首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 160 毫秒
1.
Xie S  Lan Z  Qu N  Wei X  Yu P  Zhu Q  Yang G  Wang J  Shi Q  Wang W  Yang L  Yi X 《Gene》2012,499(1):139-142
Dystrophin (DMD) gene is the largest gene containing 79 exons involving various mutation types and regions, and targeted next-generation sequencing (NGS) was employed in detecting DMD gene mutation in the present study. A literature-annotated disease nonsense mutation (c.10141C>T, NM_004006.1) in exon 70 that has been reported as Duchenne Muscular Dystrophy (DMD)-causing mutation was found in our two patients, the proband and his cousin. In the present study two main methods were used, the next-generation sequencing and the classic Sanger sequencing. The exon capture followed by HiSeq2000 sequencing was specifically used in this study. Combined applications of the next-generation sequencing platform and bioinformatics are proved to be effective methods for DMD diagnosis.  相似文献   

2.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder. Here, we report a novel mechanism for the occurrence of DMD in females. In a Vietnamese DMD girl, conventional PCR amplification analysis disclosed a deletion of exons 12–19 of the dystrophin gene on Xp21.2, with a karyotype of 46, XY. Furthermore, a novel mutation in the androgen-receptor gene on Xq11.2-q12 was identified in this girl, which led to male pseudohermaphroditism. Co-occurrence of mutations of these two genes constitutes a novel mechanism underlying female DMD.  相似文献   

3.
One of female MZ twins presented with muscular dystrophy. Physical examination, creatine phosphokinase levels, and muscle biopsy were consistent with Duchenne muscular dystrophy (DMD). However, because of her sex she was diagnosed as having limb-girdle muscular dystrophy. With cDNA probes to the DMD gene, a gene deletion was detected in the twins and their mother. The de novo mutation which arose in the mother was shown by novel junction fragments generated by HindIII, PstI, or TaqI when probed with cDNA8. Additional evidence of a large gene deletion was given by novel SfiI junction fragments detected by probes p20, J-Bir, and J-66 on pulsed-field gel electrophoresis (PFGE). Immunoblot analysis of muscle from the affected twin showed dystrophin of normal size but of reduced amount. Immunofluorescent visualization of dystrophin revealed foci of dystrophin-positive fibers adjacent to foci of dystrophin-negative fibers. These data indicate that the affected twin is a manifesting carrier of an abnormal DMD gene, her myopathy being a direct result of underexpression of dystrophin. Cytogenetic analysis revealed normal karyotypes, eliminating the possibility of a translocation affecting DMD gene function. Both linkage analysis and DNA fingerprint analysis revealed that each twin has two different X chromosomes, eliminating the possibility of uniparental disomy as a mechanism for DMD expression. On the basis of methylation differences of the paternal and maternal X chromosomes in these MZ twins, we propose uneven lyonization (X chromosome inactivation) as the underlying mechanism for disease expression in the affected female.  相似文献   

4.
Clonal myogenic cell cultures were established from a potential heterozygote for a mutant Duchenne muscular dystrophy (DMD) gene who was also heterozygous for isozymes of the X-linked enzyme glucose-6-phosphate dehydrogenase. Previous tissue culture studies of this muscle donor demonstrated equal proliferative capacity of myoblasts that had lyonized either the paternal or maternal X-chromosome, indicating that mutation of the DMD gene does not affect growth of myoblasts. If this muscle donor were a gonadal mosaic, this conclusion would be incorrect. In the present study, only those myogenic colonies expressing the glucose-6-phosphate dehydrogenase-A isozyme were found to express dystrophin, indicating that this woman was indeed a heterozygote for DMD. By documenting dystrophin deficiency in a specific population of myogenic cells from this woman, we verify our previous conclusion regarding the normal proliferative capacity of DMD myoblasts. Somatic cell testing of dystrophin expression may offer an alternative to established genetic carrier tests for those women in whom deletions of the DMD are not detectable, whose pedigree structure does not permit linkage analysis, or in whom standard phenotypic analyses are ambiguous.  相似文献   

