首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the medaka, Oryzias latipes, sex is determined chromosomally. The sex chromosomes differ from those of mammals in that the X and Y chromosomes are highly homologous. Using backcross panels for linkage analysis, we mapped 21 sequence tagged site (STS) markers on the sex chromosomes (linkage group 1). The genetic map of the sex chromosome was established using male and female meioses. The genetic length of the sex chromosome was shorter in male than in female meioses. The region where male recombination is suppressed is the region close to the sex-determining gene y, while female recombination was suppressed in both the telomeric regions. The restriction in recombination does not occur uniformly on the sex chromosome, as the genetic map distances of the markers are not proportional in male and female recombination. Thus, this observation seems to support the hypothesis that the heterogeneous sex chromosomes were derived from suppression of recombination between autosomal chromosomes. In two of the markers, Yc-2 and Casp6, which were expressed sequence-tagged (EST) sites, polymorphisms of both X and Y chromosomes were detected. The alleles of the X and Y chromosomes were also detected in O. curvinotus, a species related to the medaka. These markers could be used for genotyping the sex chromosomes in the medaka and other species, and could be used in other studies on sex chromosomes.  相似文献   

2.
Both mouse and man have the common XX/XY sex chromosome mechanism. The X chromosome is of original size (5-6% of female haploid set) and the Y is one of the smallest chromosomes of the complement. But there are species, belonging to a variety of orders, with composite sex chromosomes and multiple sex chromosome systems: XX/XY1Y2 and X1X1X2X2/X1X2Y. The original X or the Y, respectively, have been translocated on to an autosome. The sex chromosomes of these species segregate regularly at meiosis; two kinds of sperm and one kind of egg are produced and the sex ratio is the normal 1:1. Individuals with deviating sex chromosome constitutions (XXY, XYY, XO or XXX) have been found in at least 16 mammalian species other than man. The phenotypic manifestations of these deviating constitutions are briefly discussed. In the dog, pig, goat and mouse exceptional XX males and in the horse XY females attract attention. Certain rodents have complicated mechanisms for sex determination: Ellobius lutescens and Tokudaia osimensis have XO males and females. Both sexes of Microtus oregoni are gonosomic mosaics (male OY/XY, female XX/XO). The wood lemming, Myopus schisticolor, the collared lemming, Dirostonyx torquatus, and perhaps also one or two species of the genus Akodon have XX and XY females and XY males. The XX, X*X and X*Y females of Myopus and Dicrostonyx are discussed in some detail. The wood lemming has proved to be a favourable natural model for studies in sex determination, because a large variety of sex chromosome aneuploids are born relatively frequently. The dosage model for sex determination is not supported by the wood lemming data. For male development, genes on both the X and the Y chromosomes are necessary.  相似文献   

3.
A characteristic feature of spider karyotypes is the predominance of unusual multiple X chromosomes. To elucidate the evolution of spider sex chromosomes, their meiotic behavior was analyzed in 2 major clades of opisthothele spiders, namely, the entelegyne araneomorphs and the mygalomorphs. Our data support the predominance of X(1)X(2)0 systems in entelegynes, while rare X(1)X(2)X(3)X(4)0 systems were revealed in the tuberculote mygalomorphs. The spider species studied exhibited a considerable diversity of achiasmate sex chromosome pairing in male meiosis. The end-to-end pairing of sex chromosomes found in mygalomorphs was gradually replaced by the parallel attachment of sex chromosomes in entelegynes. The observed association of male X univalents with a centrosome at the first meiotic division may ensure the univalents' segregation. Spider meiotic sex chromosomes also showed other unique traits, namely, association with a chromosome pair in males and inactivation in females. Analysis of these traits supports the hypothesis that the multiple X chromosomes of spiders originated by duplications. In contrast to the homogametic sex of other animals, the homologous sex chromosomes of spider females were already paired at premeiotic interphase and were inactivated until prophase I. Furthermore, the sex chromosome pairs exhibited an end-to-end association during these stages. We suggest that the specific behavior of the female sex chromosomes may have evolved to avoid the negative effects of duplicated X chromosomes on female meiosis. The chromosome ends that ensure the association of sex chromosome pairs during meiosis may contain information for discriminating between homologous and homeologous X chromosomes and thus act to promote homologous pairing. The meiotic behavior of 4 X chromosome pairs in mygalomorph females, namely, the formation of 2 associations, each composed of 2 pairs with similar structure, suggests that the mygalomorph X(1)X(2)X(3)X(4)0 system originated by the duplication of the X(1)X(2)0 system via nondisjunctions or polyploidization.  相似文献   

