首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Telomeres cap the ends of chromosomes, preventing end-to-end fusions and subsequent chromosome instability. Here we used a telomerase knockout model to investigate whether telomerase participates in the processes of DNA break repair by de novo synthesis of telomere repeats at broken chromosome ends (chromosome healing). Chromosome healing giving rise to new detectable telomeric signals has not been observed in embryonic fibroblasts of telomerase-proficient mice exposed to ionizing radiation. Since the synthesis of telomeric sequences to broken DNA ends would make them refractory to rejoining events, the efficiency of rejoining of broken chromosomes in cell environments with and without telomerase has also been investigated. We conclude that the efficiency of rejoining broken chromosomes is not significantly different in the two cell environments. All together, our results indicate that there is no significant involvement of telomerase in the healing of broken DNA ends by synthesizing new telomeres in mouse embryo fibroblasts after exposure to ionizing radiation.  相似文献   

2.
Chromosome End Maintenance by Telomerase   总被引:1,自引:0,他引:1  
  相似文献   

3.
Developmentally programmed healing of chromosomes by telomerase in Tetrahymena   总被引:40,自引:0,他引:40  
G L Yu  E H Blackburn 《Cell》1991,67(4):823-832
Healing of a broken chromosome and in eukaryotes involves acquisition of a telomere. During macronuclear development in ciliated protozoans, germline chromosomes are fragmented into linear subchromosomes, whose ends are healed by de novo addition of telomeres. We showed previously that the ribonucleoprotein enzyme telomerase elongates preexisting telomeres by synthesizing one telomeric DNA strand, using a template sequence in the RNA moiety of the enzyme. By marking telomerase with a mutation in the telomerase RNA template, which causes synthesis of novel telomeric sequences, we now show that in the ciliate Tetrahymena, telomerase directly adds telomeric DNA onto nontelomeric sequences during developmentally controlled chromosome healing. Unexpectedly, one telomerase RNA template mutation converted telomerase from an enzyme that normally synthesizes precisely templated sequences to a less precise polymerase that sometimes synthesizes irregular telomeric repeats in vivo.  相似文献   

4.
Removal of a telomere from yeast chromosome VII in a strain having two copies of this chromosome often results in its loss. Here we show that there are three pathways that can stabilize this broken chromosome: homologous recombination, nonhomologous end joining, and de novo telomere addition. Both in a wild-type and a recombination deficient rad52 strain, most stabilization events were due to homologous recombination, whereas nonhomologous end joining was exceptionally rare. De novo telomere addition was relatively rare, stabilizing <0.1% of broken chromosomes. Telomere addition took place at a very limited number of sites on chromosome VII, most occurring close to a 35-base pair stretch of telomere-like DNA that is normally approximately 50 kb from the left telomere of chromosome VII. In the absence of the Pif1p DNA helicase, telomere addition events were much more frequent and were not concentrated near the 35-base pair tract of telomere-like DNA. We propose that internal tracts of telomere-like sequence recruit telomerase by binding its anchor site and that Pif1p inhibits telomerase by dissociating DNA primer-telomerase RNA interactions. These data also show that telomeric DNA is essential for the stable maintenance of linear chromosomes in yeast.  相似文献   

5.
Li J  He S  Zhang L  Hu Y  Yang F  Ma L  Huang J  Li L 《Protoplasma》2012,249(1):207-215
Some reports have shown that nucleolar organizer regions are located at the telomeric region and have a structural connection with telomeres at the cellular level in many organisms. In this study, we found that all 45S ribosomal DNA (rDNA) signals were located at telomeric regions on the chromosomes in Chrysanthemum segetum L., and the 45S rDNA showed distinct signal patterns on different metaphase chromosome spreads. The bicolor fluorescence in situ hybridization experiment on the extended fibers revealed that telomere repeats were structurally connected with or interspersed into rDNA sequences. The close cytological structure relation between rDNA and telomere sequences led us to use PCR with combinations of the telomere primer and the rDNA primer to obtain some fragments, which were flanked by different rDNA and telomere primer sequences. One representative clone CHS2 contains closely connected rDNA and telomere sequences, suggesting that the telomere sequence invaded into the conserved rDNA sequence. In addition, the sequences of some PCR clones were flanked by the single telomeric primer sequence or the rDNA primer sequence. These results suggested that homologous recombination occurred between tandem repeat units of rDNA sequences or telomere repeats at the chromosome terminus.  相似文献   

