首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Both an increase in osteoclast and a decrease in osteoblast numbers contribute to skeletal aging. Markers of cellular senescence, including expression of the cyclin inhibitor p16, increase with aging in several bone cell populations. The elimination of p16‐expressing cells in old mice, using the INK‐ATTAC transgene, increases bone mass indicating that senescent cells contribute to skeletal aging. However, the identity of the senescent cells and the extent to which ablation of p16‐expressing cells may prevent skeletal aging remain unknown. Using mice expressing the p16‐3MR transgene, we examined whether elimination of p16‐expressing cells between 12 and 24 months of age could preserve bone mass; and whether elimination of these cells from 20 to 26 months of age could restore bone mass. The activation of the p16‐3MR transgene by ganciclovir (GCV) greatly diminished p16 levels in the brain, liver, and osteoclast progenitors from the bone marrow. The age‐related increase in osteoclastogenic potential of myeloid cells was also abrogated by GCV. However, GCV did not alter p16 levels in osteocytes—the most abundant cell type in bone—and had no effect on the skeletal aging of p16‐3MR mice. These findings indicate that the p16‐3MR transgene does not eliminate senescent osteocytes but it does eliminate senescent osteoclast progenitors and senescent cells in other tissues, as described previously. Elimination of senescent osteoclast progenitors, in and of itself, has no effect on the age‐related loss of bone mass. Hence, other senescent cell types, such as osteocytes, must be the seminal culprits.  相似文献   

2.
Cigarette smoke (CS) leads to increased oxidative stress, inflammation, and exaggerated senescence, which are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). While the role of cellular senescence in COPD is known, it is not clear if the removal of senescent cells could alleviate the disease symptoms. To test this, we used the novel mouse model-p16-3MR, and studied the effect of ganciclovir (GCV)-mediated removal of senescent cells after chronic CS (3 months) and environmental tobacco smoke (ETS) (6 months) exposure to CS. Our results showed the reversal of CS-induced cellular senescence on the clearance of p16+ senesced cells by GCV treatment. Interestingly, the clearance of p16+ senescent cells via GCV led to a decrease in the neutrophil counts in the BALF of GCV-treated CS-exposed p16-3MR mice, as well as reversal of CS-mediated airspace enlargement in p16-3MR mice. Mice exposed to low dose ETS caused insignificant changes in the SA-β-Gal+ senescent cells and airspace enlargement. Overall, our data provide evidence for the role of lung cellular senescence on smoke exposure and clearance of senescent cells in p16-3MR mice in the reversal of COPD/emphysema pathology with a possibility of senolytics as therapeutic interventions in COPD.  相似文献   

3.
Aging leads to increased cellular senescence and is associated with decreased potency of tissue‐specific stem/progenitor cells. Here, we have done an extensive analysis of cardiac progenitor cells (CPCs) isolated from human subjects with cardiovascular disease, aged 32–86 years. In aged subjects (>70 years old), over half of CPCs are senescent (p16INK4A, SA‐β‐gal, DNA damage γH2AX, telomere length, senescence‐associated secretory phenotype [SASP]), unable to replicate, differentiate, regenerate or restore cardiac function following transplantation into the infarcted heart. SASP factors secreted by senescent CPCs renders otherwise healthy CPCs to senescence. Elimination of senescent CPCs using senolytics abrogates the SASP and its debilitative effect in vitro. Global elimination of senescent cells in aged mice (INK‐ATTAC or wild‐type mice treated with D + Q senolytics) in vivo activates resident CPCs and increased the number of small Ki67‐, EdU‐positive cardiomyocytes. Therapeutic approaches that eliminate senescent cells may alleviate cardiac deterioration with aging and restore the regenerative capacity of the heart.  相似文献   