4.
Different diploid chromosome numbers have been reported for the tufted deer Elaphodus cephalophus (female, 2n = 46/47; male, 2n = 47/48) in earlier reports. In the present study, chromosomal analysis of seven tufted deer (5 male symbol, 2 female symbol) revealed that the karyotype of these animals contains 48 chromosomes, including a pair of large heteromorphic chromosomes in the male. C-banding revealed these chromosomes to be very rich in constitutive heterochromatin. Chromosome banding and PCR of sex chromosome-linked genes (SRY, ZFX, ZFY) performed on DOP-PCR products of single microdissected X and Y chromosomes confirmed that the large telocentric chromosome without secondary constriction is the X chromosome whereas the subtelocentric chromosome is the Y. The increased size of both, the X and Y chromosome, appears to be at least partially attributable to the presence of substantial amounts of heterochromatin.  相似文献   

5.
The status of an extra univalent, if it is a B chromosome or an achiasmatic Y chromosome, associating with the X chromosome in male meiosis of Cacopsylla peregrina (Frst.) (Homoptera, Psylloidea) was analysed. One extra univalent was present in all males collected from three geographically well separated populations, it was mitotically stable, and showed precise segregation from the X chromosome. These findings led us to propose that the univalent represents in fact a Y chromosome. The behaviour of the X and Y chromosomes during meiotic prophase suggested that their regular segregation was based on an achiasmatic segregation mechanism characterised by a 'touch and go' pairing of segregating chromosomes at metaphase I. To explain the formation of the achiasmatic Y within an insect group with X0 sex chromosome system, it was suggested that the Y chromosome has evolved from a mitotically stable B chromosome that was first integrated into an achiasmatic segregation system with the X chromosome, and has later become fixed in the karyotype as a Y chromosome.  相似文献   

6.
In male meiocytes of 2 species of the megalopteran family Corydalidae, Corydalus cornutus (L.) (2n=24, comprising 11 pairs of autosomes plus X and Y in the male and 2 Xes in the female) and Neohermes filicornis (Banks) (2n=22, comprising 10 pairs of autosomes plus X and Y in the male and 2 Xes in the female), the sex chromosomes invariably form a bivalent and segregate synchronously with the autosomes. In Neohermes this sex-bivalent is of the parachute type. Absence of autosomal univalents and of the straight-jacket deformation of chromosomes in individual spindle units further distinguishes these megalopteran meiocytes from those of Neuroptera and Raphidioptera previously described. The bearing of these findings on phylogenetic relationships of the recent Orders of the Neuropteroidea is briefly considered.  相似文献   

7.
Unlike higher plants, the dioecious liverwort, Marchantia polymorpha, has uniquely small sex chromosomes, with X chromosomes present only in female gametophytes and Y chromosomes only in male gametophytes. We have constructed respective genomic libraries for male and female plantlets using a P1-derived artificial chromosome (pCYPAC2). With an average insert size of approximately 90 kb, each PAC library is estimated to cover the entire genome with a probability of more than 99.9%. Male-specific PAC clones were screened for by differential hybridization using male and female genomic DNAs as separate probes. Seventy male-specific PAC clones were identified. The male specificity of one of the clones, pMM4G7, was verified by Southern hybridization and PCR analysis. This clone was indeed located on the Y chromosome as verified by fluorescence in situ hybridization (FISH). This result shows that the Y chromosome contains unique sequences that are not present either on the X chromosome or any of the autosomes. Thus, the respective male and female libraries for M. polymorpha offer an opportunity to identify key genes involved in the process of sex differentiation and this unique system of sex determination.  相似文献   

