首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
不同栖息地状态下外来种入侵及对本地种生存影响的模拟   总被引:1,自引:0,他引:1  
陈玲玲  林振山 《生态学报》2008,28(4):1366-1375
外来种入侵引起的生态及经济问题日益严重,人类活动导致大规模栖息地持续变化的背景下,外来种的入侵过程及本地物种多样性的演化更为复杂.在Tilman多物种共存模型基础上,建立了栖息地持续变化条件下的外来种入侵干扰模式,分别模拟了栖息地不变、持续毁坏及持续恢复条件下的外来种入侵及对本地物种多样性的生态影响.模拟结果表明:(1)拓殖率小(入侵性弱)的外来种不能成功定殖,栖息地的持续变化对其没有任何影响.(2)拓殖率增大的外来种入侵过程复杂,栖息地持续毁坏导致其灭绝时间相比于栖息地不变时明显推迟,栖息地持续恢复使其灭绝提前;一定时间内持续增加栖息地可以减小此类外来种入侵危害.(3)拓殖率足够大的外来种能够成功定殖,快速定殖-扩散的入侵过程不会因栖息地毁坏而迅速改变,其响应具有时间滞后性;栖息地持续恢复也有利于其迅速蔓延,占有率呈线性疯狂增长.(4)在具有外来种入侵的本地生态系统中,栖息地持续改变(增加或减少)对本地物种多样性的发展均不利.  相似文献   

2.
齐相贞  林振山  温腾 《生态学报》2007,27(9):3835-3843
生物入侵带来的生态和经济危害引起了人们的广泛关注。在入侵生态学研究方面,生物多样性与生物入侵之间的关系长久以来成为群落可入侵性探讨的焦点。Elton经典假说认为,物种多样性越高对外来种入侵的抵抗能力越强,许多模型或野外试验都支持这一假说。但现在越来越多的试验对此提出了异议,各种假说纷纷出现。究竟生物多样性会不会影响外来种的入侵?假设两种不同的群落结构(功能群),设计6种外来种入侵土著群落的情景分析不同多样性及相同多样性下外来种的入侵状况。结果发现,在多样性相同的情况下,两种群落对外来种入侵的抵抗力不同。外来种成功入侵等比群落,却被倍数群落排斥在系统之外。进一步分析表明这主要是由于可利用资源的波动引起的,即Davis提出的"资源机遇假说"。在相同的物种多样性下,由于倍数群落的特殊结构,整个群落所占有资源远远大于等比群落资源比率。因此,外来种在等比群落中更易找到合适的入侵机会。而在物种多样性不同的情况下,由于物种多样性与已占有资源的变化是成正比的,因此,混淆了多样性与剩余资源可利用性对外来种入侵的影响。  相似文献   

3.
我国外来入侵生物防控现状、问题和对策   总被引:2,自引:0,他引:2       下载免费PDF全文
外来物种入侵已经威胁全球多个国家和地区,严重影响农林牧渔业生产,威胁生态系统稳定,是当前全球生物多样性丧失的主要原因之一,开展入侵物种防控已成为生物多样性保护与农业绿色发展的重点工作。我国已经成为全球遭受生物入侵威胁与损失最为严重的国家之一,截至2018年底,入侵我国的外来物种有近800种,已确认入侵农林生态系统的有638种,全国31个省(区、市)均有外来生物入侵发生并带来危害,半数以上县域都有入侵物种分布,几乎涉及所有类型的生态系统。本文对全球主要发达国家外来入侵物种发生情况及防控进行梳理发现,从国家层面立法开展外来入侵生物防控成为主流,制定长期防控战略并增加投入是入侵物种防控成功的关键。近些年,我国在外来入侵物种防控方面初步建立了工作机制,发布了重点管理外来入侵物种名录,完成了重点入侵物种的调查监测,开展了局部地区的防控措施,积极推动立法工作。根据国外生物入侵防治经验与我国实际情况,本研究提出我国外来入侵物种防控对策建议,包括加强法制建设、开展本底调查和启动重大防控工程等,为我国外来侵入生物的防控提供借鉴。  相似文献   

