首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth and long-term trends of oxygen consumption were monitored at 15 and 20° C in spontaneously swimming juvenile perch fed a fixed daily submaximal ration. The average rate as well as the efficiency of assimilation were the same at the two temperatures but a much higher proportion of food energy was allocated to activity and maintenance, and a correspondingly lower proportion to growth, at 20 than at 15° C. By computing average specific rates of oxygen consumption separately for all light and dark periods, it was found that at 20, but not at 15° C, the' scope for spontaneous activity' of two consecutive (dark and light) phases of a diurnal cycle was indirectly proportional to the average rate of oxygen consumption in the dark phase. This indicates that at 20° C the perch displayed partial compensation for a high metabolic rate in the dark by reducing swimming activity in the following light phase. However, the overall effect of this behaviour was probably too small to make a noticeable impact on the low conversion efficiency in the juvenile perch at 20 as compared to 15° C.  相似文献   

2.
In addition to the effects of temperature fluctuations on metabolic rate, entrained endogenous rhythms in metabolism, which are independent of temperature fluctuations, may be important in overall energy metabolism in ectotherms. Daily entrained endogenous rhythms may serve as energy-conserving mechanisms during an animal's active or inactive phase. However, because nocturnal lizards often take advantage of thermal opportunities during the photophase (light), their daily metabolic rhythms may be less pronounced than those of diurnal species. We measured the rate of oxygen consumption (VO(2)) as an index of metabolic rate of eight temperate lizard species (four nocturnal, three diurnal, and one crepuscular/diurnal; n = 7-14) over 24 h at 13 degrees C and in constant darkness to test whether daily patterns (including amplitude, magnitude, and time of peak VO(2)) of metabolic rate in lizards differ with activity period. We also tested for phylogenetic differences in metabolic rate between skinks and geckos. Three daily patterns were evident: 24-h cycle, 12-h cycle, or no daily cycle. The skink Cyclodina aenea has a 12-h crepuscular pattern of oxygen consumption. In four other species, VO(2) increased with, or in anticipation of, the active part of the day, but three species had rhythms offset from their active phase. Although not correlated with activity period or phylogeny, amplitude of VO(2) may be correlated with whether a species is temperate or tropical. In conclusion, the metabolic rate of many species does not always correlate with the recorded activity period. The dichotomy of ecology and physiology may be clarified by more in-depth studies of species behaviors and activity periods.  相似文献   

3.
The aim of this study was to examine the supposed influence of pedal rate on the diurnal fluctuation of the time to exhaustion from high-intensity exercise. Eleven male cyclists performed three tests at 06:00 h and three at 18:00 h at a free pedal rate (FPR) and two imposed pedal rates (80% and 120% of the FPR). They performed the tests until exhaustion using a power output corresponding to 95% maximal power (Pmax). Time to exhaustion, rectal temperature, oxygen consumption (.VO2), M. quadriceps, vastus medialis, M. biceps femoris electromyographic Root Mean Square activity rise (RMS slope), and blood lactate concentration were measured. The mean time to exhaustion recorded at 18:00 h (270.6+/-104.8 sec) was greater than at 06:00 h (233.9+/-84.9 sec). The time to exhaustion was significantly greater when the pedal rate was imposed at 80% versus 120% FPR. The blood lactate concentration and absolute core temperature at the point of exhaustion were significantly higher during tests done at 18:00 h. There was no diurnal variation in core temperature increase, .VO2, and RMS slope. The time-of-day effect for every variable did not depend on pedal rate. Diurnal variations in maximal aerobic endurance cannot be explained by a change in aerobic metabolism or in muscular fatigue. The origin of the diurnal variation in the time to exhaustion is likely to lie in greater participation in anaerobic metabolism. Also, the influence of temperature on neuromuscular functioning as an explanation for the diurnal variation in performance cannot be excluded in this study. The hypothesis on the basis of which pedal rate would influence diurnal variations in time to exhaustion in cycling was not validated by this research.  相似文献   

