首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This study examines the microtubular cytoskeleton during megasporogenesis in the Nun orchid, Phaius tankervilliae . The subepidermal cell located at the terminal end of the nucellar filament differentiates first into an archesporial cell and then enlarges to become the megasporocyte. The megasporocyte undergoes the first meiotic division, giving rise to two dyad cells of unequal size. Immunostaining reveals that microtubules become more abundant as the megasporocyte increases in size. Microtubules congregate around the nucleus forming a distinct perinuclear array and many microtubules radiate directly from the nuclear envelope. In the megasporocyte, prominent microtubules are readily detected at the chalazal end of the cell cytoplasm. After meiosis I, the chalazal dyad cell expands in size at the expense of the micropylar dyad cell. At this stage, new microtubule organizing centres can be found at the corners of the cells. The appearance of these structures is stage-specific and they are not found at any other stages of megasporogenesis. The functional dyad cell undergoes the second meiotic division, resulting in the formation of two megaspores of unequal size. The chalazal megaspore enlarges and eventually gives rise to the embryo sac. As the functional megaspore expands, the microtubules again form a distinct perinuclear array with many microtubules radiating from the nuclear envelope. A defined cortical array of microtubules has not been found in P. tankervilliae during the course of megasporogenesis.  相似文献   

2.
采用半薄切片技术和组织化学染色法对宁夏枸杞大孢子发生和雌配子体发育过程中的细胞结构变化及营养物质积累特征进行了观察。结果表明,(1)宁夏枸杞为中轴胎座,多室子房,倒生胚珠,单珠被,薄珠心类型。(2)位于珠心表皮下的孢原细胞可直接发育为大孢子母细胞,减数分裂后形成直线型大孢子四分体,合点端第一个大孢子发育为功能大孢子,胚囊发育类型为蓼型,具有珠被绒毡层。(3)初形成的胚囊外周组织中没有营养物质积累,成熟胚囊时期出现了大量的淀粉粒且呈珠孔端明显多于合点端的极性分布特征。(4)助细胞的珠孔端具有明显的丝状器结构,呈PAS正反应表现出多糖性质,成熟胚囊具有承珠盘结构。  相似文献   

3.
Studies on the formation and development of the embryo sac of the apomictic material of Pennisetum squamulatum Fresen indicated that normal archesporial cell did form with consequent development of a megaspore mother cell and later meiotic division to give rise to a triad. But invariably the megaspore mother cell and the triad underwent degeneration after formation. During the period of formation or degeneration of the megaspore or the triad a number of nucellar cells around the degenerated sexual cell became much enlarged. Frequently, one of the enlarging nucellar cells near the micropylar end became vacuolated and then developed into an aposporous uninucleate embryo sac, which underwent two further mitotic divisions to form an aposporous four-nucleate embryo sac, where the four nuclei remained in the micropylar end. Thus in the mature aposporous embryo sac there were one egg cell, one synergid and one central cell (containing two polar nuclei). Antipodal cells were completely lacking. The pattern of development of the aposporous embryo sac resembles the panicum type. There were two types of embryo formed during apomictic development namely ( 1 ) The pre-genesis embryo--embryo formed without fertilization, 1 to 2 days before anthesis, and (2) The late-genesis embryo--derived from the unfertilized egg cells, 3 to 4 days after anthesis. In the late-genesis embryo type, the egg cell divided after the secondary nucleus has undergone division to form the endosperm nuclei. All egg cells developed vacuoles before they differentiated into embryos. The development of the aposporous embryo followed the sequence of the formation of globular, pearshaped embryo and full stages of differentiation. The unfertilized secondary nucleus divides to form free endosperm nuclei after being stimulated by pollination. The development of the endosperm belongs to the nuclear-type.  相似文献   

4.
The development of the female gametophyte in Hydrobryum griffithiiis of the Apinagia type. The chalazal megaspore nucleus of thetwo-nucleate embryo sac completely degenerates, and only themicropylar megaspore nucleus contributes to the four nucleipresent in the organized embryo sac. The female gametophyteconsists of two synergids, an egg and a haploid central cell.The latter degenerates before the entry of the pollen tube andthere is only syngamy. The nucellar cells below the embryo sacorganize into a nucellar plasmodium.  相似文献   