4.
群落可侵入性及其影响因素   总被引:26,自引:1,他引:25       下载免费PDF全文
 可侵入性用于评价群落易遭受生物入侵的程度,受外来种死亡率、区域气候、干扰水平、生态系统抵抗入侵的能力、本地种竞争和抗干扰能力等因素的影响。当前对群落或区域间可侵入性的比较常以外来种数量或丰度为据,然而这两者仅代表了群落内单一的动态过程,不足以作为衡量群落可侵入性的广泛标准。借助一个描述外来种数量的简单模型阐明,由于影响可侵入性因素的复杂性,各地之间的可侵入性几乎不可比较。并从入侵过程、入侵种特性及本地种、本地群落对入侵的抵抗性几方面对群落可侵入性进行了阐述分析,其中着重介绍入侵生态中几个重要的概念,如可侵  相似文献   

5.
外来物种入侵严重威胁着乡土植物多样性并削弱了生态系统服务功能。本文基于滇西北怒江河谷植被调查的样方数据, 从群落水平研究了乡土和入侵植物多样性的空间分布格局, 以及地形、气候、人类干扰等因子对两种格局的影响。本研究共记录到外来入侵植物26种, 隶属于13科21属; 乡土植物1,145种, 分属于158科628属。沿着怒江河谷, 入侵植物物种丰富度随纬度与海拔的增加而减少; 乡土物种丰富度则随纬度增加而增加, 并在海拔梯度上呈单峰格局。运用广义线性模型分析公路边缘效应(反映生境干扰)、气候、地形和土壤等环境因素对物种丰富度分布格局的影响。等级方差分离的结果显示, 公路两侧的生境干扰对入侵种和乡土种的丰富度格局均具有首要影响。在自然环境因子中, 降水量是入侵植物丰富度的主要限制因子, 而乡土物种丰富度则主要受到地形因子尤其是坡向的影响。结构方程模型的分析结果也表明, 乡土植物和入侵植物丰富度之间的负相关关系反映了二者对环境响应的差异。本文结果支持物种入侵的资源可利用性限制假说, 并强调了人类活动对生物多样性的负面影响; 乡土植物或已较好地适应了干旱河谷气候, 但并没有显示出对外来物种入侵的抵抗作用。  相似文献   

6.
火与外来植物相互关系的研究进展   总被引:2,自引:0,他引:2  
入侵种对本地的生态系统和生物多样性均有不良的影响,严重的会造成物种的灭绝和生态系统的崩溃,这已在全球范围引起广泛关注.在植物外来种与火生态因子的作用研究中发现,火与外来种的关系随物种生物学特性、火作用的时间、频度、强度不同而不同,火有时会有效地抑制外来种的生长和入侵,有时会促进一些外来种的生长和入侵.反之,一些外来种会对火的产生起到积极的作用,一些外来种又会抑制火的发生.火作为控制入侵种的一种方法,经科学地运用,可对某些入侵种起到有效的控制作用.  相似文献   

7.
王世雄  何跃军  王文颖 《广西植物》2022,42(11):1929-1938
预测外来植物的潜在入侵性已成为生物多样性保护研究的重要内容,外来植物与乡土物种间的亲缘关系是预测外来植物能否成功入侵的一个重要途径。然而,达尔文归化难题却预测了两种截然不同的结果(即达尔文归化假说和预适应假说)。该研究解析了达尔文归化难题的内涵,提出了基于功能性状的外来植物与乡土群落间的相似性关系应该是进行外来植物入侵预测的重要切入点,而功能性状的种间分化与种内变异可能是外来植物成功入侵的两种不同生态策略。在此基础上,该研究还通过物种功能性状的多维超体积构建了外来植物与乡土群落间的相似性,提出了基于这种相似性的外来植物入侵预测的研究框架和基本流程。该模型框架的建立有助于理解外来植物的入侵机制,对外来植物的潜在入侵性预测提供了理论依据。当然,要实现外来植物能否成功入侵的准确预测,不仅依赖于功能性状的选择,还要考虑入侵的生境依赖性、空间尺度的重要性以及乡土群落的可入侵性等,未来的研究重点是通过控制实验对该模型进行验证和进一步完善。  相似文献   