8.
The karyotype and male meiosis of Macrolophus costalis Fieber (Insecta, Heteroptera, Miridae) were studied using C-banding, AgNOR-banding and DNA sequence specific fluorochrome staining. The chromosome formula of the species is 2n = 28(24+X1X2X3Y). Male meiotic prophase is characterized by a prominent condensation stage. At this stage, two sex chromosomes, "X" and Y are positively heteropycnotic and always appeared together, while in autosomal bivalents homologous chromosomes were aligned side by side along their entire length, that is, meiosis is achiasmatic. At metaphase I, "X" and Y form a pseudobivalent and orient to the opposite poles. At early anaphase I, the "X" chromosome disintegrates into three separate small chromosomes, X1, X2, and X3. Hence both the autosomes and sex chromosomes segregate reductionally in the first anaphase, and separate equationally in the second anaphase. This is the first evidence of sex chromosome pre-reduction in the family Miridae. Data on C-heterochromatin distribution and its composition in the chromosomes of this species are discussed.  相似文献   

9.
In a single male specimen of Myrmeleon mexicanum Banks the sex chromosomes, normally X and Y, were replaced by what appeared to be X1X2 and Y. These segregated as expected on that interpretation in only half of the spermatocytes — in the other half, one X and the Y segregated from the other X. This atypical segregation is explicable on the assumption that one of the supposed Xs is a supernumerary, not a sex chromosome, and the diploid complement of the male comprises six pairs of autosomes plus a supernumerary and the X and Y sex chromosomes. The orientation of the X chromosomes at first metaphase was variable: kinetochoric activity may be localized midway the length of the chromosome, as in gonial mitosis, or terminally. Comparative study of three congeneric species, seven of Brachynemurus, one of Psammoleon, and one of Vella showed normal segregation in all, and no evidence for secondary kinetochoric activity. In nine of the species studied one pair of autosomes was unconjoined at first metaphase in 0.3%–1.2% of primary spermatocytes. These autosomes segregated precociously with the sex chromosomes in the central unit of the spindle. In one exceptional male of Brachynemurus hubbardi Currie all first meiotic metaphases showed this behavior, and a compound X1X2/Y1Y2 system was thus simulated. Bivalent formation replaced distance segregation of sex chromosomes in 0.4%–3.2% of the spermatocytes in seven of the thirteen species studied. These sex-bivalents frequently displayed partial or complete failure in congression.  相似文献   

10.
Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes.  相似文献   

11.
In dioecious plants of hemp ( Cannabis sativa L.), males are regarded as heterogametic XY and females as homogametic XX, although it is difficult to discriminate the X cytologically from the Y. The Y chromosome is somewhat larger than the X. Our aim was to analyse AFLP markers on X and Y, and to use them to gain some insight into the structure of the sex chromosomes. Markers located on the sex chromosomes can be grouped into different classes, depending on the presence or absence of a fragment on the X and/or the Y. They are detected by separately analysing male and female progenies of a single cross. Five markers were found to be located on both chromosomes. A few recombinants were observed for marker pairs of this class in the male progenies. Two completely linked markers located on the Y chromosome in the male parent show a recombination rate of r = 0.25 with sex. Recombination must have occurred between the sex chromosomes in the male parent. The recombination analysis led to the conclusion that there is a pseudoautosomal region (PAR) on the sex chromosomes, allowing recombination between the X and the Y chromosome. The other regions of the sex chromosomes show only a few recombination events, for the Y as well as for the X. These results are discussed in comparison to other dioecious plants.  相似文献   

12.
F(1) backcrosses involving the DDK and C57BL/6 inbred mouse strains show transmission ratio distortion at loci on two different chromosomes, 11 and X. Transmission ratio distortion on chromosome X is restricted to female offspring while that on chromosome 11 is present in offspring of both sexes. In this article we investigate whether the inheritance of alleles at loci on one chromosome is independent of inheritance of alleles on the other. A strong nonrandom association between the inheritance of alleles at loci on both chromosomes is found among male offspring, while independent assortment occurs among female offspring. We also provide evidence that the mechanism by which this phenomenon occurs involves preferential cosegregation of nonparental chromatids of both chromosomes at the second meiotic division, after the ova has been fertilized by a C57BL/6 sperm bearing a Y chromosome. These observations confirm the influence of the sperm in the segregation of chromatids during female meiosis, and indicate that a locus or loci on the Y chromosome are involved in this instance of meiotic drive.  相似文献   