4.
Senescent cells are present in premalignant lesions and sites of tissue damage and accumulate in tissues with age. In vivo identification, quantification and characterization of senescent cells are challenging tasks that limit our understanding of the role of senescent cells in diseases and aging. Here, we present a new way to precisely quantify and identify senescent cells in tissues on a single‐cell basis. The method combines a senescence‐associated beta‐galactosidase assay with staining of molecular markers for cellular senescence and of cellular identity. By utilizing technology that combines flow cytometry with high‐content image analysis, we were able to quantify senescent cells in tumors, fibrotic tissues, and tissues of aged mice. Our approach also yielded the finding that senescent cells in tissues of aged mice are larger than nonsenescent cells. Thus, this method provides a basis for quantitative assessment of senescent cells and it offers proof of principle for combination of different markers of senescence. It paves the way for screening of senescent cells for identification of new senescence biomarkers, genes that bypass senescence or senolytic compounds that eliminate senescent cells, thus enabling a deeper understanding of the senescent state in vivo.  相似文献   

5.
ERCC1 (excision repair cross complementing‐group 1) is a mammalian endonuclease that incises the damaged strand of DNA during nucleotide excision repair and interstrand cross‐link repair. Ercc1?/Δ mice, carrying one null and one hypomorphic Ercc1 allele, have been widely used to study aging due to accelerated aging phenotypes in numerous organs and their shortened lifespan. Ercc1?/Δ mice display combined features of human progeroid and cancer‐prone syndromes. Although several studies report cellular senescence and apoptosis associated with the premature aging of Ercc1?/Δ mice, the link between these two processes and their physiological relevance in the phenotypes of Ercc1?/Δ mice are incompletely understood. Here, we show that ERCC1 depletion, both in cultured human fibroblasts and the skin of Ercc1?/Δ mice, initially induces cellular senescence and, importantly, increased expression of several SASP (senescence‐associated secretory phenotype) factors. Cellular senescence induced by ERCC1 deficiency was dependent on activity of the p53 tumor‐suppressor protein. In turn, TNFα secreted by senescent cells induced apoptosis, not only in neighboring ERCC1‐deficient nonsenescent cells, but also cell autonomously in the senescent cells themselves. In addition, expression of the stem cell markers p63 and Lgr6 was significantly decreased in Ercc1?/Δ mouse skin, where the apoptotic cells are localized, compared to age‐matched wild‐type skin, possibly due to the apoptosis of stem cells. These data suggest that ERCC1‐depleted cells become susceptible to apoptosis via TNFα secreted from neighboring senescent cells. We speculate that parts of the premature aging phenotypes and shortened health‐ or lifespan may be due to stem cell depletion through apoptosis promoted by senescent cells.  相似文献   

6.
7.
We previously reported that the canonical innate immune receptor toll‐like receptor 4 (TLR4) is critical in maintaining lung integrity. However, the molecular mechanisms via which TLR4 mediates its effect remained unclear. In the present study, we identified distinct contributions of lung endothelial cells (Ec) and epithelial cells TLR4 to pulmonary homeostasis using genetic‐specific, lung‐ and cell‐targeted in vivo methods. Emphysema was significantly prevented via the reconstituting of human TLR4 expression in the lung Ec of TLR4?/? mice. Lung Ec‐silencing of TLR4 in wild‐type mice induced emphysema, highlighting the specific and distinct role of Ec‐expressed TLR4 in maintaining lung integrity. We also identified a previously unrecognized role of TLR4 in preventing expression of p16INK4a, a senescence‐associated gene. Lung Ec‐p16INK4a‐silencing prevented TLR4?/? induced emphysema, revealing a new functional role for p16INK4ain lungs. TLR4 suppressed endogenous p16INK4a expression via HDAC2‐mediated deacetylation of histone H4. These findings suggest a novel role for TLR4 in maintaining of lung homeostasis via epigenetic regulation of senescence‐related gene expression.  相似文献   

8.
Nω-nitro-L-arginine methyl ester (L-NAME) treatment induces arteriosclerosis and vascular senescence. Here, we report that the systemic inhibition of nitric oxide (NO) production by L-NAME causes pulmonary emphysema. L-NAME-treated lungs exhibited both the structural (alveolar tissue destruction) and functional (increased compliance and reduced elastance) characteristics of emphysema development. Furthermore, we found that L-NAME-induced emphysema could be attenuated through both genetic deficiency and pharmacological inhibition of plasminogen activator inhibitor-1 (PAI-1). Because PAI-1 is an important contributor to the development of senescence both in vitro and in vivo, we investigated whether L-NAME-induced senescence led to the observed emphysematous changes. We found that L-NAME treatment was associated with molecular and cellular evidence of premature senescence in mice, and that PAI-1 inhibition attenuated these increases. These findings indicate that NO serves to protect and defend lung tissue from physiological aging.  相似文献   