4.
The aim of this study was to examine the supposed influence of pedal rate on the diurnal fluctuation of the time to exhaustion from high‐intensity exercise. Eleven male cyclists performed three tests at 06:00 h and three at 18:00 h at a free pedal rate (FPR) and two imposed pedal rates (80% and 120% of the FPR). They performed the tests until exhaustion using a power output corresponding to 95% maximal power (Pmax). Time to exhaustion, rectal temperature, oxygen consumption (V˙O2), M. quadriceps, vastus medialis, M. biceps femoris electromyographic Root Mean Square activity rise (RMS slope), and blood lactate concentration were measured. The mean time to exhaustion recorded at 18:00 h (270.6±104.8 sec) was greater than at 06:00 h (233.9±84.9 sec). The time to exhaustion was significantly greater when the pedal rate was imposed at 80% versus 120% FPR. The blood lactate concentration and absolute core temperature at the point of exhaustion were significantly higher during tests done at 18:00 h. There was no diurnal variation in core temperature increase, V˙O2, and RMS slope. The time‐of‐day effect for every variable did not depend on pedal rate. Diurnal variations in maximal aerobic endurance cannot be explained by a change in aerobic metabolism or in muscular fatigue. The origin of the diurnal variation in the time to exhaustion is likely to lie in greater participation in anaerobic metabolism. Also, the influence of temperature on neuromuscular functioning as an explanation for the diurnal variation in performance cannot be excluded in this study. The hypothesis on the basis of which pedal rate would influence diurnal variations in time to exhaustion in cycling was not validated by this research.  相似文献   

5.
Diurnal variations in food consumption and plasma concentrations of glucose and insulin were determined at 3-hourly intervals in obese hyperglycaemic mice (C57BL/6J ob/ob) and lean mice (C57BL/6J+/+). In lean mice, food consumption and plasma insulin concentrations increased during the light period and were reduced during the dark period, whereas plasma glucose concentrations were maximal at the beginning of the light period and declined to a minimum during the early dark period. In ob/ob mice, the plasma glucose concentration declined temporarily at the beginning of both the light and the dark period and became elevated towards the ends of these periods, but there were no significant diurnal variations of food consumption or plasma insulin concentrations. These observations indicate differences in the diurnal regulation of glucose homeostasis in lean and ob/ob mice.  相似文献   

6.
Rats trained to the "8 + 16" controlled feeding cycle where food is only available for the first 8 h of the 12 h dark period exhibit a pronounced diurnal rhythm of hepatic glycogen metabolism. Glycogen is stored within the liver parenchymal cells during the dark period and subsequently mobilized for energy production during the light period. Hepatocytes, isolated by collagenase perfusion, from livers of such animals have differing capacities for glycogen synthesis when incubated with glucose. Cells prepared at the end of the 16 h period without food have very little capacity for synthesis compared with much higher rates obtained in cells obtained during the feeding period. Cells obtained from liver containing a large glycogen concentration produce a net breakdown of glycogen during incubations with glucose, however experiments using radioactively labelled glucose indicate that synthesis does occur in these cells. The changes in the capacity of the cells for glycogen synthesis appear to be due, in part, to changes in the percentage of the cell population involved in synthesis and in the activity of glycogen synthetase a. Attempts of influence the rate of glycogen synthesis at any time of day with insulin or dexamethasone were unsuccessful.  相似文献   

7.
To investigate carbon and nitrogen metabolism in Pyropia haitanensis in response to the combined conditions of ocean acidification and diurnal temperature variation, maricultured thalli were tested in acidified culture under different temperature treatments. The results showed a combined effect of ocean acidification and diurnal temperature difference on the C and N metabolism and growth of P. haitanensis. In acidifed culture, algal growth, maximum photosynthetic rate, nitrate reductase (NR) activity, amino acid (AA) content and AA score (AAS) were more significantly enhanced in seaweed under diurnal temperature variation than in seaweed at constant temperature. In acidified seawater, soluble carbohydrates in P. haitanensis increased due to greater dissolved inorganic carbon (DIC), whereas soluble proteins decreased. Under the diurnal temperature treatment, higher temperature during the light period enhanced accumulation of algal photosynthates, whereas lower temperature in the dark period reduced energy consumption, resulting in enhanced algal growth, AA content and AAS. We concluded that suitable diurnal temperature difference would be conducive to C fixation and N assimilation under ocean acidification. However, excessively high temperatures would depress algal photosynthesis and increase energy consumption, thereby exerting a negative effect on algal growth.  相似文献   

