首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When growing in laternating light-dark cycles, nitrogenase activity (acetylene reduction) in the filamentous, non-heterocystous cyanobacterium Oscillatoria sp. strain 23 (Oldenburg) is predominantly present during the dark period. Dark respiration followed the same pattern as nitrogenase. Maximum activities of nitrogenase and respiration appeared at the same time and were 3.6 mol C2H4 and 1.4 mg O2 mg Chl a -1·h-1, respectively. Cultures, adapted to light-dark cycles, but transferred to continuous light, retained their reciprocal rhythm of oxygenic photosynthesis and nitrogen fixation. Moreover, even in the light, oxygen uptake was observed at the same rate as in the dark. Oxygen uptake and nitrogenase activity coincided. However, nitrogenase activity in the light was 6 times as high (22 mol C2H4 mg Chl a -1·h-1) as compared to the dark activity. Although some overlap was observed in which both oxygen evolution and nitrogenase activity occurred simultaneously, it was concluded that in Oscillatoria nitrogen fixation and photosynthesis are separated temporary. If present, light covered the energy demand of nitrogenase and respiration very probably fulfilled a protective function.  相似文献   

2.
Rates of CO2 fixation during the light period and the rates of CO2 release during the night period were measured using mature leaves from 39- to 49-d-old spinach (Spinacia oleracea L., US Hybrid 424; grown in 9 h light, 15 h darkness, daily) and mature leaves from 21-d-old barley (Hordeum vulgare L., cv. Apex; grown in 14 h light, 10 h darkness, daily). At certain times during the light and dark periods leaves were harvested for assay of their contents of soluble carbohydrates, starch, malate and the various amino acids. Evaluation of the results of these measurements shows that in spinach and barley leaves 46% and 26%, respectively, of the carbon assimilated during the light period is deposited in the leaves for export during the night period. Taking into account the carbon consumption in the source leaves by dark respiration, it is evaluated that rates of assimilate export during the light period from spinach and barley leaves [38 and 42 atom C · (mg Chl)–1 · h–1] are reduced in the dark period to 16 atom C · (mg Chl)–1 · h–1 in both species. The calculated C/N ratios of the photoassimilates exported during the dark period were 0.029 and 0.015 for spinach and barley leaves, respectively.This work was supported by the Deutsche Forschungsgemeinschaft. We thank Dr. Dieter Heineke for stimulating discussions and Mrs. Petra Hoferichter and Mrs. Marita Feldkämper for their technical assistance.  相似文献   

3.
A mass spectrometric 16O2/18O2-isotope technique was used to analyse the rates of gross O2 evolution, net O2 evolution and gross O2 uptake in relation to photon fluence rate by Dunaliella tertiolecta adapted to 0.5, 1.0, 1.5, 2.0 and 2.5 M NaCl at 25°C and pH 7.0.At concentrations of dissolved inorganic carbon saturating for photosynthesis (200 M) gross O2 evolution and net O2 evolution increased with increasing salinity as well as with photon fluence rate. Light compensation was also enhanced with increased salinities. Light saturation of net O2 evolution was reached at about 1000 mol m-2s-1 for all salt concentrations tested. Gross O2 uptake in the light was increased in relation to the NaCl concentration but it was decreased with increasing photon fluence rate for almost all salinities, although an enhanced flow of light generated electrons was simultaneously observed. In addition, a comparison between gross O2 uptake at 1000 mol photons m-2s-1, dark respiration before illumination and immediately after darkening of each experiment showed that gross O2 uptake in the light paralleled but was lower than mitochondrial O2 consumption in the dark.From these results it is suggested that O2 uptake by Dunaliella tertiolecta in the light is mainly influenced by mitochondrial O2 uptake. Therefore, it appears that the light dependent inhibition of gross O2 uptake is caused by a reduction in mitochondrial O2 consumption by light.Abbreviations DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - DHAP dihydroxy-acetonephosphate - DIC dissolved inorganic carbon - DRa rate of dark respiration immediately after illumination - DRb rate of dark respiration before illumination - E0 rate of gross oxygen evolution in the light - NET rate of net oxygen evolution in the light - PFR photon fluence rate - RubP rubulose-1,5-bisphosphate - SHAM salicyl hydroxamic acid - U0 rate of gross oxygen uptake in the light  相似文献   