5.
Duchenne muscular dystrophy (DMD) is a severe, progressive, X-linked muscle-wasting disorder with an incidence of approximately 1/3,500 male births. Females are also affected, in rare instances. The manifestation of mild to severe symptoms in female carriers of dystrophin mutations is often the result of the preferential inactivation of the X chromosome carrying the normal dystrophin gene. The severity of the symptoms is dependent on the proportion of cells that have inactivated the normal X chromosome. A skewed pattern of X inactivation is also responsible for the clinical manifestation of DMD in females carrying X;autosome translocations, which disrupt the dystrophin gene. DMD may also be observed in females with Turner syndrome (45,X), if the remaining X chromosome carries a DMD mutation. We report here the case of a karyotypically normal female affected with DMD as a result of homozygosity for a deletion of exon 50 of the dystrophin gene. PCR analysis of microsatellite markers spanning the length of the X chromosome demonstrated that homozygosity for the dystrophin gene mutation was caused by maternal isodisomy for the entire X chromosome. This finding demonstrates that uniparental isodisomy of the X chromosome is an additional mechanism for the expression of X-linked recessive disorders. The proband's clinical presentation is consistent with the absence of imprinted genes (i.e., genes that are selectively expressed based on the parent of origin) on the X chromosome.  相似文献   

6.
A male patient with profound mental retardation, athetosis, nystagmus, and severe congenital hypotonia (Duchenne muscular dystrophy [DMD]) was previously shown to carry a pericentric inversion of the X chromosome, 46,Y,inv(X)(p21.2q22.2). His mother carried this inversion on one X allele. The patient's condition was originally misdiagnosed as cerebral palsy, and only later was it diagnosed as DMD. Because the DMD gene is located at Xp21.2, which is one breakpoint of the inv(X), and because its defects are rarely associated with severe mental retardation, the other clinical features of this patient were deemed likely to be associated with the opposite breakpoint at Xq22. Our precise molecular-cytogenetic characterization of both breakpoints revealed three catastrophic genetic events that had probably influenced neuromuscular and cognitive development: deletion of part of the DMD gene at Xp21.2, duplication of the human proteolipid protein gene (PLP) at Xq22.2, and disruption of a novel gene. The latter sequence, showing a high degree of homology to the Sec4 gene of yeast, encoded a putative small guanine-protein, Ras-like GTPase that we have termed "RLGP." Immunocytochemistry located RLGP at mitochondria. We speculate that disruption of RLGP was responsible for the patient's profound mental retardation.  相似文献   

7.
Summary We have identified a Duchenne muscular dystrophy (DMD) pedigree with an unexpected pattern of inheritance. Using marker restriction fragment length polymorphisms detected by probes that lie within and outside the DMD gene, we could demonstrate that the maternal grandfather has transmitted two distinct types of X chromosomes to his offspring. This original observation may be explained by postulating that the DMD mutation must have occurred during mitosis in early germline proliferation, leading to a germline mosaicism within this male ancestor.  相似文献   

8.
Summary The presence of nebulin in a muscle specimen from a patient with Duchenne muscular dystrophy (DMD) due to a large deletion precludes the possibility that this protein is the DMD gene product.  相似文献   

9.
By cloning the endpoints of a DMD-associated deletion, we have "jumped" 1100 kb from pERT87-1 (DSX164) to a new locus designated J66 (DXS268), mapping distally within the Duchenne muscular dystrophy (DMD) gene. Both J66 and JBir are mapped by field-inversion gel electrophoresis and detect abnormal SfiI fragments in DMD patients and distal DMD-associated X; autosome translocations. Our long-range map extends the physical map of the DMD gene from 800 to 2000 kb (2 Mb) and increases the mapped portion of Xp21 to approximately 8 Mb. The position of the glycerol kinase gene and the adrenal hypoplasia locus are further confined to the region between J66 and the nearest distal probe L1-4. This region spans at least 1.5 Mb. The multiallelic J66 polymorphism has immediate application in the diagnosis of DMD and generally appears to be distal to DMD mutations.  相似文献   