13.
The arrangement of 6 repetitive DNA sequences in the mitotic and meiotic sex chromosomes of 2 Erythrinidae fish, namely Hoplias malabaricus and Erythrinus erythrinus, both with a multiple X(1)X(1)X(2)X(2)/X(1)X(2)Y sex chromosome system, was analyzed using fluorescence in situ hybridization. The distribution patterns of the repetitive sequences were distinct for each species. While some DNA repeats were species-specific, others were present in the sex chromosomes of both species at different locations. These data, together with the different morphological types of sex chromosomes and the distinct chromosomal rearrangements associated with the formation of the neo-Y chromosomes, support the plasticity of sex chromosome differentiation in the Erythrinidae family. Our present data highlight that the sex chromosomes in fish species may follow diverse differentiation patterns, even in the same type of sex chromosome system present in cofamiliar species.  相似文献   

14.
Huang L  Chi J  Wang J  Nie W  Su W  Yang F 《Genomics》2006,87(5):608-615
The black muntjac (Muntiacus crinifrons, 2n = 8[female symbol]/9[male symbol]) is a critically endangered mammalian species that is confined to a narrow region of southeastern China. Male black muntjacs have an astonishing X1X2Y1Y2Y3 sex chromosome system, unparalleled in eutherian mammals, involving approximately half of the entire genome. A high-resolution comparative map between the black muntjac (M. crinifrons) and the Chinese muntjac (M. reevesi, 2n = 46) has been constructed based on the chromosomal localization of 304 clones from a genomic BAC (bacterial artificial chromosome) library of the Indian muntjac (M. muntjak vaginalis, 2n = 6[female symbol]/7[male symbol]). In addition to validating the chromosomal homologies between M. reevesi and M. crinifrons defined previously by chromosome painting, the comparative BAC map demonstrates that all tandem fusions that have occurred in the karyotypic evolution of M. crinifrons are centromere-telomere fusions. The map also allows for a more detailed reconstruction of the chromosomal rearrangements leading to this unique and complex sex chromosome system. Furthermore, we have identified 46 BAC clones that could be used to study the molecular evolution of the unique sex chromosomes of the male black muntjacs.  相似文献   

15.
A 15-year cytogenetic survey on one population of the leaf litter frog Eleutherodactylus maussi in northern Venezuela confirmed the existence of multiple XXAA male symbol /XAA(Y) female symbol sex chromosomes which originated by a centric (Robertsonian) fusion between the original Y chromosome and an autosome. 95% of the male individuals in this population are carriers of this Y-autosome fusion. In male meiosis the XAA(Y) sex chromosomes pair in the expected trivalent configuration. In the same population, 5% of the male animals still possess the original, free XY sex chromosomes. In a second population of E. maussi analyzed, all male specimens are characterized by these ancestral XY chromosomes which form normal bivalents in meiosis. E. maussi apparently represents the first vertebrate species discovered in which a derived Y-autosome fusion still coexists with the ancestral free XY sex chromosomes. The free XY sex chromosomes, as well as the multiple XA(Y) sex chromosomes are still in a very primitive (homomorphic) stage of differentiation. With no banding technique applied it is possible to distinguish the Y from the X. DNA flow cytometric measurements show that the genome of E. maussi is among the largest in the anuran family Leptodactylidae. The present study also supplies further data on differential chromosome banding and fluorescence in situ hybridization experiments in this amphibian species.  相似文献   

16.
Karyotypic and cytogenetic characteristics of catfish Harttia carvalhoi (Paraíba do Sul River basin, S?o Paulo State, Brazil) were investigated using differential staining techniques (C-banding, Ag-staining) and fluorescent in situ hybridization (FISH) with 18S and 5S rDNA probes. The diploid chromosome number of females was 2n = 52 and their karyotype was composed of nine pairs of metacentric, nine pairs of submetacentric, four pairs of subtelocentric and four pairs of acrocentric chromosomes. The diploid chromosome number of males was invariably 2n = 53 and their karyotype consisted of one large unpaired metacentric, eight pairs of metacentric, nine pairs of submetacentric, four pairs of subtelocentric, four pairs of acrocentric plus two middle-sized acrocentric chromosomes. The differences between female and male karyotypes indicated the presence of a sex chromosome system of XX/XY1Y2 type, where the X is the largest metacentric and Y1 and Y2 are the two additional middle-sized acrocentric chromosomes of the male karyotype. The major rDNA sites as revealed by FISH with an 18S rDNA probe were located in the pericentromeric region of the largest pair of acrocentric chromosomes. FISH with a 5S rDNA probe revealed two sites: an interstitial site located in the largest pair of acrocentric chromosomes, and a pericentromeric site in a smaller metacentric pair of chromosomes. Translocations or centric fusions in the ancestral 2n = 54 karyotype is hypothesized for the origin of such multiple sex chromosome systems where females are fixed translocation homozygotes whereas males are fixed translocation heterozygotes. The available cytogenetic data for representatives of the genus Harttia examined so far indicate large kayotype diversity.  相似文献   