4.
Characteristics of thermoluminescence (TL) glow curves were studied in thylakoids (isolated from pea leaves) or in intact pea leaves after an exposure to very high light for 2 min in the TL device. The inhibition of photosynthesis was detected as decreases of oxygen evolution rates and/or of variable fluorescence.In thylakoids exposed to high light, then dark adapted for 5 min, a flash regime induced TL glow curves which can be interpreted as corresponding to special B bands since: 1) they can be fitted by a single B band (leaving a residual band at –5°C) with a lower activation energy and a shift of the peak maximum by –5 to –6°C and, 2) the pattern of oscillation of their amplitudes was normal with a period of 4 and maxima on flashes 2 and 6. During a 1 h dark adaptation, no recovery of PS II activity occurred but the shift of the peak maximum was decreased to –1 to –2°C, while the activation energy of B bands increased. It is supposed that centers which remained active after the photoinhibitory treatment were subjected to reversible and probably conformational changes.Conversely, in intact leaves exposed to high light and kept only some minutes in the dark, TL bands induced by a flash regime were composite and could be deconvoluted into a special B band peaking near 30°C and a complex band with maximum at 2–5°C. In the case of charging bands by one flash, this low temperature band was largely decreased in size after a 10 min dark adaptation period; parallely, an increase of the B band type component appeared. Whatever was the flash number, bands at 2–5°C were suppressed by a short far red illumination given during the dark adaptation period and only remained a main band a 20°C; therefore, the origin of the low temperature band was tentatively ascribed to recombinations in centers blocked in state S2QA QB 2–. In vivo, the recovery of a moderately reduced state in the PQ pool, after an illumination, would be slow and under the dependence of a poising mechanism, probably involving an electron transfer between cytosol and chloroplasts or the so-called chlororespiration process.Abbreviations Ea- activation energy - FR- far-red - MV- methylviologen - pBQ- p-benzoquinone - PQ- plastoquinone - PS II- Photosystem II - QA- primary quinone electron acceptor of PS II - QB- secondary quinone electron acceptor of PS II - TL- thermoluminescence  相似文献   

5.
Barley seedlings (Hordeum vulgare L. Boone) were grown at 20°C with 16 h/8 h light/dark cycle of either high (H) intensity (500 mole m-2 s-1) or low (L) intensity (55 mole m-2 s-1) white light. Plants were transferred from high to low (H L) and low to high (L H) light intensity at various times from 4 to 8 d after leaf emergence from the soil. Primary leaves were harvested at the beginning of the photoperiod. Thylakoid membranes were isolated from 3 cm apical segments and assayed for photosynthetic electron transport, Photosystem II (PS II) atrazine-binding sites (QB), cytochrome f(Cytf) and the P-700 reaction center of Photosystem I (PS I). Whole chain, PS I and PS II electron transport activities were higher in H than in L controls. QB and Cytf were elevated in H plants compared with L plants. The acclimation of H L plants to low light occurred slowly over a period of 7 days and resulted in decreased whole chain and PS II electron transport with variable effects on PS I activity. The decrease in electron transport of H L plants was associated with a decrease in both QB and Cytf. In L H plants, acclimation to high light occurred slowly over a period of 7 days with increased whole chain, PS I and PS II activities. The increase in L H electron transport was associated with increased levels of QB and Cytf. In contrast to the light intensity effects on QB levels, the P-700 content was similar in both control and transferred plants. Therefore, PS II/PS I ratios were dependent on light environment.Abbreviations Asc ascorbate - BQ 2,5-dimethyl-p-benzoquinone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCIP 2,6-dichlorophenolindophenol - H control plants grown under high light intensity - H L plants transferred from high to low light intensity - L low control plants grown under low light intensity - L H plants transferred from low to high light intensity - MV methyl viologen - P-700 photoreaction center of Photosystem I - QB atrazine binding site - TMPD N,N,N,N-tetramethyl-p-phenylenediamine Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC. Paper No. 11990 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA.  相似文献   

