首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rats trained to the “8 + 16” controlled feeding cycle where food is only available for the first 8 h of the 12 h dark period exhibit a pronounced diurnal rhythm of hepatic glycogen metabolism. Glycogen is stored within the liver parenchymal cells during the dark period and subsequently mobilized for energy production during the light period. Hepatocytes, isolated by collagenase perfusion, from livers of such animals have differing capacities for glycogen synthesis when incubated with glucose. Cells prepared at the end of the 16 h period without food have very little capacity for synthesis compared with much higher rates obtained in cells obtained during the feeding period. Cells obtained from livers containing a large glycogen concentration produce a net breakdown of glycogen during incubations with glucose, however experiments using radioactively labelled glucose indicate that synthesis does occur in these cells. The changes in the capacity of the cells for glycogen synthesis appear to be due, in part, to changes in the percentage of the cell population involved in synthesis and in the activity of glycogen synthetase a. Attempts to influence the rate of glycogen synthesis at any time of day with insulin or dexamethasone were unsuccessful.  相似文献   

2.
Parenchymal cells were isolated from adult rat liver with an enzyme perfusion technique. The single-cell suspension, representing 40-50% of the liver's hepatocytes was suspended in medium and maintained in primary culture for up to four days. The cells were found to carry out glycogen synthesis for the first eight hours in culture after which time the accumulated glycogen was gradually degraded. The ability of the liver cell cultures to accumulate glycogen was found to be dependent upon the metabolic state of the animal prior to cell isolation. Cells prepared during the feeding period from animals on the 8+16 feeding schedule had markedly different capacities for glycogen accumulation. Changes in glycogen metabolism were found to be due, in part, to changes in the fraction of cells involved in metabolism at any given time. High concentrations of glucose stimulated the cells to deposit glycogen but the response was reduced the longer the cells were in culture over a 3-day period. This loss of glycogen synthesizing capacity appears to be due to a decrease in glycogen synthetase activity. The activities of pyruvate kinase, hexokinase and aldolase also decrease during the culture period.  相似文献   

3.
The ;8+16' feeding schedule (8h feeding and 16h without food in each 24h cycle) was applied to nursing mother rats to study enzyme development in neonatal rats in the absence of solid food. A ;16+8' suckling schedule (16h with the mother and 8h while the mother is fed in a separate cage) was used to show that the increases in pyruvate kinase, glucokinase and aldolase B activities that occur in the late suckling period of liver development do not require the intake of solid food at this time. Their activities may, however, be modulated by the composition of the diet at the time of weaning. Adaptation to the composition of the diet can occur within one feeding period, and to the periodicity of food provision in one or two feeding periods. In the early neonatal period, diurnal rhythms of tyrosine aminotransferase, liver glycogen and glucokinase are either greatly suppressed or absent, but develop rapidly after weaning. Food-dependent rhythms of glycogen and tyrosine aminotransferase were included in the late suckling period (day 14).  相似文献   

4.
Nuclei from liver of rats accustomed to eating during the first 8h of a daily 12h dark period demonstrate an increased capacity to synthesize RNA 6H after the beginning of the feeding period. 2. This increase is accompanied by a higher yield of extractable form-B DNA-dependent RNA polymerase activity. 3. The endogenous RNA polymerase activity associated with nuclear chromatin is also stimulated by food intake. Both purified and chromatin-associated form-B enzyme activities exhibit different ionic strength requirements after food intake. 4. The sensitivity of exogenous (added) form-B-enzyme to changes in ionic strength changes after feeding when chromatin is used as template. 5. Chromatin extracted from the liver of fed rats is a better template for form-B-enzyme than chromatin extracted from starved rats.  相似文献   

5.
Glycogen synthesis in the perfused liver of adrenalectomized rats.   总被引:5,自引:4,他引:1       下载免费PDF全文
1. A total loss of capacity for net glycogen synthesis was observed in experiments with the perfused liver of starved adrenalectomized rats. 2. This lesion was corrected by insulin or cortisol in vivo (over 2-5h), but not by any agent tested in perfusion. 3. The activity of glycogen synthetase a, and its increase during perfusion, in the presence of glucose plus glucogenic substrates, were proportional to the rate of net glycogen accumulation. 4. This complete inherent loss of capacity for glycogen synthesis after adrenalectomy is greater than any defect in hepatic metabolism yet reported in this situation, and is not explicable by a decrease in the rate of gluconegenesis (which supports glycogen synthesis in the liver of starved rats). The short-term (2-5h) stimulatory effect of glucocorticoids in the intact animal, on hepatic glycogen deposition, may be mediated partly through insulin action, although neither insulin or cortisol appear to act directly on the liver to stimulate glycogen synthesis.  相似文献   