5.
高山红景天胚胎学研究   总被引:8,自引:4,他引:4  
张萍  申家恒 《植物研究》1998,18(1):38-45
高山红景天(Rhodiola sachalinensis A.Bor.)具8个雄蕊,每个雄蕊有4个花粉囊。小孢子母细胞减数分裂时,胞质分裂为同时型。形成的四分体为四面体形。花药壁由表皮、药室内壁、二层中层和绒毡层五层细胞组成,其发育方式为基本型。腺质型绒毡层,有些绒毡层细胞分裂形成不规则双层,少数细胞双核。二细胞型花粉。雌蕊由4心皮组成。边缘胎座,倒生胚珠,双珠被,厚珠心,胚珠发育中形成珠心喙。大孢子四分体线形或T -形,合点大孢子具功能。胚囊发育为蓼型。成熟胚囊中,卵细胞核、助细胞核均位于细胞的合点端,珠孔端具液泡;极核融合为次生核,并位于卵细胞合点端附近; 3个反足细胞退化。双受精属于有丝分裂前配子融合类型。胚的发育为石竹型;基细胞侵入珠孔端,形成囊状吸器。细胞型胚乳;初生胚乳核分裂形成两个细胞,其珠孔端的细胞发育成胚乳本体,合点端的细胞直接发育成具一单核的合点吸器。  相似文献   

6.
鹤顶兰胚囊发育过程中微管变化的共焦显微镜观察   总被引:3,自引:0,他引:3  
光镜的观察确定了鹤顶兰(Phaius tankervilliae (Aiton) Bl.)胚囊发育属单孢子蓼型。应用免疫荧光标记技术及共焦镜观察了胚囊发育过程中微管分布的变化。当孢原细胞初形成时,细胞内的微管呈网状分布。之后,孢原细胞体积增大发育为大孢子母细胞。大孢子母细胞延长,进入减数分裂Ⅰ。微管由分裂前的网状分布变为辐射状排列。二分体的两个细胞内的微管分布一样,呈辐射状。四分体的近珠孔端的3 个大孢子解体,细胞内的微管消失。靠合点端的功能大孢子内有许多微管呈网状分布。当功能大孢子进入第一次有丝分裂时,细胞内的微管由网状变为辐射状,从核膜伸展至周质。再经两次有丝分裂形成八核胚囊。在核分裂之前微管一般是呈网状分布并紧包围着核。在分裂期间二核和四核胚囊都呈极性现象,微管系统也呈极性分布。微管在八核胚囊内的分布变化情形特别复杂。首先,八核分别作不同程度的移动,其中两个核移向胚囊中央,珠孔端和合点端的3 个核分别互相靠拢,形成3 个区,即中央区、反足区和卵器区。胚囊未形成区时,8 个核都被网状分布的微管包围着。当胚囊明显分成区时,反足区内的微管仍作网状分布。中央区的微管分布则趋疏松,形成篮形结构,包围着液泡和两个极核。在  相似文献   

7.
水蔗草兼性无融合生殖胚胎学研究   总被引:4,自引:0,他引:4  
对水蔗草 (ApludamuticaL .)的生殖方式进行研究 ,结果表明水蔗草进行兼性无融合生殖。胚囊发育分为两种类型 ,即有性生殖的蓼型和无孢子生殖的大黍型。无融合生殖胚囊频率为 6 0 .74%。在大孢子母细胞发育至四分体后 ,珠孔端的 3个大孢子解体。合点端的大孢子未解体时 ,邻近大孢子的 1个珠心细胞开始特化 ,形成无融合生殖的原始细胞 ,由该原始细胞发育形成有 1个卵细胞、1个助细胞和 2个极核的四核胚囊。  相似文献   

8.
对水蔗草(Apluda mutica L.)的生殖方式进行研究,结果表明水蔗草进行兼性无融合生殖.胚囊发育分为两种类型,即有性生殖的蓼型和无孢子生殖的大黍型.无融合生殖胚囊频率为60.74%.在大孢子母细胞发育至四分体后,珠孔端的3个大孢子解体.合点端的大孢子未解体时,邻近大孢子的1个珠心细胞开始特化,形成无融合生殖的原始细胞,由该原始细胞发育形成有1个卵细胞、1个助细胞和2个极核的四核胚囊.  相似文献   