17.
Although most plants have flowers with both male and female sex organs, there are several thousands of plant species where male or female flowers form on different individuals. Surprisingly, the presence of well-established sex chromosomes in these dioecious plants is rare. The best-described example is white campion, for which large sex chromosomes have been identified and mapped partially. A recent study presented a comprehensive genetic and physical mapping of the genome of dioecious papaya. It revealed a short male specific region on the Y chromosome (MSY) that does not recombine with the X chromosome, providing strong evidence that the sex chromosomes originated from a regular pair of autosomes. The primitive papaya Y chromosome thus represents an early event in sex chromosome evolution. In this article, we review the current status of plant sex-chromosome research and discuss the advantages of different dioecious models.  相似文献   

18.
In most eutherian mammals, sex chromosomes synapse and recombine during male meiosis in a small region called pseudoautosomal region. However in some species sex chromosomes do not synapse, and how these chromosomes manage to ensure their proper segregation is under discussion. Here we present a study of the meiotic structure and behavior of sex chromosomes in one of these species, the Mongolian gerbil (Meriones unguiculatus). We have analyzed the location of synaptonemal complex (SC) proteins SYCP1 and SYCP3, as well as three proteins involved in the process of meiotic recombination (RAD51, MLH1, and γ-H2AX). Our results show that although X and Y chromosomes are associated at pachytene and form a sex body, their axial elements (AEs) do not contact, and they never assemble a SC central element. Furthermore, MLH1 is not detected on the AEs of the sex chromosomes, indicating the absence of reciprocal recombination. At diplotene the organization of sex chromosomes changes strikingly, their AEs associate end to end, and SYCP3 forms an intricate network that occupies the Y chromosome and the distal region of the X chromosome long arm. Both the association of sex chromosomes and the SYCP3 structure are maintained until metaphase I. In anaphase I sex chromosomes migrate to opposite poles, but SYCP3 filaments connecting both chromosomes are observed. Hence, one can assume that SYCP3 modifications detected from diplotene onwards are correlated with the maintenance of sex chromosome association. These results demonstrate that some components of the SC may participate in the segregation of achiasmate sex chromosomes in eutherian mammals.  相似文献   

19.
20.
The olive fruit fly, Bactrocera oleae, has a diploid set of 2n?=?12 chromosomes including a pair of sex chromosomes, XX in females and XY in males, but polytene nuclei show only five polytene chromosomes, obviously formed by five autosome pairs. Here we examined the fate of the sex chromosomes in the polytene complements of this species using fluorescence in situ hybridization (FISH) with the X and Y chromosome-derived probes, prepared by laser microdissection of the respective chromosomes from mitotic metaphases. Specificity of the probes was verified by FISH in preparations of mitotic chromosomes. In polytene nuclei, both probes hybridized strongly to a granular heterochromatic network, indicating thus underreplication of the sex chromosomes. The X chromosome probe (in both female and male nuclei) highlighted most of the granular mass, whereas the Y chromosome probe (in male nuclei) identified a small compact body of this heterochromatic network. Additional hybridization signals of the X probe were observed in the centromeric region of polytene chromosome II and in the telomeres of six polytene arms. We also examined distribution of the major ribosomal DNA (rDNA) using FISH with an 18S rDNA probe in both mitotic and polytene chromosome complements of B. oleae. In mitotic metaphases, the probe hybridized exclusively to the sex chromosomes. The probe signals localized a discrete rDNA site at the end of the short arm of the X chromosome, whereas they appeared dispersed over the entire dot-like Y chromosome. In polytene nuclei, the rDNA was found associated with the heterochromatic network representing the sex chromosomes. Only in nuclei with preserved nucleolar structure, the probe signals were scattered in the restricted area of the nucleolus. Thus, our study clearly shows that the granular heterochromatic network of polytene nuclei in B. oleae is formed by the underreplicated sex chromosomes and associated rDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号