6.
This investigation studied the effect of an oral glucose feeding on glycogen sparing during exercise in non-glycogen-depleted and glycogen-depleted endurance-trained rats. The non-glycogen-depleted rats received via a stomach tube 2 ml of a 20% glucose solution labeled with [U-14C]glucose just prior to exercise (1 h at 25 m/min). Another group of rats ran for 40 min at higher intensity to deplete glycogen stores, after which they received the same glucose feeding and continued running for 1 h at 25 m/min. The initial 40-min run depleted glycogen in heart, skeletal muscle, and liver. In the non-glycogen-depleted rats the glucose feeding spared glycogen in the liver, primarily from the oxidation of blood-borne glucose in muscle. In the glycogen-depleted rats, muscle glycogen was repleted after the feeding, but sources other than the administered glucose also contributed to glycogen synthesis. The results suggest that glycogen depletion rather than the glucose feeding per se stimulates glycogen resynthesis in muscle during exercise in endurance-trained rats.  相似文献   

7.
We investigated the effect of a meal feeding schedule (MFS) on food intake, hepatic glycogen synthesis, hepatic capacity to produce glucose and glycemia in rats. The MFS comprised free access to food for a 2-hour period daily at a fixed mealtime (8.00-10.00 a.m.) for 13 days. The control group was composed of rats with free access to food from day 1 to 12, which were then starved for 22 h, refed with a single meal at 8.00-10.00 a.m. and starved again for another 22 h. All experiments were performed at the meal time (i.e. 8.00 a.m.). The MFS group exhibited increased food intake and higher glycogen synthase activity. Since gluconeogenesis from L-glutamine or L-alanine was not affected by MFS, we conclude that the increased food intake and higher glycogen synthase activity contributed to the better glucose maintenance showed by MFS rats at the fixed meal time.  相似文献   

8.
9.
We have investigated the cause of defective glycogen synthesis in hepatocyte preparations enriched with cells from the periportal or perivenous zones obtained by the methods of Lindros & Penttila [Biochem. J. (1985) 228, 757-760] and of Quistorff [Biochem. J. (1985) 229, 221-226]. A modified procedure which yields hepatocytes capable of consistent rates of glycogen synthesis is described, and the rates of glucose and glycogen syntheses and of glycolysis in hepatocytes from the two zones are compared. Glycogen synthesis in cells was greatly impaired by very low concentrations (0.01-0.05 mg/ml) of digitonin, which had little effect on glucose and protein syntheses and Trypan Blue exclusion. Cells exposed to such low concentrations of digitonin lose all their synthetic capacity and ability to exclude Trypan Blue when incubated with EGTA, which does not affect cells not exposed to digitonin. With a modified procedure based on this phenomenon, our study reveals that hepatocyte preparations enriched with cells from the periportal zone synthesized glucose from lactate and alanine at rates twice those by cells from the perivenous zone, whereas the rate of glycogen synthesis from C3 precursors in periportal cells was 4 times that in the perivenous preparations. With substrates entering the pathway at the triose phosphate level, gluconeogenesis in periportal-cell preparations was 20% higher, and glycogen synthesis was twice that in perivenous preparations. Glycolysis was studied by the formation of 3HOH from [2-3H]glucose, the yield of lactate, and the conversion of [14C]glucose into [14C]lactate. In cell preparations from both zones glycolysis by all criteria was negligible at 10 mM-glucose, but was substantial at higher concentrations. However, there was no difference between the zones. We confirm that the capacities for glucose and glycogen syntheses in periportal cells are higher than in perivenous cells, but that at physiological glucose concentrations there is negligible glycolysis in liver parenchyma in both zones. The metabolic pattern in the perivenous cells is not glycolytic.  相似文献   

10.
Abstract

Liver glycogen, liver lipid, liver triglycerides, plasma glucose, plasma total lipid, plasma cholesterol, plasma corticoids, hypothalamic serotonin and pituitary pro‐lactin levels were assayed at five times over a 24‐h period in Carassius auratus maintained under a specific photoperiod regime at various times throughout the year. Diurnal variations were observed in all parameters monitored. Daily variations of liver glycogen, plasma glucose, plasma lipid, plasma corticoids and hypothalamic serotonin were affected by time of feeding. Liver glycogen, plasma lipid and plasma corticoid levels were also affected by time of feeding. Diurnal variations of liver glycogen, plasma glucose and plasma lipid were influenced by light‐dark cycles. These data illustrate that feeding time, photoperiod and time of sacrifice are important considerations in the study of metabolic and hormonal parameters in fishes.  相似文献   

