首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35737篇
  免费   3361篇
  国内免费   4248篇
  2024年   25篇
  2023年   472篇
  2022年   623篇
  2021年   1768篇
  2020年   1378篇
  2019年   1732篇
  2018年   1600篇
  2017年   1209篇
  2016年   1546篇
  2015年   2370篇
  2014年   2874篇
  2013年   3017篇
  2012年   3599篇
  2011年   3198篇
  2010年   2037篇
  2009年   1905篇
  2008年   2087篇
  2007年   1859篇
  2006年   1593篇
  2005年   1407篇
  2004年   1127篇
  2003年   1029篇
  2002年   833篇
  2001年   612篇
  2000年   501篇
  1999年   500篇
  1998年   344篇
  1997年   284篇
  1996年   262篇
  1995年   223篇
  1994年   213篇
  1993年   156篇
  1992年   164篇
  1991年   147篇
  1990年   134篇
  1989年   113篇
  1988年   86篇
  1987年   69篇
  1986年   56篇
  1985年   70篇
  1984年   23篇
  1983年   31篇
  1982年   20篇
  1981年   15篇
  1980年   9篇
  1979年   8篇
  1977年   4篇
  1976年   3篇
  1969年   2篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.  相似文献   
3.
4.
The murine 2',5'-oligoadenylate synthetase ME-12 gene regulatory region AB forms six complexes with protein factors in murine BALB/c 3T3 cells as demonstrated by the mobility shift electrophoresis assay under the reaction conditions used. The complexes, designated C1-C6 in order of their decreasing electrophoretic mobility, showed three distinctive specificities with regulatory region AB, element A, and element B as probes or competing DNA: 1) C1 is region AB-specific (this complex did not form with either element A or B used alone or as a mixture); 2) C5 formed both with element A and element B; 3) C2, C3, C4, and C6 formed with element B, but not A. The protein factors that give rise to these complexes show differential DNA binding activities in various buffer solutions at different pH values. The C4-forming protein factor is the interferon (IFN)-alpha/beta-stimulated response factor (ISRF) which shows element B specificity. It preexists in the cytoplasm. ISRF appears to be complexed to an inhibitor (ISRFI) in the cytoplasm and to dissociate from the inhibitor and to translocate into the nucleus upon treatment of cells with IFN-alpha/beta. We propose that IFN-alpha/beta treatment of BALB/c 3T3 can trigger at least two events: 1) loosening of a tight inhibitor-ISRF complex with the release of free ISRF; this may be mediated via phosphorylation of ISRF or ISRFI; 2) translocation of ISRF into the nucleus and binding to the enhancer element B, which results in the activation of 2',5'-oligoadenylate synthetase gene expression.  相似文献   
5.
6.
7.
Journal of Plant Growth Regulation - Activation of complex metabolic pathways and antioxidant activities is necessary for enhancing quality and health promoting capacity of food crops. Plant growth...  相似文献   
8.
In the natural world,plants and animals haveevolved over time to best adapt to the environment.Theyinteract very effectively with the surrounding environmentby exchanging energies and mass flow across theircuticles of specific micro structures and functions toachieve perfect energy balance.Such different functionsmay include the limitation of uncontrolled loss of water,protection from solar radiation,micro effect of inducedturbulence on flow drag reduction,defence againstpathogens,changing surface wettability and hydropho-  相似文献   
9.
There is an urgent need for new therapeutic avenues to improve the outcome of patients with glioblastoma multiforme (GBM). Current studies have suggested that cucurbitacin I, a natural selective inhibitor of JAK2/STAT3, has a potent anticancer effect on a variety of cancer cell types. This study showed that autophagy and apoptosis were induced by cucurbitacin I. Exposure of GBM cells to cucurbitacin I resulted in pronounced apoptotic cell death through activating bcl-2 family proteins. Cells treatment with cucurbitacin I up-regulated Beclin 1 and triggered autophagosome formation and accumulation as well as conversion of LC3I to LC3II. Activation of the AMP-activated protein kinase/mammalian target of rapamycin/p70S6K pathway, but not the PI3K/AKT pathway, occurred in autophagy induced by cucurbitacin I, which was accompanied by decreased hypoxia-inducible factor 1α. Stable overexpression of hypoxia-inducible factor 1α induced by FG-4497 prevented cucurbitacin I-induced autophagy and down-regulation of bcl-2. Knockdown of beclin 1 or treatment with the autophagy inhibitor 3-methyladenine also inhibited autophagy induced by cucurbitacin I. A coimmunoprecipitation assay showed that the interaction of Bcl-2 and Beclin 1/hVps34 decreased markedly in cells treated with cucurbitacin I. Furthermore, knockdown of beclin 1 or treatment with the lysosome inhibitor chloroquine sensitized cancer cells to cucurbitacin I-induced apoptosis. Finally, a xenograft model provided additional evidence for the occurrence of cucurbitacin I-induced apoptosis and autophagy in vitro. Our findings provide new insights into the molecular mechanisms underlying cucurbitacin I-mediated GBM cell death and may provide an efficacious therapy for patients harboring GBM.  相似文献   
10.
Metabolic homeostasis is critical for all biological processes in the brain. The metabolites are considered the best indicators of cell states and their rapid fluxes are extremely sensitive to cellular changes. While there are a few studies on the metabolomics of Parkinson’s disease, it lacks longitudinal studies of the brain metabolic pathways affected by aging and the disease. Using ultra-high performance liquid chromatography and tandem mass spectroscopy (UPLC/MS), we generated the metabolomics profiling data from the brains of young and aged male PD-related α-synuclein A53T transgenic mice as well as the age- and gender-matched non-transgenic (nTg) controls. Principal component and unsupervised hierarchical clustering analyses identified distinctive metabolites influenced by aging and the A53T mutation. The following metabolite set enrichment classification revealed the alanine metabolism, redox and acetyl-CoA biosynthesis pathways were substantially disturbed in the aged mouse brains regardless of the genotypes, suggesting that aging plays a more prominent role in the alterations of brain metabolism. Further examination showed that the interaction effect of aging and genotype only disturbed the guanosine levels. The young A53T mice exhibited lower levels of guanosine compared to the age-matched nTg controls. The guanosine levels remained constant between the young and aged nTg mice, whereas the aged A53T mice showed substantially increased guanosine levels compared to the young mutant ones. In light of the neuroprotective function of guanosine, our findings suggest that the increase of guanosine metabolism in aged A53T mice likely represents a protective mechanism against neurodegeneration, while monitoring guanosine levels could be applicable to the early diagnosis of the disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号