9.
Cellular senescence is an anti‐proliferative program that restricts the propagation of cells subjected to different kinds of stress. Cellular senescence was initially described as a cell‐autonomous tumor suppressor mechanism that triggers an irreversible cell cycle arrest that prevents the proliferation of damaged cells at risk of neoplastic transformation. However, discoveries during the last decade have established that senescent cells can also impact the surrounding tissue microenvironment and the neighboring cells in a non‐cell‐autonomous manner. These non‐cell‐autonomous activities are, in part, mediated by the selective secretion of extracellular matrix degrading enzymes, cytokines, chemokines and immune modulators, which collectively constitute the senescence‐associated secretory phenotype. One of the key functions of the senescence‐associated secretory phenotype is to attract immune cells, which in turn can orchestrate the elimination of senescent cells. Interestingly, the clearance of senescent cells seems to be critical to dictate the net effects of cellular senescence. As a general rule, the successful elimination of senescent cells takes place in processes that are considered beneficial, such as tumor suppression, tissue remodeling and embryonic development, while the chronic accumulation of senescent cells leads to more detrimental consequences, namely, cancer and aging. Nevertheless, exceptions to this rule may exist. Now that cellular senescence is in the spotlight for both anti‐cancer and anti‐aging therapies, understanding the precise underpinnings of senescent cell removal will be essential to exploit cellular senescence to its full potential.  相似文献   

10.
Aging drives the accumulation of senescent cells (SnCs) including stem/progenitor cells in bone marrow, which contributes to aging‐related bone degenerative pathologies. Local elimination of SnCs has been shown as potential treatment for degenerative diseases. As LepR+ mesenchymal stem/progenitor cells (MSPCs) in bone marrow are the major population for forming bone/cartilage and maintaining HSCs niche, whether local elimination of senescent LepR+ MSPCs delays aging‐related pathologies and improves local microenvironment need to be well defined. In this study, we performed local delivery of tetramethylpyrazine (TMP) in bone marrow of aging mice, which previously showed to be used for the prevention and treatment of glucocorticoid‐induced osteoporosis (GIOP). We found the increased accumulation of senescent LepR+ MSPCs in bone marrow of aging mice, and TMP significantly inhibited the cell senescent phenotype via modulating Ezh2‐H3k27me3. Most importantly, local delivery of TMP improved bone marrow microenvironment and maintained bone homeostasis in aging mice by increasing metabolic and anti‐inflammatory responses, inducing H‐type vessel formation, and maintaining HSCs niche. These findings provide evidence on the mechanisms, characteristics and functions of local elimination of SnCs in bone marrow, as well as the use of TMP as a potential treatment to ameliorate human age‐related skeletal diseases and to promote healthy lifespan.  相似文献   

11.
Augmented activities of both arginase and S6K1 are involved in endothelial dysfunction in aging. This study was to investigate whether or not there is a crosstalk between arginase and S6K1 in endothelial inflammation and aging in senescent human umbilical vein endothelial cells and in aging mouse models. We show increased arginase‐II (Arg‐II) expression/activity in senescent endothelial cells. Silencing Arg‐II in senescent cells suppresses eNOS‐uncoupling, several senescence markers such as senescence‐associated‐β‐galactosidase activity, p53‐S15, p21, and expression of vascular adhesion molecule‐1 (VCAM1) and intercellular adhesion molecule‐1 (ICAM1). Conversely, overexpressing Arg‐II in nonsenescent cells promotes eNOS‐uncoupling, endothelial senescence, and enhances VCAM1/ICAM1 levels and monocyte adhesion, which are inhibited by co‐expressing superoxide dismutase‐1. Moreover, overexpressing S6K1 in nonsenescent cells increases, whereas silencing S6K1 in senescent cells decreases Arg‐II gene expression/activity through regulation of Arg‐II mRNA stability. Furthermore, S6K1 overexpression exerts the same effects as Arg‐II on endothelial senescence and inflammation responses, which are prevented by silencing Arg‐II, demonstrating a role of Arg‐II as the mediator of S6K1‐induced endothelial aging. Interestingly, mice that are deficient in Arg‐II gene (Arg‐II?/?) are not only protected from age‐associated increase in Arg‐II, VCAM1/ICAM1, aging markers, and eNOS‐uncoupling in the aortas but also reveal a decrease in S6K1 activity. Similarly, silencing Arg‐II in senescent cells decreases S6K1 activity, demonstrating that Arg‐II also stimulates S6K1 in aging. Our study reveals a novel mechanism of mutual positive regulation between S6K1 and Arg‐II in endothelial inflammation and aging. Targeting S6K1 and/or Arg‐II may decelerate vascular aging and age‐associated cardiovascular disease development.  相似文献   