8.
Rats trained to the “8 + 16” controlled feeding cycle where food is only available for the first 8 h of the 12 h dark period exhibit a pronounced diurnal rhythm of hepatic glycogen metabolism. Glycogen is stored within the liver parenchymal cells during the dark period and subsequently mobilized for energy production during the light period. Hepatocytes, isolated by collagenase perfusion, from livers of such animals have differing capacities for glycogen synthesis when incubated with glucose. Cells prepared at the end of the 16 h period without food have very little capacity for synthesis compared with much higher rates obtained in cells obtained during the feeding period. Cells obtained from livers containing a large glycogen concentration produce a net breakdown of glycogen during incubations with glucose, however experiments using radioactively labelled glucose indicate that synthesis does occur in these cells. The changes in the capacity of the cells for glycogen synthesis appear to be due, in part, to changes in the percentage of the cell population involved in synthesis and in the activity of glycogen synthetase a. Attempts to influence the rate of glycogen synthesis at any time of day with insulin or dexamethasone were unsuccessful.  相似文献   

9.
Several rodent species that are diurnal in the field become nocturnal in the lab. It has been suggested that the use of running-wheels in the lab might contribute to this timing switch. This proposition is based on studies that indicate feed-back of vigorous wheel-running on the period and phase of circadian clocks that time daily activity rhythms. Tuco-tucos (Ctenomys aff. knighti) are subterranean rodents that are diurnal in the field but are robustly nocturnal in laboratory, with or without access to running wheels. We assessed their energy metabolism by continuously and simultaneously monitoring rates of oxygen consumption, body temperature, general motor and wheel running activity for several days in the presence and absence of wheels. Surprisingly, some individuals spontaneously suppressed running-wheel activity and switched to diurnality in the respirometry chamber, whereas the remaining animals continued to be nocturnal even after wheel removal. This is the first report of timing switches that occur with spontaneous wheel-running suppression and which are not replicated by removal of the wheel.  相似文献   

10.
Chlorella pyrenoidosa was grown in three continuous cultures each receiving a different light regime during the light period of a diurnal cycle. Hourly samples taken during the light period were subjected to medium frequency light/dark oscillations of equal duration, ranging from 3 to 240 seconds. The oxygen consumption and production of each sample were measured with an oxygen electrode in a small oxygen chamber. Although the light/dark cycles had little overall influence on photosynthetic activity, the microalgae appeared to adapt to the light regime to which they were subjected. Large differences were found between the maximum chlorophyll-specific production rates (P infmax supB ), the chlorophyll-specific production rates (PB) and the respiration rates between the cultures and treated subsamples. Respiration rates increased during the light period, whilst PB either increased, or had a mid light period minimum or maximum. The culture which received an hourly light oscillation during the light period had the highest P infmax supB and lowest respiration rates, and it is suggested that these algae react as in nature, whereas either a sinusoidal or a block light pattern is unnatural. The latter light regime is commonly used in laboratory studies.  相似文献   

11.
Vasopressin-containing, Long-Evans (LE) rats and vasopressin-deficient, Brattleboro (DI) rats were monitored for activity and core body temperature via telemetry. Rats were exposed to a 12-12 light-dark cycle and allowed to habituate with ad lib access to food and water. The habituation period was followed by an experimental period of 23 h of food-restriction stress in which a 1-h feeding period was provided during the light cycle. Although both strains of animals showed nocturnal activity and temperature rhythms during the habituation period, DI rats were more active than LE rats. The DI rats also had a lower body temperature in the dark. During the experimental period, both strains exhibited a phase shift of activity and body temperature correlating with the presentation of food. The DI rats developed a diurnal shift more rapidly than LE rats. The DI animals showed a dramatic increase in activity during the light phase and a marked decrease in body temperature during the dark phase. The LE animals showed a significant attenuation of activity, but maintained both nocturnal and diurnal temperature peaks throughout the food-restricted condition.  相似文献   