11.
Impact of interleukin-6 on the glucose metabolic capacity in rat liver   总被引:1,自引:1,他引:0  
The actute phase reaction mediated by the proinflammatory cytokine IL6 initiates a number of metabolic changes in the liver, which may contribute to the pathogenesis of the septic shock during prolonged exposition. Here, the impact of IL6 on the hepatic glucose providing capacity was studied by monitoring glycogen degradation and the expression of the gluconeogenic phosphoenolpyruvate carboxykinase (PCK1) in rat livers during the daily feeding rhythm. Eight hours after i.p. injection of IL6, mRNA levels of α2-macroglobulin, a prominent acute phase reactant in rat liver, were elevated as shown by Northern blot analysis and in situ hybridization (ISH). PCK1 mRNA levels were decreased by IL6 to 50% of levels in untreated animals due to the reduction of PCK1 mRNA in the periportal zone of the liver as shown by ISH. PCK1 enzyme activity was not affected by IL6. Glycogen degradation was accelerated by IL6, which led to nearly complete depletion of glycogen pools in periportal areas 8 h after IL6 injection. This was very likely due to inhibition of glycogen pool replenishment. Thus, the depletion of glycogen stores in the liver might contribute to the impairment of hepatic glucose production during prolonged acute phase challenge.  相似文献   

12.
Prior to birth the fetus of the rat accumulates large quantities of hepatic glycogen, with these stores mobilized as glucose in the early postnatal period to sustain the newborn until the onset of suckling and gluconeogenesis. The liver acts to mobilize glycogen in the early neonatal period and gradually adjusts to the alternating supply of nutrients that results from the onset of a feeding cycle. Early postnatal glycogen mobilization is reflected in the decreased active form of glycogen synthase (GS), the rate-limiting enzyme of glycogenesis, and increased activation of glycogen phosphorylase (GP), the rate-limiting enzyme of glycogenolysis. Levels of smooth endoplasmic reticulum (SER)-associated synthase phosphatase and phosphorylase phosphatase activities are diminished from high prenatal levels, contributing to these changes in activation of GS and GP. With the onset of suckling at 1-4 h after birth the liver again accumulates small quantities of glycogen. The period of 6 to 12 h after birth is characterized by large scale glycogenolysis. Glycogen levels are again increased at 24 h after birth, reflecting hepatic adaptation to the onset of meal feeding.  相似文献   

13.
This study has examined the influence of a controlled environment upon the nature of the compensatory hyperplasia which occurs in the rat liver after two-thirds partial hepatectomy. Rats were adapted to a reversed lighting schedule (lights off 09.30 to 21.30 h), and food was only available during the first 8 h of the dark period. Partial hepatectomies were performed at either 10.00, 16.00 or 20.00 h, and the response over the first 36 h monitored by 2-hourly measurements of the flash tritiated thymidine labelling index and the mitotic index. DNA synthesis was initiated within 16-18 h of operation, irrespective of when hepatectomies were performed, though the ensuing patterns of DNA synthesis were rather different. On the other hand, the initiation of mitotic activity was very much dependent upon the time of day that resections were carried out. Hepatectomy at 20.00 h resulted in a rise in mitotic activity some 22-24 h later, but hepatectomy at 10.00 h caused a further 6 h delay in this rise. The onset of mitotic activity appeared to be related to recent feeding, and it is proposed that in the absence of recent nutrition, DNA-synthesizing hepatocytes may have an extended tS and/or tG2.  相似文献   

14.
Energy metabolism follows a diurnal pattern responding to the light/dark cycle and food availability. This study investigated the impact of restricting feeding to the daylight hours and feeding a high fat diet on circadian clock (bmal1, dbp, tef and e4bp4) and metabolic (pepck, fas, ucp3, pdk4) gene expression and markers of energy metabolism in muscle and liver of rats. The results show that in chow-fed rats switched to daylight feeding, the peak diurnal expression of genes in liver was shifted by 6–12 h while expression of these genes in muscle remained in a similar phase to rats feeding ad libitum. High fat feeding during the daylight hours had limited effect on clock gene expression in liver or muscle but shifted the peak expression of metabolic genes (pepck, fas) in liver by 6–12 h. The differential effects of daylight feeding on gene and protein expression in muscle and liver were accompanied by an 8% reduction in whole body energy expenditure, a 20–30% increased glycogen content during the light phase in muscle of day-fed rats and increased adipose tissue deposition per gram food consumed. These data demonstrate that a mismatch of feeding and light/dark cycle disrupts tissue metabolism in muscle with significant consequences for whole body energy homeostasis.  相似文献   