8.
[目的] 明确世界自然保护联盟公布的“世界100种恶性外来入侵物种”在我国大陆发生分布现状,为我国制定外来入侵物种管控对象和分级管理对策提供依据。[方法] 基于在线数据库系统、文献报道以及外来入侵物种本底调查结果,采用分类统计方法,对物种的分类地位、原产地、在我国的入侵状态及其所在的生态系统进行分析。[结果] 世界100种恶性外来入侵物种已有82种在我国发生分布,包括本地种33种、外来入侵种32种、外来非入侵种16种,以及未明确入侵状态1种。其中,32种外来入侵种包括陆生无脊椎动物8种、哺乳动物2种、鱼类2种、两栖动物1种、爬行动物1种、水生无脊椎动物2种、陆生植物9种、水生植物4种、真菌1种、卵菌1种和病毒1种。以上物种主要分布在东南沿海地区和西南地区,而较少分布在西北地区和东北地区;约75%物种分布在农田、城镇、森林和湿地4类生态系统。[结论] 建议外来入侵物种管理部门重点关注尚未在国内发生分布的18种潜在外来入侵物种,并列入国家外来入侵物种相关管理对象,严防其传入与扩散;严密监控国内已发生且具有潜在危险的外来物种,防止其向可能入侵的生态系统边缘扩散;继续对在国内已发生的外来入侵种实施区域性分级控制管理措施。  相似文献   

9.
外来植物入侵的化感作用机制探讨   总被引:15,自引:0,他引:15  
在最近的几十年,在全球范围内的外来植物入侵的频率达到了前所未有的水平,所以对其入侵机制的研究显得尤为重要。目前,已有几种假说从不同的侧面解释外来植物的成功入侵。本文在综述前人工作基础上,从化感作用的角度解释外来植物入侵,并给出解释模式。由于本土动植物对某些外来植物释放的化感物质比较敏感,外来植物可以利用它的“化学武器”与本土植物竞争,抵御植食性动物的取食和病源菌的感染,从而在与本土物种的相互干扰中占据优势,实现成功入侵。进一步从理论和应用的角度探讨了化感作用作为外来植物入侵的机制给我们的启示,并对今后这方面研究提出几点建议和看法。  相似文献   

10.
中国外来入侵物种的分布与传入路径分析   总被引:94,自引:0,他引:94  
外来物种入侵已成为全球性的环境问题,本文采用文献调研,实地考察与专家咨询相结合的方式,调查了全国陆生,淡水水生生态系统中外来入侵微生物,无脊椎动物,两栖爬行类,鱼类,鸟类,哺乳类,杂草,树木和海洋生态系统中外来入侵物种的种类及分类地位,起源,引入路径和环境影响等内容。查明我国共有283种外来入侵物种,其中外来入侵微生物,水生植物,陆生植物,水生无脊椎动物,陆生无脊椎动物,两栖爬行类,鱼类,哺乳类分别为19种,18种,170种,25种,33种,3种,10种和5种,来源于美洲,欧洲,亚洲,非洲,大洋洲的外来入侵物种分别占55.1%,21.7%,9.9%.8.1%和0.6%。我国对外来物种的引进存在一定程度的盲目性;50.%的外来入侵植物是作为牧草或饲料,观赏植物,纤维植物,药用植物,蔬菜,草坪模特而引进的;25%的外来入侵动物是用于养殖,观赏,生物防治的引种,对外来物种只重引进,疏于管理,也可能导致外来物种逃逸到自然环境中,造成潜在的环境意传入的;76.3%的外来入侵动物是由于检查不严,随贸易物品或运输工具传入我国的。因此,我国既要加强检疫工作,又要对外来物种的有意引进进行严格管理,实行外来物种引进的风险评估制度。  相似文献   

11.
Habitat disturbance, particularly of human origin, promotes the invasion of exotic plants, which in turn might foster the invasion of alien-interacting animals. Here we assess whether the invasion of exotic plants – mostly mediated by habitat disturbance – facilitates the invasion of exotic flower visitors in temperate forests of the southern Andes, Argentina. We recorded visit frequencies and the identity of visitors to the flowers of 15 native and 15 exotic plant species occurring in different highly disturbed and less disturbed habitats. We identified three alien flower visitors, the hymenopterans Apis mellifera, Bombus ruderatus, and Vespula germanica. We found significantly more visitation by exotic insects in disturbed habitats. This pattern was explained, at least in part, by the association between alien flower visitors and flowers of exotic plants, which occurred more frequently in disturbed habitats. However, this general pattern masked different responses between the two main alien flower visitors. Apis mellifera exploited almost exclusively the flowers of a subset of herbaceous exotic plants that thrive under disturbance, whereas B. ruderatus visited equally flowers of both exotic and native plants in both disturbed and undisturbed habitats. We did not find any strong evidence that flowers of exotic plants were more generalist than those of native plants, or that exotic flower visitors were more generalist than their native counterparts. Our results suggest that alien plant species could facilitate the invasion of at least some exotic flower visitors to disturbed habitats. Because flowering plants as well as flower visitors benefit from this mutualism, this association may enhance, through a positive feedback, successful establishment of both exotic partners.  相似文献   