12.
The eating pattern is altered by high-fat diet-induced obesity. To clarify whether this is dependent on the fatty acid profile of the diet, the authors conducted two studies on adult female Sprague-Dawley rats fed normal-fat chow or high-fat diets with varying fatty acid composition. Eating pattern and body weight were assessed in rats fed canola-based (low in saturated fatty acids) or lard-based (moderate in saturated fatty acids) diets for 7 days, and in animals fed chow or canola- or butter-based diets (rich in saturated fatty acids) for 43 days. These parameters were also determined when restricted amounts of low-fat canola- or butter-based diets were consumed for 25 days. Early exposure to canola or lard high-fat feeding or prolonged access to canola- or butter-based fat-rich diets (relative to chow feeding) did not alter the normal light-dark distribution of food and energy intake. All animals ingested most of their food during the dark phase. However, feeding the high-fat canola- and butter-based diets produced an altered eating pattern during the light phase characterized by a smaller number of meals, longer intermeal interval, and enhanced satiety ratio, and consumption of shorter-lasting meals than chow-fed animals. Relative to canola or chow feeding, butter-fed animals consumed a lower number of meals during the dark phase and had a higher eating rate in the light phase, but ate larger meals overall. Only butter feeding led to overeating and obesity. When given a restricted amount of low-fat canola- or butter-based diet at the start of the light phase, rats ate most of their food in that phase and diurnal rather than nocturnal feeding occurred with restriction. These findings underscore the role of saturated fatty acids and the resulting eating pattern alteration in the development of obesity.  相似文献   

13.
Continuous monitoring of steady-state carbon dioxide exchange rates in mature muskmelon (Cucumis melo L.) leaves showed diurnal patterns of photosynthesis and respiration that were translated into distinct patterns of accumulation and phloem export of soluble sugars and amino acids. Leaf soluble sugar patterns in general followed the pattern of photosynthetic activity observed in the leaf, whereas starch accumulated steadily throughout the light period. Sugar and starch levels declined through the dark phase. Phloem exudate analysis revealed that diurnal levels of the major transport sugars (stachyose and sucrose) in the phloem did not appear to correlate directly with the photosynthetic activity of the leaf but instead were inversely correlated with leaf starch accumulation and degradation. The amino acid pool in leaf tissues remained constant throughout the diurnal period; however, the relative contribution of individual amino acids to the total pool varied with the diurnal photosynthetic and respiratory activity of the leaf. In contrast, the phloem sap amino acid pool size was substantially larger in the light than in the dark, a result primarily due to enhanced export of glutamine, glutamate, and citrulline during the light period. The results indicate that the sugar and amino acid composition of cucurbit phloem sap is not constant but varies throughout the diurnal cycle in response to the metabolic activities of the source leaf.  相似文献   

14.
Experiments were conducted with vegetative soybean plants (Glycine max [L.] Merr., `Ransom') to determine whether the activities in leaf extracts of key enzymes in sucrose metabolism changed during the daily light/dark cycle. The activity of sucrose-phosphate synthase (SPS) exhibited a distinct diurnal rhythm, whereas the activities of UDP-glucose pyrophosphorylase, cytoplasmic fructose-1,6-bisphosphatase, and sucrose synthase did not. The changes in extractable SPS activity were not related directly to photosynthetic rates or light/dark changes. Hence, it was postulated that the oscillations were under the control of an endogenous clock. During the light period, the activity of SPS was similar to the estimated rate of sucrose formation. In the dark, however, SPS activity declined sharply and then increased even though degradation of starch was linear. The activity of SPS always exceeded the estimated maximum rate of sucrose formation in the dark. Transfer of plants into light during the normal dark period (when SPS activity was low) resulted in increased partitioning of photosynthate into starch compared to partitioning observed during the normal light period. These results were consistent with the hypothesis that SPS activity in situ was a factor regulating the rate of sucrose synthesis and partitioning of fixed carbon between starch and sucrose in the light.  相似文献   