12.
Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin‐induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 109 plaque‐forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF–vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF‐positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase‐induced emphysema, indicating that KGF‐expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF‐expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed.
  相似文献   

13.
Some studies show eliminating senescent cells rejuvenate aged mice and attenuate deleterious effects of chemotherapy. Nevertheless, it remains unclear whether senescence affects immune cell function. We provide evidence that exposure of mice to ionizing radiation (IR) promotes the senescent‐associated secretory phenotype (SASP) and expression of p16INK4a in splenic cell populations. We observe splenic T cells exhibit a reduced proliferative response when cultured with allogenic cells in vitro and following viral infection in vivo. Using p16‐3MR mice that allow elimination of p16INK4a‐positive cells with exposure to ganciclovir, we show that impaired T‐cell proliferation is partially reversed, mechanistically dependent on p16INK4a expression and the SASP. Moreover, we found macrophages isolated from irradiated spleens to have a reduced phagocytosis activity in vitro, a defect also restored by the elimination of p16INK4a expression. Our results provide molecular insight on how senescence‐inducing IR promotes loss of immune cell fitness, which suggest senolytic drugs may improve immune cell function in aged and patients undergoing cancer treatment.  相似文献   

14.
Senescent cells accumulate with age in vertebrates and promote aging largely through their senescence‐associated secretory phenotype (SASP). Many types of stress induce senescence, including genotoxic stress. ERCC1‐XPF is a DNA repair endonuclease required for multiple DNA repair mechanisms that protect the nuclear genome. Humans or mice with reduced expression of this enzyme age rapidly due to increased levels of spontaneous, genotoxic stress. Here, we asked whether this corresponds to an increased level of senescent cells. p16Ink4a and p21Cip1 mRNA were increased ~15‐fold in peripheral lymphocytes from 4‐ to 5‐month‐old Ercc1?/? and 2.5‐year‐old wild‐type (WT) mice, suggesting that these animals exhibit a similar biological age. p16Ink4a and p21Cip1 mRNA were elevated in 10 of 13 tissues analyzed from 4‐ to 5‐month‐old Ercc1?/? mice, indicating where endogenous DNA damage drives senescence in vivo. Aged WT mice had similar increases of p16Ink4a and p21Cip1 mRNA in the same 10 tissues as the mutant mice. Senescence‐associated β–galactosidase activity and p21Cip1 protein also were increased in tissues of the progeroid and aged mice, while Lamin B1 mRNA and protein levels were diminished. In Ercc1?/Δ mice with a p16Ink4a luciferase reporter, bioluminescence rose steadily with age, particularly in lung, thymus, and pancreas. These data illustrate where senescence occurs with natural and accelerated aging in mice and the relative extent of senescence among tissues. Interestingly, senescence was greater in male mice until the end of life. The similarities between Ercc1?/? and aged WT mice support the conclusion that the DNA repair‐deficient mice accurately model the age‐related accumulation of senescent cells, albeit six‐times faster.  相似文献   