12.
Understanding the processes that lead to successful invasions is essential for the management of exotic species. We aimed to assess the comparative relevance of habitat (both at local and at regional scale) and plant features on the species richness of local canopy spiders of both indigenous and exotic species. In an oceanic island, Azores archipelago, we collected spiders in 97 transects belonging to four habitat types according to the degree of habitat disturbance, four types of plants with different colonisation origin (indigenous vs. exotic), and four types of plants according to the complexity of the vegetation structure. Generalised linear mixed models and linear regressions were performed separately for indigenous and exotic species at the local and regional landscape scales. At the local scale, habitat and plant origin explained the variation in the species richness of indigenous spiders, whereas exotic spider richness was poorly correlated to habitat and plant structure. The surrounding landscape matrix substantially affected indigenous spiders, but did not affect exotic spiders, with the exception of the negative effect exerted by native forests on the richness of exotic species. Our results revealed that the local effect of habitat type, plant origin and plant structure explain variations in the species richness observed at a regional scale. These results shed light on the mechanistic processes behind the role of habitat types in invasions, i.e., plant fidelity and plant structure are revealed as key factors, suggesting that native forests may act as physical barriers to the colonisation of exotic spiders.  相似文献   

13.
Introduced exotic species can dominate communities and replace native species that should be better adapted to their local environment, a paradox that is usually explained by the absence of natural enemies and by habitat alteration resulting from anthropogenic disturbance. Additionally, introduced species can enhance their invasion success and impact on native species by modifying selection pressures in their new environment through ecosystem engineering. We analyse a simple dynamic model of indirect competition for habitat between a non-engineering resident species and an engineering exotic species. The conditions for invasion and competitive exclusion of the resident by the exotic species and the range of dynamic outcomes suggested by the model are determined by the form of density dependence. We give simple criteria for the success of the invading species on dimensionless quantities involving rates of ecosystem engineering and of habitat degradation. The model's predictions offer an additional explanation for a range of invasion dynamics reported in the literature, including lag times between introduction and establishment. One intriguing result is that a series of failed invasions may successively reduce environmental resistance to subsequent invasion, through a cumulative effect of habitat transformation. More work is needed to determine the frequency and conditions in which engineering is required for successful establishment, and whether highly-successful (or high-impact) invaders are more likely to possess ecosystem engineering traits.  相似文献   

14.
The most conspicuous biological invasions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. Invasions by exotic earthworms, although not as well studied, may be increasing with global commerce in agriculture, waste management and bioremediation. A number of cases has documented where invasive earthworms have caused significant changes in soil profiles, nutrient and organic matter dynamics, other soil organisms or plant communities. Most of these cases are in areas that have been disturbed (e.g., agricultural systems) or were previously devoid of earthworms (e.g., north of Pleistocene glacial margins). It is not clear that such effects are common in ecosystems inhabited by native earthworms, especially where soils are undisturbed. We explore the idea that indigenous earthworm fauna and/or characteristics of their native habitats may resist invasion by exotic earthworms and thereby reduce the impact of exotic species on soil processes. We review data and case studies from temperate and tropical regions to test this idea. Specifically, we address the following questions: Is disturbance a prerequisite to invasion by exotic earthworms? What are the mechanisms by which exotic earthworms may succeed or fail to invade habitats occupied by native earthworms? Potential mechanisms could include (1) intensity of propagule pressure (how frequently and at what densities have exotic species been introduced and has there been adequate time for proliferation?); (2) degree of habitat matching (once introduced, are exotic species faced with unsuitable habitat conditions, unavailable resources, or unsuited feeding strategies?); and (3) degree of biotic resistance (after introduction into an otherwise suitable habitat, are exotic species exposed to biological barriers such as predation or parasitism, “unfamiliar” microflora, or competition by resident native species?). Once established, do exotic species co-exist with native species, or are the natives eventually excluded? Do exotic species impact soil processes differently in the presence or absence of native species? We conclude that (1) exotic earthworms do invade ecosystems inhabited by indigenous earthworms, even in the absence of obvious disturbance; (2) competitive exclusion of native earthworms by exotic earthworms is not easily demonstrated and, in fact, co-existence of native and exotic species appears to be common, even if transient; and (3) resistance to exotic earthworm invasions, if it occurs, may be more a function of physical and chemical characteristics of a habitat than of biological interactions between native and exotic earthworms.  相似文献   