15.
The daily activity and energy metabolism of pouched mice (Saccostomus campestris) from two localities in southern Africa was examined following warm (25 °C) and cold (10 °C) acclimation under long (LD 14:10) and short (LD 10:14) photoperiol. There was no differential effect of photoperiod on the daily activity or metabolism of pouched mice from the two localities examined, which suggests that reported differences in photoresponsivity between these two populations were not the result of differences in daily organisation. Neverthe-less, there was a significant increase in metabolism at 10 °C, irrespective of photoperiod, even though seven cold-acclimated animals displayed bouts of spontaneous torpor and saved 16.4–36.2% of their daily energy expenditure. All but one of these bouts occurred under short photoperiod, which suggests that short photoperiod facilitated the expression of torpor and influenced the daily energy metabolism of these individuals. As expected for a noctureal species, the amount of time spent active increased following acclimation to short photoperiod at 25 °C. However, there was a reduction in mean activity levels under short photoperiod at 10 °C, possibly because the stimulation of activity by short photoperiod was masked by a reduction in activity during bouts of spontaneous torpor. Cold temperature clearly had an overriding effect on the daily activity and metabolism of this species by necessitating an increase in metabolic heat production and eliciting spontaneous torpor which overrode the effect of short photoperiod on activity at an ambient temperature of 10 °C.Abbreviations 3-ANOVA three-way analysis of variance - %ACT percentage of time spent active - ADMR average daily metabolic rate - M b body mass - MR metabolic rate - MRdark metabolic rate recorded during the dark phase - MRlight metabolic rate recorded during the light phase - NST non-shivering thermogenesis - RQ respiratory quotient - STPD standard temperature and pressure, dry - T a ambient temperature - T b body temperature - VO2 oxygen consumption  相似文献   

16.
The day-night variation of food intake and alkaline phosphatase (AP) activity was studied in the duodenum of rats neonatally treated with monosodium glutamate (MSG) and saline-treated (control) rats. The animals were kept under light-dark conditions (light phase from 09:00 h to 21:00 h) with free access to food. AP activity was cytophotometrically analyzed in the brush-border of enterocytes separated from the tip, middle and cryptal part of the villi every 6 h over a 24-hour period. In comparison with the controls, MSG-treated rats consumed about 40% less food during the dark period and their 24-hour food intake was thus significantly lowered (P<0.001). On the other hand, the nocturnal feeding habit showed a similar pattern: food consumption was high during the night (65% vs. 75%) and the lowest consumption was found during the light phase (35% vs. 25%) in MSG-treated and control rats, respectively. In agreement with the rhythm of food intake, the highest AP activity was observed during the dark phase and was lowest during the light phase in both groups of animals. These significant day-night variations showed nearly the same pattern in the enterocytes of all observed parts along the villus axis. In comparison with the controls, a permanent increase of AP activity was observed in neonatal MSG-treated rats. This increase was more expressive during the dark phase of the day in the cryptal (P<0.001) and middle part of the villus (P<0.01). From the viewpoint of feeding, this enzyme in MSG-treated rats was enhanced in an inverse relation to the amount of food eaten i.e. despite sustained hypophagia the mean AP activity in the enterocytes along the villus axis was higher than in the control animals during all investigated periods. The present results suggest that the increased AP activity in MSG-treated rats is probably not a consequence of actual day-night eating perturbations but could be a component of a more general effect of MSG. This information contributes to better understanding of the function of intestinal AP and its relation to day-night feeding changes especially in connection with the MSG syndrome.  相似文献   