6.
7.
We have characterized and compared a series of naturally occurring chromosomal truncations involving the terminal region of the short arm of human chromosome 16 (16p13.3). All six broken chromosomes appear to have been stabilized by the direct addition of telomeric repeats (TTAGGG)n to nontelomeric DNA. In five of the six chromosomes, sequence analysis shows that the three of four nucleotides preceding the point of telomere addition are complementary to and in phase with the putative RNA template of human telomerase. Otherwise we have found no common structural features around the breakpoint regions. These findings, together with previously reported in vitro data, suggest that chromosome-healing events in man can be mediated by telomerase and that a small region of complementarity to the RNA template of telomerase at the end of a broken chromosome may be sufficient to prime healing in vivo.  相似文献   

8.
During the formation of a new macronucleus in the ciliate Euplotes crassus, micronuclear chromosomes are reproducibly broken at approximately 10 000 sites. This chromosome fragmentation process is tightly coupled with de novo telomere synthesis by the telomerase ribonucleoprotein complex, generating short linear macronuclear DNA molecules. In this study, the sequences of 58 macronuclear DNA termini and eight regions of the micronuclear genome containing chromosome fragmentation/telomere addition sites were determined. Through a statistically based analysis of these data, along with previously published sequences, we have defined a 10 bp conserved sequence element (E-Cbs, 5'-HATTGAAaHH-3', H = A, C or T) near chromosome fragmentation sites. The E-Cbs typically resides within the DNA destined to form a macronuclear DNA molecule, but can also reside within flanking micronuclear DNA that is eliminated during macronuclear development. The location of the E-Cbs in macronuclear-destined versus flanking micronuclear DNA leads us to propose a model of chromosome fragmentation that involves a 6 bp staggered cut in the chromosome. The identification of adjacent macronuclear-destined sequences that overlap by 6 bp provides support for the model. Finally, our data provide evidence that telomerase is able to differentiate between newly generated ends that contain partial telomeric repeats and those that do not in vivo.  相似文献   

9.
Telomeres play an important role in protecting the ends of chromosomes and preventing chromosome fusion. We have previously demonstrated that double-strand breaks near telomeres in mammalian cells result in either the addition of a new telomere at the site of the break, termed chromosome healing, or sister chromatid fusion that initiates chromosome instability. In the present study, we have investigated the role of telomerase in chromosome healing and the importance of chromosome healing in preventing chromosome instability. In embryonic stem cell lines that are wild type for the catalytic subunit of telomerase (TERT), chromosome healing at I-SceI-induced double-strand breaks near telomeres accounted for 22 of 35 rearrangements, with the new telomeres added directly at the site of the break in all but one instance. In contrast, in two TERT-knockout embryonic stem cell lines, chromosome healing accounted for only 1 of 62 rearrangements, with a 23 bp insertion at the site of the sole chromosome-healing event. However, in a third TERT-knockout embryonic stem cell line, 10PTKO-A, chromosome healing was a common event that accounted for 20 of 34 rearrangements. Although this chromosome healing also occurred at the I-SceI site, differences in the microhomology at the site of telomere addition demonstrated that the mechanism was distinct from that in wild-type embryonic stem cell lines. In addition, the newly added telomeres in 10PTKO-A shortened with time in culture, eventually resulting in either telomere elongation through a telomerase-independent mechanism or loss of the subtelomeric plasmid sequences entirely. The combined results demonstrate that chromosome healing can occur through both telomerase-dependent and -independent mechanisms, and that although both mechanisms can prevent degradation and sister chromatid fusion, neither mechanism is efficient enough to prevent sister chromatid fusion from occurring in many cells experiencing double-strand breaks near telomeres.  相似文献   

10.
Dot-like micro B chromosomes of Brachycome dichromosomatica were analysed for their sequence composition. Southern hybridization patterns of a total micro B probe to genomic DNA from plants with and without micro Bs demonstrated that the micro Bs shared sequences with the A chromosomes. In addition to telomere, rDNA and common A and B chromosome sequences, a new B-specific, highly methylated tandem repeat (Bdm29) was detected. After in situ hybridization with Bdm29 the entire micro B chromosome was labelled and clustering of the condensed micro Bs could be observed at interphase. A high number of Bdm29-like sequences were also found in the larger B chromosomes of B. dichromosomatica and in other Bs within the genus Brachycome. Received: 30 May 1997; in revised form: 20 August 1997 / Accepted: 20 August 1997  相似文献   

