protein expressing C57BL/6 mice were characterized with p16INK4a and β‐gal associated senescence. Myocardial infarction was produced in 18‐month‐old wild‐type C57BL/6 mice transplanted with MSCs from young and aged animals in the border of the infarct region. Expression of p16INK4a in MSCs from aged animals was significantly higher (21.5%± 1.2, P < 0.05) as compared to those from young animals (9.2%± 2.8). A decline in the tube‐forming ability on Matrigel was also observed in aged MSCs as well as down‐regulation of insulin‐like growth factor‐1, fibroblast growth factor (FGF‐2), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) compared to young cells. Mice transplanted with young MSCs exhibited significant improvement in their left ventricle (LV) systolic and diastolic function as demonstrated by dp/dtmax, dp/dtmin, Pmax. Reduction in the LV fibrotic area was concomitant with neovascularization as demonstrated by CD31 and smooth muscle actin (SMA) expression. Real‐time RT‐PCR analysis for VEGF, stromal cell derived factor (SDF‐1α) and GATA binding factor 4 (GATA‐4) genes further confirmed the effect of age on MSC differentiation towards cardiac lineages and enhanced angiogenesis. These studies lead to the conclusion that repair potential of MSCs is dependent on the age of donors and the repair of senescent infarcted myocardium requires young healthy MSCs.  相似文献   

20.
Senescent cells accumulate with age in vertebrates and promote aging largely through their senescence‐associated secretory phenotype (SASP). Many types of stress induce senescence, including genotoxic stress. ERCC1‐XPF is a DNA repair endonuclease required for multiple DNA repair mechanisms that protect the nuclear genome. Humans or mice with reduced expression of this enzyme age rapidly due to increased levels of spontaneous, genotoxic stress. Here, we asked whether this corresponds to an increased level of senescent cells. p16Ink4a and p21Cip1 mRNA were increased ~15‐fold in peripheral lymphocytes from 4‐ to 5‐month‐old Ercc1?/? and 2.5‐year‐old wild‐type (WT) mice, suggesting that these animals exhibit a similar biological age. p16Ink4a and p21Cip1 mRNA were elevated in 10 of 13 tissues analyzed from 4‐ to 5‐month‐old Ercc1?/? mice, indicating where endogenous DNA damage drives senescence in vivo. Aged WT mice had similar increases of p16Ink4a and p21Cip1 mRNA in the same 10 tissues as the mutant mice. Senescence‐associated β–galactosidase activity and p21Cip1 protein also were increased in tissues of the progeroid and aged mice, while Lamin B1 mRNA and protein levels were diminished. In Ercc1?/Δ mice with a p16Ink4a luciferase reporter, bioluminescence rose steadily with age, particularly in lung, thymus, and pancreas. These data illustrate where senescence occurs with natural and accelerated aging in mice and the relative extent of senescence among tissues. Interestingly, senescence was greater in male mice until the end of life. The similarities between Ercc1?/? and aged WT mice support the conclusion that the DNA repair‐deficient mice accurately model the age‐related accumulation of senescent cells, albeit six‐times faster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号