6.
In outdoor thin-layer sloping reactors algae are batch cultured and harvested at biomass concentrations of about 15 g (dw) I-1 whereafter a portion is used as inoculum for the next cycle. Light saturation curves of the oxygen evolution (PII curves) of the algae were measured using diluted aliquots of suspension taken from the reactors. The maximum specific photosynthetic rates (P B max) and the light intensity at the onset of saturated photosynthesis (I k ) decreased whilst the maximum specific photosynthetic efficiency ( B ) increased with an increase in the biomass concentration, during the production cycle. These differences reflect transition from light- to dark-acclimated state of the algae that occurs as a result of an increase of the suspension concentration during the production cycle. During these experiments the thin-layered smooth sloping cultures (TLSS, culture depth 5–7 mm) had higher photosynthetic rates per volume than the thin-layered baffled sloping cultures (TLBS, culture depth 5–15 mm). This was ascribed to the higherP B max values of the algae grown in the TLSS cultures, allowing them to utilise high incident irradiancies more effectively. However, the areal productivity of the TLBS was higher than the TLSS indicating a higher photosynthetic efficiency of the TLBS reactors. The specific productivity decreased rapidly with an increase in the biomass concentration, but the yield remained linear during the batch production cycle, even at high areal densities.  相似文献   

7.
15N-labelled nitrate was used to show that nitrate reduction by leaf discs in darkness was suppressed by oxygen, whereas nitrite present within the cell could be reduced under aerobic dark conditions. In other experiments, unlabelled nitrite, allowed to accumulate in the tissue during the dark anaerobic reduction of nitrate was shown by chemical analysis to be metabolised during a subsequent dark aerobic period. Leaves of intact plants resembled incubated leaf discs in accumulating nitrite under anaerobic conditions. Nitrate, n-propanol and several respiratory inhibitors or uncouplers partly reversed the inhibitory effect of oxygen on nitrate reduction in leaf discs in the dark. Of these nitrate and propanol acted synergistically. Reversal was usually associated with inhibition of respiration but some concentrations of 2,4-dinitrophenol (DNP) and ioxynil reversed inhibition without affecting respiratory rates. Respiratory inhibitors and uncouplers stimulated nitrate reduction in the anaerobic in vivo assay i.e. in conditions where the respiratory process is non-functional. Freezing and thawing leaf discs diminished but did not eliminate the sensitivity of nitrate reduction to oxygen inhibition.Abbreviations DNP 2,4-dinitrophenol - HOQNO 8-hydroxyquinoline-N-oxide - DCPIP 2,6-dichlorophenolindophenol - CCCP Carbonyl cyanide m-chlorophenylhydrazone - TES N-tris(hydroxymethyl)methyl-2-amino ethanesulphonic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid  相似文献   

8.
The regulation of the expression of enzyme activities catalyzing initial reactions in the anoxic metabolism of various aromatic compounds was studied at the whole cell level in the denitrifying Pseudomonas strain K 172. The specific enzyme activities were determined after growth on six different aromatic substrates (phenol, 4-hydroxybenzoate, benzoate, p-cresol, phenylacetate, 4-hydroxyphenylacetate) all being proposed to be metabolized anaerobically via benzoyl-CoA. As a control cells were grown on acetate, or aerobically on benzoate. The expression of the following enzyme activities was determined.Phenol carboxylase, as studied by the isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate; 4-hydroxybenzoyl-CoA reductase (dehydroxylating); p-cresol methylhydroxylase; 4-hydroxybenzyl alcohol dehydrogenase; 4-hydroxybenzaldehyde dehydrogenase; coenzymeA ligases for the aromatic acids benzoate, 4-hydroxybenzoate, phenylacetate, and 4-hydroxyphenylacetate; phenylglyoxylate: acceptor oxidoreductase and 4-hydroxyphenylglyoxylate: acceptor oxidoreductase; aromatic alcohol and aldehyde dehydrogenases.The formation of most active enzymes is strictly regulated; they were only induced when required, the basic activities being almost zero. The observed whole cell regulation pattern supports the postulate that the enzyme activities play a role in anoxic aromatic metabolism and that the compounds are degraded via the following intermediates: Phenol 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; benzoate benzoyl-CoA; p-cresol 4-hydroxybenzaldehyde 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; phenylacetate phenylacetyl-CoA phenylglyoxylate benzoyl-CoA plus CO2; 4-hydroxyphenylacetate 4-hydroxyphenylacetyl-CoA 4-hydroxyphenylglyoxylate 4-hydroxybenzoyl-CoA plus CO2 benzoyl-CoA.  相似文献   