11.
Telomeres, telomerase and senescence   总被引:18,自引:0,他引:18  
Eukaryotic chromosomes end with tandem repeats of simple sequences. These GC rich repeats allow telomere replication and stabilize chromosome ends. Telomere replication involves an equilibrium of sequence loss and addition at the ends of chromosomes. Repeats are added de novo by telomerase, an unusual DNA polymerase. Telomerase is an RNP in which an essential RNA component provides the template for the added telomere repeats. Telomere length maintenance plays an essential role in cell viability.  相似文献   

12.
Stocks of D. melanogaster X chromosomes carrying terminal deletions (RT chromosomes) have been maintained for several years. Some of the chromosomes are slowly losing DNA from the broken ends (as expected if replication is incomplete) and show no telomere-associated DNA added to the receding ends. Two stocks carry chromosomes that have become "healed" and are no longer losing DNA. In both stocks the broken chromosome end has acquired a segment of HeT DNA, a family of complex repeats found only at telomeres and in pericentric heterochromatin. Although the HeT family is complex, the HeT sequence joined to the broken chromosome end is the same in both stocks. In contrast, the two chromosomes are broken in different places and have no detectable sequence similarity at the junction with the new DNA. Sequence analysis suggests that the new telomere sequences have been added by a specific mechanism that does not involve homologous recombination.  相似文献   

13.
14.
We have characterized 17 rob(13q14q) Robertsonian translocations, using six molecular probes that hybridize to the repetitive sequences of the centromeric and shortarm regions of the five acrocentric chromosomes by FISH. The rearrangements include six de novo rearrangements and the chromosomally normal parents, five maternally and three paternally inherited translocations, and three translocations of unknown origin. The D21Z1/D13Z1 and D14Z1/D22Z1 centromeric alpha-satellite DNA probes showed all rob(13q14q) chromosomes to be dicentric. The rDNA probes did not show hybridization on any of the 17 cases studied. The pTRS-47 satellite III DNA probe specific for chromosomes 14 and 22 was retained around the breakpoints in all cases. However, the pTRS-63 satellite III DNA probe specific for chromosome 14 did not show any signals on the translocation chromosomes examined. In 16 of 17 translocations studied, strong hybridization signals on the translocations were detected with the pTRI-6 satellite I DNA probe specific for chromosome 13. All parents of the six de novo rob(13q14q), including one whose pTRI-6 sequence was lost, showed strong positive hybridization signals on each pair of chromosomes 14 and 13, with pTRS-47, pTRS-63, and pTRI-6. Therefore, the translocation breakpoints in the majority of rob(13q14q) are between the pTRS-47 and pTRS-63 sequences in the p11 region of chromosome 14 and between the pTRI-6 and rDNA sequences within the p11 region of chromosome 13.  相似文献   

15.
16.
17.
This paper describes a fluorescence in situ hybridization (FISH) analysis of three different repetitive sequence families, which were mapped to mitotic metaphase chromosomes and extended DNA fibers (EDFs) of the two subspecies of rice (Oryza sativa), indica and japonica (2n=2x=24). The repeat families studied were (1) the tandem repeat sequence A (TrsA), a functionally non-significant repeat; (2) the [TTTAGGG]n telomere sequence, a non-transcribed, tandemly repeated but functionally significant repeat; and (3) the 5S ribosomal RNA (5S rDNA). FISH of the TrsA repeat to metaphase chromosomes of indica and japonica cultivars revealed clear signals at the distal ends of twelve and four chromosomes, respectively. As shown in a previous report, the 17S ribosomal RNA genes (17S rDNA) are located at the nucleolus organizers (NORs) on chromosomes 9 and 10 of the indica cultivar. However, the japonica rice lacked the rDNA signals on chromosome 10. The size of the 5S rDNA repeat block, which was mapped on the chromosome 11 of both cultivars, was 1.22 times larger in the indica than in the japonica genome. The telomeric repeat arrays at the distal ends of all chromosome arms were on average three times longer in the indica genome than in the japonica genome. Flow cytometric measurements revealed that the nuclear DNA content of indica rice is 9.7% higher than that of japonica rice. Our data suggest that different repetitive sequence families contribute significantly to the variation in genome size between indica and japonica rice, though to different extents. The increase or decrease in the copy number of several repetitive sequences examined here may indicate the existence of a directed change in genome size in rice. Possible reasons for this phenomenon of concurrent evolution of various repeat families are discussed. Received: 9 August 1999 / Accepted: 29 December 1999  相似文献   