15.
Aims Within a habitat of multiple plant species, increased resource availabilities and altered species abundances following disturbances create opportunities for exotic species to successfully establish and subsequently naturalize into its non-native environment. Such post-disturbance changes in abiotic and biotic environments may also promote a naturalized exotic species (or invading species) to become invasive through rapid colonization of the habitat sites by reducing the extent and size of resident plant species. By combining species life history traits with that of the disturbance-induced changes in habitat characteristics, we aimed to determine those interacting factors and associated mechanism allowing an exotic invasion to start off.Methods We used a modified version of the classic competition–colonization (CC) model which was formulated first by Hastings (1980) and studied later by Tilman (1994) to explain spatial coexistence of multiple species. Within this model framework, recruitment-limited spatial competition has explicitly been linked with interspecific resource competition without altering the basic assumptions and structure of the original CC model.Important findings The model results showed that at a constant rate of resource supply, invading species can stably coexist with native species via trade-offs between species competitive ability and colonizing ability. On the other hand, the model predicted that with a fluctuating resource condition, invading species can successfully invade a habitat following continuous reductions in the size and extent of native species. Whether or not invading species holds competitive superiority over the native species for limiting resource, we showed that there exists a range of variation in available resource that allows an exotic invasion to start off in post-disturbance habitat. The associated disturbance-induced mechanism promoting invading species to become invasive has been identified. It states that occurrences of disturbances such as fire or clear-cutting influence variation in resource availability, and in addition open up many vacant microsites; given these disturbance-induced changes, invading species with a higher rate of propagule production and with a higher survival rate of adults particularly in low-resource condition recruits microsites at faster rate relative to native competitor species, and with a given range of variation in resource availabilities, it maintains continued expansions following reductions in size and extent of native species. Moreover, we identified those interacting factors and their specific roles that drive this mechanism. These factors include propagule supply, variable resource level and vacant microsite availability. Increased availability of vacant microsites following disturbances creates an opportunity for rapid colonization. Given this opportunity, higher number of propagules supplied by the invading species enhances the rate of colonization success, whereas the resource variation within a range of given thresholds maintains enhanced colonization rate of the invading species while it depresses native competitor species. Owing to the each factor's invasion regulatory ability, controlling one or all of them may have strong negative impact on the occurrence of exotic invasion.  相似文献   

16.
Rose M  Hermanutz L 《Oecologia》2004,139(3):467-477
Although biological invasion by alien species is a major contributor to loss of indigenous biological diversity, few studies have examined the susceptibility of the boreal biome to invasion. Based on studies of other ecosystems, we hypothesized that alien plants will be restricted to disturbed areas near human activity and will not be found in natural areas of boreal ecosystems in Gros Morne National Park (Canada), a protected area experiencing a wide range of disturbance regimes. The distribution of alien plants in the region was evaluated using surveys, and study sites were established in naturally and anthropogenically disturbed habitats that had been invaded. Within study sites, randomization tests evaluated the importance of disturbance to alien plant invasion by examining changes in environmental conditions and species abundance within various disturbance regimes, while the importance of site characteristics limiting the distribution of alien plants were examined using Canonical Correspondence Analysis. Consistent with studies in a variety of biomes, areas of high disturbance and human activity had the greatest abundance of resources and the highest percentage of alien species. However, contrary to our hypothesis, natural areas of boreal ecosystems were found susceptible to alien plant invasion. Vegetation types vulnerable to invasion include forests, riparian areas, fens, and alpine meadows. Natural disturbance occurring in these vegetation types caused increases in bare ground and/or light availability facilitating alien plant invasion. Although high soil pH was associated with alien plants in these areas, disturbance was not found to cause changes in soil pH, suggesting susceptibility to invasion is pre-determined by bedrock geology or other factors influencing soil pH. Moose (Alces alces), a non-native herbivore, acts as the primary conduit for alien plant invasion in GMNP by dispersing propagules and creating or prolonging disturbance by trampling and browsing vegetation. The recurrent nature of disturbance within the boreal biome and its interaction with site conditions and herbivores enables alien plants to persist away from areas of high human activity. Managers of natural lands should monitor such interactions to decrease the invasion potential of alien plants.  相似文献   