15.
To investigate the effect of cell cycle inhibitor p19ARF on replicative senescence of human diploid cell, recombinant p19ARF eukaryotic expression vector was constructed and p19ARF gene was transfected into human diploid fibroblasts (WI-38 cells) by liposome-mediated transfection for overexpression. Then, the effects of p19ARF on replicative senescence of WI-38 cells were observed. The results re- vealed that, compared with control cells, the WI-38 cells in which p19ARF gene was introduced showed significant up-regulation of p53 and p21 expression level, decrease of cell generation by 10 12 generations, decline of cell growth rate with cell cycle being arrested at G1 phase, increase of positive rate of senescent marker SA-β-gal staining, and decrease of mitochondrial membrane potential. The morphology of the transfected fibroblasts presented the characteristics changes similar to senescent cells. These results indicated that high expression of p19ARF may promote the senescent process of human diploid cells.  相似文献   

16.
17.
Age-related health decline has been attributed to the accumulation of senescent cells recognized in vivo by p16(Ink4a) expression. The pharmacological elimination of p16(Ink4a)-positive cells from the tissues of mice was shown to extend a healthy lifespan. Here, we describe a population of mesenchymal cells isolated from mice that are highly p16(INK4a)-positive are proficient in proliferation but lack other properties of cellular senescence. These data, along with earlier reports on p16(Ink4a)-positive macrophages, indicate that p16(Ink4a)-positive and senescent cell populations only partially intersect, therefore, extending the list of potential cellular targets for anti- aging therapies.  相似文献   

18.
Cellular senescence, a state of irreversible growth arrest triggered by various stressors, engages in a category of pathological processes, whereby senescent cells accumulate in mitotic tissues. Senolytics as novel medicine against aging and various diseases through the elimination of senescent cells has emerged rapidly in recent years. Exercise is a potent anti‐aging and anti‐chronic disease medicine, which has shown the capacity to lower the markers of cellular senescence over the past decade. However, whether exercise is a senolytic medicine for aging and various diseases remains unclear. Here, we have conducted a systematic review of the published literature studying the senolytic effects of exercise or physical activity on senescent cells under various states in both human and animal models. Exercise can reduce the markers of senescent cells in healthy humans, while it lowered the markers of senescent cells in obese but not healthy animals. The discrepancy between human and animal studies may be due to the relatively small volume of research and the variations in markers of senescent cells, types of cells/tissues, and health conditions. These findings suggest that exercise has senolytic properties under certain conditions, which warrant further investigations.  相似文献   

19.
Senescence of alveolar type 2 (ATII) cells, progenitors of the alveolar epithelium, is implicated in the pathogeneses of idiopathic pulmonary fibrosis (IPF), an aging‐related progressive fatal lung disorder with unknown etiology. The mechanism underlying ATII cell senescence in fibrotic lung diseases, however, remains poorly understood. In this study, we report that ATII cells in IPF lungs express higher levels of serpine 1, also known as plasminogen activator inhibitor 1 (PAI‐1), and cell senescence markers p21 and p16, compared to ATII cells in control lungs. Silencing PAI‐1 or inhibition of PAI‐1 activity in cultured rat ATII (L2) cells leads to decreases in p53 serine 18 phosphorylation (p53S18P), p53 and p21 protein expressions; an increase in retinoblastoma protein phosphorylation (ppRb); and a reduction in the sensitivity to bleomycin‐ and doxorubicin‐induced senescence. Silencing p53, on the other hand, abrogates PAI‐1 protein‐stimulated p21 expression and cell senescence. In vivo studies, using ATII cell‐specific PAI‐1 conditional knockout mouse model generated recently in this laboratory, further support the role of PAI‐1 in the activation of p53‐p21‐Rb cell cycle repression pathway, ATII cell senescence, and lung fibrosis induced by bleomycin. This study reveals a novel function of PAI‐1 in regulation of cell cycle and suggests that elevation of PAI‐1 contributes importantly to ATII cell senescence in fibrotic lung diseases.  相似文献   

20.
AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress‐induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide‐induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP‐RFP‐LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD+ levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD+ synthesis. In addition, the mechanistic relationship of autophagic flux and NAD+ synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress‐induced senescence by improving autophagic flux and NAD+ homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD+ homeostasis, and it is also valuable in the development of innovative strategies to combat aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号