18.
Telomeres are nucleoprotein complexes that cap the ends of all linear chromosomes and function to prevent aberrant repair and end-to-end chromosome fusions. In somatic cells, telomere shortening is a natural part of the aging process as it occurs with each round of cell division. In germ and stem cells, however, the enzyme telomerase synthesizes telomere DNA to counter-balance telomere shortening and help maintain cellular proliferation. Of the primary telomere end-binding proteins, TPP1 has recently emerged as a primary contributor in protecting telomere DNA and in recruiting telomerase to the telomere ends. In this review, we summarize the current knowledge regarding the role of TPP1 in telomere maintenance.  相似文献   

19.
B chromosome ancestry revealed by histone genes in the migratory locust   总被引:1,自引:0,他引:1  
In addition to the standard set of chromosomes (A), about 15% of eukaryote genomes carry B chromosomes. In most cases, B chromosomes behave as genomic parasites being detrimental for the individuals carrying them and prospering in natural populations because of transmission advantages (drive). B chromosomes are mostly made up of repetitive DNA sequences, especially ribosomal DNA (rDNA), satellite DNA and mobile elements. In only two cases have B chromosomes been shown to carry protein-coding genes. Although some B chromosomes seem to have derived from interspecific hybridisation, the most likely source of B chromosomes is the host genome itself, but the specific A chromosome being the B ancestor has not been identified in any B-containing species. Here, we provide strong evidence for B chromosome ancestry in the migratory locust, based on the location of genes for the H3 and H4 histones in the B chromosome and a single A chromosome pair (i.e. the eighth in order of decreasing size). The high DNA sequence similarity of A and B chromosome H3–H4 genes supports B-origin from chromosome 8. The higher variation shown by B sequences, compared to A sequences, suggests that B chromosome sequences are most likely inactive and thus less subjected to purifying selection. Estimates of time of divergence for histone genes from A and B chromosomes suggest that B chromosomes are quite old (>750,000 years), showing the B-chromosome ability to persist in natural populations for long periods of time.  相似文献   

20.
Telomeres of most insects are composed of simple (TTAGG) n repeats that are synthesized by telomerase. However, in some dipteran insects such as Drosophila melanogaster, (TTAGG) n repeats or telomerase activity has not been detected. Although telomere structure is well documented in Diptera and Lepidoptera, very limited information is available on lower insect groups. To understand general aspects of telomere function and evolution in insects, we endeavored to characterize structures of the telomeric and subtelomeric regions in a lower insect, the Taiwan cricket, Teleogryllus taiwanemma. FISH analysis of this insect's chromosomes demonstrated (TTAGG) n repeat elements in all distal ends. Just proximal to the telomeric repeats, the highly conserved 9-kb long terminal unit (LTU) sequences are tandemly repeated. These were observed in four of six chromosomes, three autosomal ends, and one X-chromosomal end. LTU sequences represent about 0.2% of the T. taiwanemma genome. Each LTU contains a core (TTAGG)8-like sequence (TRLS) and five types of conserved sequences—ST (short telomere associated), J (joint), X, SR (satellite sequence rich), and Y—which vary in length from about 150 bp to 2.7 kb. The LTU sequence is defined as ST–J–TRLS–SR–X–Y–X–Y–X. Most LTU regions may be derived from the ancestral common sequence, which is observed in ST regions six times and at many other LTU sites. We could not find the LTU-like sequence in three other crickets including the closest species, T. emma, suggesting that the LTU in T. taiwanemma has been rapidly amplified in subtelomeric regions through recent evolutional events. It is also suggested that the highly conserved structure of the LTU is maintained by recombination and may contribute to telomere elongation, as seen in dipteran insects. Received: 6 August 2001/Accepted: 10 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号