17.
There is a broad consensus that habitat disturbance and introduction of non-indigenous species may dramatically modify community structure, particularly in insular ecosystems. However, it is less clear whether emergent macroecological patterns are similarly affected. The positive interspecific abundance–occupancy relationship (IAOR) is one of the most pervasive macroecological patterns, yet has rarely been analyzed for oceanic island assemblages. We use an extensive dataset for arthropods from six islands within the Azorean archipelago to test: (1) whether indigenous and non-indigenous species are distributed differently within the IAOR; and (2) to the extent that they are, can differences can be attributed to two indices of disturbance. We implemented modeling averaged methods using five of the most common IAOR models to derive an averaged IAOR fit for each island. After testing if species colonization status (indigenous versus non-indigenous) may explain the residuals of the IAOR, we identified true negative and positive outliers and tested the effect of colonization status on the likelihood of a species being a positive or negative outlier. We found that the indigenous and non-indigenous species are randomly distributed on both sides of the overall IAOR. Only for Flores Island, were non-indigenous species more aggregated than indigenous species. We were unable to detect a meaningful relationship between deviation from the IAOR and disturbance, despite the undoubted impact of both severe habitat loss and non-indigenous species on these oceanic islands. Our results show that the non-indigenous species have been integrated alongside indigenous species in the contemporary Azorean arthropod communities such that they are mostly undetectable by the study of the IAOR.  相似文献   

18.
As a clear consensus is emerging that habitat for many species will dramatically reduce or shift with climate change, attention is turning to adaptation strategies to address these impacts. Assisted colonization is one such strategy that has been predominantly discussed in terms of the costs of introducing potential competitors into new communities and the benefits of reducing extinction risk. However, the success or failure of assisted colonization will depend on a range of population‐level factors that have not yet been quantitatively evaluated – the quality of the recipient habitat, the number and life stages of translocated individuals, the establishment of translocated individuals in their new habitat and whether the recipient habitat is subject to ongoing threats all will play an important role in population persistence. In this article, we do not take one side or the other in the debate over whether assisted colonization is worthwhile. Rather, we focus on the likelihood that assisted colonization will promote population persistence in the face of climate‐induced distribution changes and altered fire regimes for a rare endemic species. We link a population model with species distribution models to investigate expected changes in populations with climate change, the impact of altered fire regimes on population persistence and how much assisted colonization is necessary to minimize risk of decline in populations of Tecate cypress, a rare endemic tree in the California Floristic Province, a biodiversity hotspot. We show that assisted colonization may be a risk‐minimizing adaptation strategy when there are large source populations that are declining dramatically due to habitat contractions, multiple nearby sites predicted to contain suitable habitat, minimal natural dispersal, high rates of establishment of translocated populations and the absence of nonclimatic threats such as altered disturbance regimes. However, when serious ongoing threats exist, assisted colonization is ineffective.  相似文献   

19.
To successfully colonize new habitats, organisms not only need to gain access to it, they also need to cope with the selective pressures imposed by the local biotic and abiotic conditions. The number of immigrants, the preadaptation to the local habitat and the presence of competitors are important factors determining the success of colonization. Here, using two experimental set-ups, we studied the effect of interspecific competition in combination with propagule pressure and preadaptation on the colonization success of new habitats. Our model system consisted of tomato plants (the novel habitat), the two-spotted spider mite Tetranychus urticae as our focal species and the red spider mite Tetranychus evansi as a competitor. Our results show that propagule pressure and preadaptation positively affect colonization success. More successful populations reach larger final population sizes either by having higher per capita growth rates (due to preadaptation effects) or by starting a population with a larger number of individuals. Although populations are more successful colonizing non-competitive environments than competitive ones, propagule pressure and preadaptation counteract the negative effects of competition, promoting colonization success. Our study shows the importance of propagule pressure and preadaptation for successful colonization of new habitats by providing the ability to cope with both the exigencies of new environments and the community context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号