15.
Glycogen synthesis in the perfused liver of the starved rat   总被引:1,自引:18,他引:1       下载免费PDF全文
1. In the isolated perfused liver from 48h-starved rats, glycogen synthesis was followed by sequential sampling of the two major lobes. 2. The fastest observed rates of glycogen deposition (0.68–0.82μmol of glucose/min per g fresh liver) were obtained in the left lateral lobe, when glucose in the medium was 25–30mm and when gluconeogenic substrates were present (pyruvate, glycerol and serine: each initially 5mm). In this situation there was no net disappearance of glucose from the perfusion medium, although 14C from [U-14C]glucose was incorporated into glycogen. There was no requirement for added hormones. 3. In the absence of gluconeogenic precursors, glycogen synthesis from glucose (30mm) was 0–0.4μmol/min per g. 4. When livers were perfused with gluconeogenic precursors alone, no glycogen was deposited. The total amount of glucose formed was similar to the amount converted into glycogen when 30mm-glucose was also present. 5. The time-course, maximal rates and glucose dependence of hepatic glycogen deposition in the perfused liver resembled those found in vivo in 48h-starved rats, during infusion of glucose. 6. In the perfused liver, added insulin or sodium oleate did not significantly affect glycogen synthesis in optimum conditions. In suboptimum conditions (i.e. glucose less than 25mm, or with gluconeogenic precursors absent) insulin caused a moderate acceleration of glycogen deposition. 7. These results suggest that on re-feeding after starvation in the rat, hepatic glycogen deposition could be initially the result of continued gluconeogenesis, even after the ingestion of glucose. This conclusion is discussed, particularly in connexion with the role of hepatic glucokinase, and the involvement of the liver in the glucose intolerance of starvation.  相似文献   

16.
The effects of food deprivation on body weight, liver weight, hepatic glycogen content, glycogenolytic enzymes and blood metabolites were compared in young and old phosphorylase b kinase-deficient (gsd/gsd) rats. Although the concentration of glycogen in liver from 9-week-old female gsd/gsd rats (730 mumol of glucose equivalents/g wet wt.) was increased by 7-8% during starvation, total hepatic glycogen was decreased by 12% after 24 h without food. In 12-month-old male gsd/gsd rats the concentration of liver glycogen (585 mumol of glucose equiv./g wet wt.) was decreased by 16% and total hepatic glycogen by nearly 40% after food deprivation for 24 h. Phosphorylase b kinase and phosphorylase a were present at approx. 10% of the control activities in 9-week-old gsd/gsd rats, but both enzyme activities were increased more than 3-fold in 12-month-old affected rodents. It is concluded that the age-related ability to mobilize hepatic glycogen appears to result from the augmentation of phosphorylase b kinase during maturation of the gsd/gsd rat.  相似文献   

17.
Effect of realimentation was studied on the structure and function of liver tissue of carp,Cyprinus carpio. Yearling carp, after a 3-month starvation period, were renourished at a feeding rate of 1% body weight per day. Samples were taken at refeeding days 0, 1, 2, 5, 22 and 78. Analyses were made of blood metabolites, liver RNA, DNA, lipids, glycogen and protein and of liver enzyme activities. Additionally, liver cytology was examined by means of qualitative and quantitative electron microscopy. The early refeeding period (up to day 5) was characterized by a fast recovery of plasma metabolite concentrations (protein, total lipids, free fatty acids, glucose), a drastic augmentation of hepatic glycogen reserves, and a pronounced increase of total liver weight and liver-somatic index. Constant values of total hepatic DNA showed that liver weight augmentation was not due to cell proliferation, but to a pronounced enlargement of the existing hepatocytes. Major hunger-related structural modifications of carp hepatocytes such as enlarged mitochondria or prominence of the lysosomal compartment were reversed. A significant volume increase of cell nuclei, together with a particularly strong elevation of hepatic RNA concentrations during initial realimentation suggest an immediate stimulation of protein synthesis. Since the cisternae of the endoplasmic reticulum were not reconstituted during that early phase, protein synthesis may have been executed mainly by free ribosomes. With prolonged realimentation, the volume of the endoplasmic reticulum as well as total and relative contents of liver soluble protein continuously increased, whereas RNA concentrations decreased again. An enforcement of liver oxidative capacity was indicated by the augmentation of cellular number and volume of mitochondria. The activities of the enzymes glucose-6-phosphate dehydrogenase and malic enzyme, which convert excess energy into NADPH, increased steadily. Concomitantly, hepatic lipid accumulation was enhanced. In conclusion, liver metabolism during the early recovery phase seems to be dominated both by repair processes and by intensive protein and glycogen synthesis. The liver slows down these processes during prolonged refeeding and directs an increasing percentage of energy and metabolites toward the generation of reducing equivalents and lipid reserves.Abbreviations BW body weight - ER endoplasmic reticulum - FFA free fatty acids - G6PDH glucose-6-phosphate dehydrogenase - LSI liver somtic index - LW liver weight - ME malic enzyme Presented in part as poster abstract at the International Congress on Research in Aquaculture: Fundamental and Applied Aspects. Antibes, France, 6–10 October, 1991  相似文献   