10.
A balanced de novo (X;9) translocation was observed in a patient with progressive muscular dystrophy of Duchenne's type (DMD), Turner's syndrome, epilepsy and mental retardation. The involvement of the paternal X is suggested. The assignment of the gene locus for DMD is confirmed on Xp21.  相似文献   

11.
Most known mutations in the gene region responsible for Duchenne or Becker muscular dystrophy are deletions of varying extent. Here we describe a 220-kb insertion within the DMD/BMD gene that cosegregates with a somewhat atypical course of muscular dystrophy in a pedigree. The insertion is demonstrated by field-inversion gel electrophoresis as an enlarged SfiI fragment hybridizing to probe J-Bir, while neighboring SfiI fragments (detected by probes PERT 87 and J-66) are unchanged. Hybridization with DMD c-DNA probes did not reveal alterations in coding sequences. In this pedigree, the altered SfiI fragments provide convenient markers for carrier identification.  相似文献   

12.
Nonsense mutations in the dystrophin gene are the cause of Duchenne muscular dystrophy (DMD) in 10-15% of patients. In such an event, one approach to gene therapy for DMD is the use of suppressor tRNAs to overcome the premature termination of translation of the mutant mRNA. We have carried out cotransfection of the HeLa cell culture with constructs containing a suptRNA gene (pcDNA3suptRNA) and a marker LacZ gene (pNTLacZhis) using their polymer VSST-525 complexes. It was found that the number of cells producing beta-galactosidase depends inversely on the dose of the suptRNA gene. A single in vivo injection of the construct providing for expression of the suptRNAochre gene into mdx mouse muscle resulted in the production of dystrophin in 2.5% of fibers. This suggests that suppressor tRNAs are applicable in gene therapy for hereditary diseases caused by nonsense mutations.  相似文献   

13.
Li SY  Sun XF  Li Q  Zhang HM  Wang XM 《遗传》2011,33(3):251-254
假性肥大型进行性肌营养不良症(Duchenne’s muscular dystrophy,DMD)是源于横纹肌的一种X-连锁隐性致死性遗传病,由编码抗肌营养不良蛋白(dystrophin)基因突变所致。为了探讨中国人群中DMD患者的dystrophin基因突变类型和分布特点及其与临床症状的相关性,文章采用Multiplex Ligation-Dependent Probe Amplification(MLPA)方法对720例DMD患者及其母亲和20例正常成年男性进行dystrophin基因分析。结果显示,检出率为64.9%(467/720),54.3%(391/720)的患者为基因缺失;10.6%(76/720)的患者为基因重复。累及Exon45-54缺失突变型占全部缺失型患者的71.9%(281/391);重复突变型累及Exon1-40占全部重复型患者82.9%(63/76);检出的患者中,DMD型和中间型营养不良症(Intermediate muscular dystrophy,IMD)型占90.6%(423/467),Becker型营养不良症(Becker muscular dystrophy,BMD)型占9.4%(44/467)。表明假肥大型肌营养不良症以dystrophin基因缺失突变为主,突变发生在整个基因中非均匀分布,存在突变热区,在缺失和重复的位置和片段长度与肌病的临床症状严重程度之间并不存在简单的相关关系。  相似文献   

14.
E. M. Hutton  M. W. Thompson 《CMAJ》1976,115(8):749-752
Assay of serum creatine kinase activity is useful in the detection of carriers of the X-linked gene for Duchenne muscular dystrophy (DMD). For genetic counselling this assay has been used in conjunction with pedigree analysis to improve estimates of the risk that a female relative of a DMD patient is a carrier. To measure the impact of the program, follow-up information was obtained from women who had received genetic counselling for DMD. Their responses showed that the risk of producing an affected son had been a major factor in their attitude toward family planning, and their reproductive performance correlated inversely with their genetic risk. The decision by the majority of proven carriers to prevent the birth of further male offspring was reflected in a recent decline in the frequency of a known family history of DMD among newly ascertained cases.  相似文献   