9.
Using differential respirometry and air enriched to 3% CO2 (v/v), the rates of photosynthesis and dark respiration of the moss Bryum sandbergii were measured as influenced by temperature and light intensity. The optimal temperature for net (apparent) photosynthesis was between 24 to 30 C; however, the photosynthesis/respiration ratio was about 11 to 27 between 4 to 24 C and dropped to lower values at 34 C., which indicates a wide temperature tolerance for this moss in short-term experiments. The maximum temperature for photosynthesis was about 41 C and the minimum was below –5 C. At 20 C light saturation was approached at 6.2 mw cm–2 (ca. 700 ft-c) but not completely reached at 12 mw cm-2; the light compensation point was estimated to be 0.4 mw cm-2 (ca. 40 ft-c). At 4 C light saturation and the compensation point were at lower levels and apparently solarization occurred at 12 mw cm-2. Light intensity had little or no apparent effect on dark respiration. However, respiration increased with temperature over various ranges extending from –5 to 39 C with temperature quotients of about 2.5 to 1.2. The significance of these characteristics is discussed with respect to the ecological relationships of the species.  相似文献   

10.
Heterosigma akashiwo, a red tide alga, was grown in Fe-deficient and Fe-replete batch cultures. Cell final yields and the growth rate were limited when Fe was below 10 nM and alleviated with 100 nM Fe. By comparison with the results under Fe-replete conditions, chlorophyll a-specific and cell-specific light saturated net photosynthetic capacity (Pm chl a and Pm cell), dark respiration rate (Rd chl a and Rd cell) and apparent photosynthetic efficiency (chl a and cell) decreased proportionately, whereas the cells became light saturated at higher irradiance under Fe stress (Fe-limited conditions).  相似文献   

11.
Oxygen evolution from aScenedesmus obliquus dominated outdoor culture was followed in a small volume chamber, irradiated either by continuous white light or under light/dark frequencies between 0.05 to 5000 Hz, using arrays of high intensity red light emitting diodes (LED's). By placing neutral density filters in the path of the white light, light saturation curves of the oxygen evolution (P/I curves) were measured using diluted aliquots of algal cultures. The results clearly showed that photosynthetic rates increased exponentially with increasing light/dark frequencies, that a longer dark period in relation to the light period does not necessarily lead to higher photosynthetic rates (efficiencies), and that algae do not acclimate to a specific light/dark frequency. One of the most important factors that influenced photosynthetic rates, either under continuous illumination or intermittent, was whether the algae were dark or light acclimated. Low light/dark frequencies were perceived by the algae as low light conditions, whilst the opposite was true for high frequencies. The light utilisation efficiency in a fluctuating light/dark environment depended on the acclimated state of the algae, the specific frequency of the fluctuations and the duration of the exposure. Since the frequencies determined the perceived quantities of light, dark reactions played an important role in determining the average photosynthetic efficiencies. These results have important implications for algal biotechnology.  相似文献   

12.
Cross-correlated relaxation rates involving the C-H dipolar interaction and the carbonyl (C) chemical shift anisotropy (CSA) have been measured using two complementary 3D experiments. We show that the protein backbone angle can be directly refined against such cross-correlated relaxation rates (H C,C) and the three-bond H/D isotope effect on the C chemical shifts (3C (ND)). By simultaneously using both experimental parameters as restraints during NMR structure calculations, a unique value for the backbone angle is defined. We have applied the new refinement method to the -Spectrin SH3 domain (a -sheet protein) and to the Sgs1p HRDC domain (an -helical protein) and show that the quality of the NMR structures is substantially improved, judging from the atomic coordinate precision and the Ramachandran map. In addition, the -refined NMR structures of the SH3 domain deviate less from the 1.8 Å crystal structure, suggesting an improved accuracy. The proposed refinement method can be used to significantly improve the quality of NMR structures and will be applicable to larger proteins.  相似文献   

13.
G. R. Findenegg 《Planta》1977,135(1):33-38
Excretion and absorption of glycolate by young cells of Scenedesmus obliquus (Turp.) Krüger strain D3 grown synchronously with 2% CO2 was compared after no pretreatment with air (CO2-adapted) or after a 2 h adaptation to normal air (0.03% CO2) (air-adapted). At 21% O2, excretion occurred only from CO2-adapted cells at high pH (pH 8.0). Under conditions where no excretion occurred, external glycolate (0.2 mM) was taken up by both air-and CO2-adapted cells at a much faster rate at pH 5 than at pH 8. The uptake was accompanied by an apparent stoichiometric uptake of H+. CO2-adapted algae exhibited high uptake rates that were even higher in the dark than in the light. Air-adapted algae showed high uptake rates in the light but only minimal uptake in the dark. The uptake rate was decreased to about 1/3 with 5% CO2, except with CO2-adapted cells in the light, in which a slight stimulation occurred. Cl- ions inhibited glycolate uptake by air-adapted cells in the light; conversely, light-stimulated Cl- uptake of these cells was inhibited by glycolate. A hypothesis is discussed according to which the internal pH regulates the uptake and release of Cl-, HCO 3 - , and glycolate.Abbreviations DCMU 3-(3,4 dichlorophenyl)-1, 1-dimethyl urea - FCCP carbonyl cyanide p-trifluoro-methoxyphenylhydrazone - HEPES 2-(4-(2-hydroxyethyl)-piperazinyl) ethanesulfonic acid - HPMS -hydroxypyridinemethanesulfonate - MES 2-morpholinoethanesulfonic acid - PCV packed cell volume  相似文献   