18.
An oral gavage of either 3, 1 or 0.1 mmoles of glucose was given to rats under standard feeding conditions or food deprived for 24 hr. The blood flow of the portal and suprahepatic veins as well as the hepatic balances for glucose, lactate, alanine and pyruvate were estimated.In fed rats, after the administration of an oral 3 mmoles load, the liver actually released 310 µmoles of glucose and 90 of lactate, amounts that could be accounted for by the uptake of alanine (148 µmoles) and small loss of glycogen (275 µmoles of glycosyl residues). In starved rats, however, the liver took a very high proportion (c. 71%) of the glucose absorbed, both as glucose (780 µmoles), lactate and pyruvate (892 µmoles) or alanine (134 µmoles). The synthesis of glycogen was considerably limited, accounting for only 205 µmoles, and leaving practically one mmol of glucose equivalent energy available for liver function and the synthesis of other compounds. Practically all glycogen was synthesized directly from glucose, since the synthesis from 3 C carriers was less than a 5%. Smaller gavages (1 or 0.1 mmoles) resulted in a much lower liver uptake activity.The strikingly different activity of the liver with respect to the available glucose and 3 C fragments could not be explained alone by the circulating levels of these compounds, suggesting a very deep influence of the intestine in hepatic function. The liver plays a very passive role in fed animals, with a very small involvement in the disposal of a glucose load, whereas it takes on an important role when the overall availability of energy is diminished.  相似文献   

19.
Hepatic glycogen metabolism was studied in rats during the period of transition from the fed to fasted states. Glycogenic activity was measured in vivo based on the incorporation of [14C]glucose into liver glycogen. Its changes were almost parallel to the changes in glucogen synthase activity. Progressive accumulation of liver glycogen that occurred in the fed state was associated with a proportional increase in glycogenic activity. Within 4 h after the cessation of food intake, glycogenic activity showd a precipitous fall from the peak to its nadir without significant changes in glycogen content. Meanwhile, the glucose concentration in the portal vein decreased. Upon further development of fasting, glycogenic activity displayed a progressive regain, reciprocally as glycogen contents gradually decreased. The precipitous fall of glycogenic activity during the transition from the fed to fasted states was associated with a transient increase in plasma glucagon, and was partly overcome by the injection of anti-glucagon serum. It is concluded that the fall of portal venous concentration of glucose and secretion of glucagon act as a signal to initiate liver glycogen metabolism characteristics of the fasted or postabsorptive state.  相似文献   

20.
Glucose and related non-metabolizable analogs were transported into cells of Stichococcus bacillaris Naeg. By a specific and active transport system. Glucose transport capacity was stimulated eight-fold by incubation in medium of low osmotic potential (0.09 osM). Stimulation occurred over 24 h in the dark and over 72 h in low osmotic medium. Inhibition of protein synthesis prevented any transport, stimulation from occurring. Kinetic studies revealed that the stimulation caused an increase in Ike maximal velocity of transport and did not affect the half-saturation constant for transport. It was concluded that incubation of cells in the dark or in low osmolar medium induces a synthesis of the transport system. The glucose analog 2-deoxy-D-glucose was only phosphorylated to a limited extent upon entry into the cells, and the free sugar accumulated linearly in dark pre-incubated tells for a period of at least six minutes to reach an intracellular/extracellular concentration ratio of almost 300. Glucose, in contrast, was rapid h converted to sucrose and other cell constituents. Cells incubated 24 h with, glucose or 6-deoxy-D-glucose did not exhibit any altered transport system activity. Cells incubated 24 h with 7 mM dibutyryl cAMP exhibited a 2.5-fold stimulation of transport activity. No stimulation was observed in cells treated only 30 min with dibutyryl cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号