17.
The activities of ornithine decarboxylase (ODC) and thymidine kinase (TK) and the rates of DNA synthesis were determined in hepatomas and livers of rats bearing Morris hepatoma 5123-C or 7800 and entrained to a schedule of 12 hours of light followed by 12 hours of darkness, with food (60% protein) available only during the first 2 hours of the dark period. ODC activity in hepatoma 5123-C displayed a diurnal oscillation, increasing 2-fold during the feeding period and then rapidly decaying to 20% of the peak level. The livers of rats bearing hepatoma 5123-C exhibited a similar oscillation of ODC activity, with peak values lower than in the hepatomas but higher than in the livers of control (non-tumor bearing) animals. TK activity and the rate of DNA synthesis in hepatoma 5123-C were low during most of the dark period but increased rapidly towards the end of the dark period. DNA synthesis reached a plateau at the dark-light interface and then rapidly declined, but TK activity remained high during the light period. Similar studies on hepatoma 7800 established that ODC activity in this hepatoma did not oscillate but remained at low levels throughout the day. Similarly, host livers of rats bearing hepatoma 7800 did not exhibit the diurnal oscillation of ODC activity characteristic of liver from control rats, but showed a slow increase in activity followed by a plateau and a slow decline to base-line levels. DNA synthesis in hepatoma 7800 was constant throughout the day, whereas TK activity may have increased during the dark period. In the livers of control rats and animals bearing hepatoma 5123-C or 7800, TK activity and rate of DNA synthesis were at low levels at all times studied and appeared not to oscillate.  相似文献   

18.
The effects of centrally administered Angiotensin II (Ang II) on water and food intake in rodent models are well known. However, most studies have focused on the acute effects of intracranial Ang II. In the current study, we evaluated the effects of intracerebroventricular Ang II on food and water intake as well as locomotor activity over the entire dark phase of the murine diurnal cycle. Consistent with the previous reports, centrally administered Ang II rapidly stimulated water intake over the initial 1-hour period following treatment. However, this acute increase was immediately followed by a marked reduction in water intake resulting in decreased cumulative water intake approximately 7h after Ang II treatment. Pretreating animals with an Ang II type 1 receptor blocker, Losartan, completely antagonized the acute effect of Ang II and abolished initial water intake. In contrast, application of an Ang II type 2 receptor blocker, PD123319, abrogated the prolonged inhibitory effect of Ang II on drinking behavior and partially suppressed the initial increases in water intake. The suppressive effects of Ang II on cumulative food intake and spontaneous physical activity were also evident throughout the entire dark phase of diurnal cycle. These experiments are the first to suggest that the stimulatory effect of central Ang II treatment on water consumption is very temporary and that it causes a sustained suppressive effect on voluntary locomotion and food intake behavior in mice.  相似文献   

19.
A diurnal rhythm of drinking activity in 7 male and 6 female house musk shrews (Jic: SUN) aged about one year was observed over a period of 10 days under a schedule of 12 hr light and 12 hr darkness (light on at 07:00). In general, the pattern of drinking activity was similar among both sexes, with around 24-hr diurnal rhythm. A few typical drinking patterns of these animals were represented as follows: 1) Drinking interval was very close in the dark phase, while it was a little too sparse in the light phase (n = 4). 2) Its interval remains stationary through a whole day (n = 5). 3) Drinking was performed between the latter half of light and the first half of dark phases (n = 4).  相似文献   

20.
Energy metabolism follows a diurnal pattern responding to the light/dark cycle and food availability. This study investigated the impact of restricting feeding to the daylight hours and feeding a high fat diet on circadian clock (bmal1, dbp, tef and e4bp4) and metabolic (pepck, fas, ucp3, pdk4) gene expression and markers of energy metabolism in muscle and liver of rats. The results show that in chow-fed rats switched to daylight feeding, the peak diurnal expression of genes in liver was shifted by 6–12 h while expression of these genes in muscle remained in a similar phase to rats feeding ad libitum. High fat feeding during the daylight hours had limited effect on clock gene expression in liver or muscle but shifted the peak expression of metabolic genes (pepck, fas) in liver by 6–12 h. The differential effects of daylight feeding on gene and protein expression in muscle and liver were accompanied by an 8% reduction in whole body energy expenditure, a 20–30% increased glycogen content during the light phase in muscle of day-fed rats and increased adipose tissue deposition per gram food consumed. These data demonstrate that a mismatch of feeding and light/dark cycle disrupts tissue metabolism in muscle with significant consequences for whole body energy homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号