14.
We examined the in situ CO2 gas-exchange of fruits of a tropical tree, Durio zibethinus Murray, growing in an experimental field station of the Universiti Pertanian Malaysia. Day and night dark respiration rates were exponentially related to air temperature. The temperature dependent dark respiration rate showed a clockwise loop as time progressed from morning to night, and the rate was higher in the daytime than at night. The gross photosynthetic rate was estimated by summing the rates of daytime dark respiration and net photosynthesis. Photosynthetic CO2 refixation, which is defined as the ratio of gross photosynthetic rate to dark respiration rate in the daytime, ranged between 15 and 45%. The photosynthetic CO2 refixation increased rapidly as the temperature increased in the lower range of air temperature T c (T c <28.5 °C), while it decreased gradually as the temperature increased in the higher range (T c 28.5 °C). Light dependence of photosynthetic CO2 refixation was approximated by a hyperbolic formula, where light saturation was achieved at 100 mol m–2 s–1 and the asymptotic CO2 refixation was determined to be 37.4%. The estimated gross photosynthesis and dark respiration per day were 1.15 and 4.90 g CO2 fruit–1, respectively. Thus the CO2 refixation reduced the respiration loss per day by 23%. The effect of fruit size on night respiration rate satisfied a power function, where the exponent was larger than unity.  相似文献   

15.
A novel approach is described for the growth of phototrophic microorganisms in batch culture in laboratory-scale photo-bioreactors. Pure CO2 is added separately to the aeration gas in a closed loop and the rate of photosynthetic activity is monitored continuously by recording the amount of CO2 added in order to maintain constant pH. These activity measurements are used to control the intensity of illumination by varying the voltage applied to a bank of fluorescent tubes. The intensity of illumination is maintained at the value giving the maximal rate of photosynthesis while photoinhibition due to excess light is avoided. Since the light intensity received by the individual cells is maintained at the optimal value we term the device a lumostat.Measurements of photosynthetic activity by monitoring CO2 addition were in excellent agreement with off-line measurements of cell carbon as long as corrections were made for diffusion loss through the walls of the tubing. Exponential growth of a thermophilic strain of the cyanobacteriumSynechococcus was obtained for 7 generations with maximum cell densities of 8 × 107 cells mL–1. The productivity of the lumostat is superior to that of batch cultures at any fixed light intensity.  相似文献   

16.
The influence of episodic, sediment resuspension on phytoplankton abundance/volume and composition, the photosynthetic maximum rate (PB max) and efficiency (B), and chlorophyll-specific growth (Chl) was evaluated during the spring isothermal period in southern Lake Michigan (Laurentian Great Lakes, USA). Resuspension altered the nutrient and light climate of nearshore waters; light attenuation (Kd) and phosphorus concentrations corresponded (p 0.0001 and p 0.001, respectively) with concentrations of suspended particulate matter (SPM). Phytoplankton cell volume and diatom cell abundance and volume were not associated with SPM concentrations (p > 0.05). Diatom composition displayed spatial dissimilarities corresponding with resuspension (p 0.001); small centric diatoms exhibiting meroplanktonic life histories and pennate diatoms considered benthic in origin were most abundant within SPM-impacted, nearshore waters whereas taxa typically comprising assemblages in optically-clear, offshore waters and the basin-wide, spring bloom were not. Values of PB max and B corresponded (p 0.0001) with both Kd coefficients and SPM concentrations, potentially reflecting increased light harvesting/utilization within impacted assemblages. However, integral production was inversely associated with Kd coefficients and SPM concentrations (p < 0.0001) and photosynthesis was light-limited (or nearly so) for most assemblages. Although Chl values corresponded with Kd coefficients (p 0.05), values were quite low (x ± S.E., 0.10 ± 0.004 d-1) throughout the study. Most likely, distinct rate processes between SPM- and non-impacted assemblages reflected short-term compositional (and corresponding physiological) variations due to infusion of meroplankton and/or tributary-derived phytoplankton. Overall, resuspension appears to have little, if any, long-term impact upon the structure and function of the lakes phytoplankton.  相似文献   