15.
Summary The identification and cloning of the gene responsible for Duchenne muscular dystrophy (DMD) and characterization of the protein product of the gene, dystrophin, has led to major advances in diagnostic and genetic counselling procedures for this inherited disorder. Due to its high mutation rate, however, individuals affected by DMD will continue to arise in large proportion by de novo mutations, and the search for direct therapies remains a high priority. In this respect direct genetic correction of dystrophin deficiency via grafting of healthy myoblast stem cells or direct introduction of functional DNA into diseased muscle tissue have both been proposed as potential therapeutic approaches. We describe here, the first example of the engineering and cloning of a synthetic gene encoding recombinant human dystrophin and its stable transfer to and expression in mammalian cells. This DMD gene construction represents a primary step towards evaluating direct DNA-mediated gene transfer as a potential treatment for this debilitating disorder.  相似文献   

16.
人Xp21.1-p21.3上3.5MbYAC重叠群构建及物理图谱分析   总被引:1,自引:1,他引:0  
用Alu-PCR指纹图谱法分析了人Xp21.1-p21.3上一系列的酵母人工染色体(yeastartificialchromosome,YAC)克隆,发现其中的两个YAC克隆构成包含DXS166位点的重叠群,而且这一重叠群与以前构建的包含DMD基因全序列的YAC重叠群相连接,YAC克隆末端探针交叉杂交证实了这一重叠,使这一YAC重叠群至少延伸至DXS166位点,形成一个跨度为3.5Mb的YAC重叠群。基于这些重叠的YAC克隆绘制了这一区域的大尺度限制酶切图谱,并在这一图谱上定位了DXS166位点,从而确定了DXS166位点与DMD基因的物理关系。这一工作为DMD基因的5'远端调控作用研究及该区域未知基因的克隆奠定了基础。  相似文献   

17.
Restriction-fragment-length-polymorphism analysis was used to examine a female who is segregating for Duchenne muscular dystrophy (DMD) and a deletion of the DXS164 region of the X chromosome. The segregating female has no prior family history of DMD, and she has two copies of the DXS164 region in her peripheral blood lymphocytes. The following two hypotheses are proposed to explain the coincidence of the DMD phenotype and deletion of the DXS164 region in her offspring: (1) she may be a gonadal mosaic for cells with two normal X chromosomes and cells with one normal X chromosome and an X chromosome with a deletion of the DXS164 region; and (2) she may carry a familial X;autosome translocation in which the DXS164 region is deleted from one X chromosome and translocated to an autosome. The segregation of DMD and the DXS164 deletion in this family illustrates the importance of extended pedigree analysis when DXS164 deletions are used to identify female carriers of the DMD gene.  相似文献   

18.
A contig of 36 overlapping yeast artificial chromosome (YAC) clones has been constructed for the complete Duchenne muscular dystrophy (DMD) gene in Xp21. The YACs were isolated from a human 48,XXXX YAC library using the DMD cDNA and brain promoter fragments as hybridization probes. The YAC clones were characterized for exon content using HindIII or EcoRI digests, hybridization of individual DMD cDNA probes, and polymerase chain reaction (PCR) amplification of specific exons near the 5' end of the gene. For comparison to the known long-range restriction map of the DMD gene, YAC clones were digested with SfiI and hybridized with DMD cDNA probes. The combined analysis of the exon content and the SfiI map allowed an approximately 3.2-Mb YAC contig to be constructed. The complete 2.4-Mb DMD gene could be represented in a minimum set of 7 overlapping YAC clones.  相似文献   

19.
20.
Fetal muscle cDNA clones covering at least 11.4 kb of the Duchenne muscular dystrophy (DMD) gene sequence were used to identify a deletion-prone region in DNA from DMD and Becker muscular dystrophy (BMD) patients. Of 36 BMD cases, 17 (47%) had deletions and all of the deletions began in the same intron of the gene. Of 107 DMD patients, 27 (25%) were deleted for this region, and 19 deletions originate in the same intron. Using a cDNA probe for an adjacent region of the gene, 32 new deletions were detected in DMD patients (total 44%). No new BMD deletions were detected. The DMD deletions were very heterogeneous. Thus two cDNA probes covering 2.4 kb could detect 53% of these deletions. Considering the whole locus, DMD and BMD are caused by a deletion of the gene sequence in at least 67% of cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号