17.
Gunter O. Kirst 《Planta》1981,151(3):281-288
The giant-celled alga Griffithsia monilis has a low light compensation point and saturates photosynthesis at 60–90 mol photons m-2s-1 (oxygen evolution and CO2 fixation). Under dark and low light intensities 14C is preferentially incorporated into amino acids (mainly aspartate and alanine). With increasing light a gradual change was observed and, under light saturation, compounds of the anionic fraction (digeneaside and hexosephosphates) were the most strongly labeled compounds, together with the amino acids glycine and serine. To a large extent (30–40% of the total) 14C was fixed into EtOH-insoluble products, the hydrolysates of which consisted mainly of glucose and mannose. In the steady state the rates of photosynthesis and respiration decreased with increasing salinity. Changes in the rates after hyperosmotic shocks were less severe in cells adapted to high salinities. Photorespiration exists in Griffithsia: Glycine and serine are the major labeled compounds in O2-saturated media.  相似文献   

18.
K. Jenderedjian 《Hydrobiologia》1994,278(1-3):287-290
A modification of the Hynes' method was used to estimate production of Potamothrix alatus paravanicus Poddubnaya & Pataridze (Tubificidae), the dominant species of benthic invertebrate in Lake Sevan. Maximum production (5–24 g mt\-2 wet weight) occurred in the sublittoral, while maximum biomass was found (8–17 g m–2 wet weight) in the profundal. The turnover ratio of the average cohort varied between 2.4 and 5.0. The annual turnover ratio (P/B) decreased from 2.1–3.1 in the littoral to 0.1–0.4 in the profundal zone.A logarithmic correlation was found between P/B and temperature and oxygen regime, and depth and average size of clitellate specimens.  相似文献   

19.
Measurement of the light response of photosynthetic CO2 uptake is often used as an implement in ecophysiological studies. A method is described to calculate photosynthetic parameters, such as the maximum rate of whole electron transport and dissimilative respiration in the light, from the light response of CO2 uptake. Examples of the light-response curves of flag leaves and ears of wheat (Triticum aestivum cv. ARKAS) are shown.Abbreviations and symbols A net photosynthesis rate - D 1 rate of dissimilative respiration occurring in the light - f loss factor - I incident PPFD - I effective absorbed PPFD - J rate of whole electron transport - J m maximum rate of whole electron transport - p c intercellular CO2 partial pressure - PPFD photosynthetic photon flux density - q effectivity factor for the use of light (electrons/quanta) - absorption coefficient - I * CO2 compensation point in the absence of dissimilative respiration (bar) - II conversion factor for calculation of CO2 uptake from the rate of whole electron transport - convexity factor Gas-exchange rates relate to the projective area and are given in mol·m-2·s-1. Electron-transport rates are given in mol electrons·m-2·s-1; PPFD is given in mol quanta·m-2·s-1.  相似文献   

20.
Nuclei were isolated from the shoots of Zea mays and assayed for endogenous RNA polymerase activity in vitro. Maximum incorporation from radioactive precursors (70 pmol [3H]uridine 5 monophosphate/100 g DNA) was reached after incubation for 1 h at 25°C. The RNA product, analysed by polyacrylamide gel electrophoresis, was polydisperse in size with an upper limit of 2x106 daltons. Discrete peaks of rRNA were not detected, probably because of endogenous ribonuclease activity. The inclusion of -amanitin (4 g/ml) in the incubation reduced the total incorporation by approximately 40% but did not significantly alter the size of the RNA product. Although 40% of the total activity could be attributed to RNA polymerase II, [3H]RNA synthesised in vitro was found not to contain long sequences of poly (A).Abbreviations oligo (dT) oligo (deoxythymidylic acid) - poly (A) poly (adenylic acid) - GTP guanosine 5 triphosphate - ATP adenosine 5 triphosphate - CTP cytidine 5 triphosphate - UTP utidine 5 triphosphate - UMP uridine 5 monophosphate - PPO 2,5-diphenyloxazole - POPOP 1,4-di-2-(5-phenyloxazolyl) benzene  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号