9.
In nun orchid (Phaius tankervilliae (Alton) B1. ) embryo sac development follows the monosporic pattern. Changes in the pattern of organization of the microtubular cytoskeleton during megasporogenesis and megagametogenesis in this orchid were studied using the immunofluorescence technique and eonfocal microscopy. At the initial stage of development the microtubules in the arehesporium were randomly oriented into a network. Later the archesporial cell elongated to form the megasporocyte. The cytoskeleton in the elongated megasporoeyte was radially organized in which microtubules extending from the nuclear envelope to the peripheral region of the cell. The megasporoeyte then underwent meiosis 1 to form a dyad. The dyad cell at the chalazal end was larger than the cell at the micropylar end. Microtubules in the dyad cell were radially oriented. The dyad underwent meiosis to give rise to a linear array of four megaspores (i. e. tetrad formation). The chalazal-far most megaspore survived and became the functional megaspore, which contained a set of randomly oriented microtubules. The microtubules in the other 3 megaspore disappeared as the cells degenerated. The functional megaspore then underwent mitotic division giveing rise to a 2 nucleate embryo sac. The nuclei of the 2-nucleate embryo sac were separated by a set of longitudinally oriented microtubules which ran parallel to the long axis of the embryo sac. Each nucleus in the embryo sac was surrounded by a set of perinuelear microtubules. The gnucleate embryo sac again underwent mitotic division to form a 4-nucleate embryo sac. The division of the two nuclei was synchronous. But the orientation of the division plan of the two spindles was different (i. e. the spindle microtubules at the chalazal end ran parallel with the long axis of the embryo sac and those at the mieropylar end ran at right angle to the axis of the embryo sac). The 4 nuclei of the 4-nucleate embryo sac were all tightly surrounded by randomly oriented microtubules. Later the paired nuclei at the micropylr end and at the chalazal end as well underwent mitotic division in seguence. At this time when the embryo sac had reached the 8-nucleate embryo sac stage. The pattern of organization of the microtubules was very complex. Initially the nuclei were surrounded by a set of randomly oriented microtubules, but after the two polar nuclei had moved to the central region of the embryo sac, three different organizational zones of microtubules appeared, viz: a randomly oriented set of microtubules surrounding each nucleus in the chalazal zone: a set (in the form of a basket) of cortical microtubules which surrounded the vacuoles and the two polar nuclei in the central zone and a loosely knitted network of microtubules surrounding the nucleus that later became the egg cell nucleus in the micropylar zone. The two nuclei that would become the nuclei of the synergids were surrounded by a set of more densely packed mierotubules. Towards far the most micropylar end some microtubules formed thick bundles. The site of appearance of these thick bundles coincided with the site of development of the filiform apparatus. The pattern of microtubule organization after cellularization (i. e. at the beginning of embryo sac maturation) did not change much. The author's results indicated that various patterns of microtubule organization observed in the developing embryo sac of nun orchid reflected the complexity and dynamism of the embryo sac.  相似文献   

10.
The megasporogenesis, female gametophyte development and embryonic development of Ambrosia artemisiifolia L. and Ambrosia trifida L. of genus Ambrosia L. in China were studied using conventional paraffin section technology and optical microscopy. The results show that both A. artemisiifolia L. and A. trifida L. have a bilobed pistil stigma, two carpels, one chamber, basal placenta, unitegmic, tenuinucellate, anatropous ovule, and well-developed integumentary tapetum. Megaspore mother cells are directly developed from archesporial cells originated from the nucellar cells under the nucellar epidermis and further undergo meiosis to form linear tetrads. The megaspore at the chalazal end develops into a functional megaspore and the other three megaspores are degraded. The development of embryo sac is monosporic type. After three consecutive mitosis, mononucleate embryo sac becomes a mature embryo sac with two synergids and one egg cell at the micropylar end, a central cell at the center and three antipodal cells at the chalazal end. Most antipodal cells are mononucleate or binucleate, only few are trinucleate. The embryonic development process contains four stages: globular embryo, heart-stage embryo, torpedo-stage embryo and mature embryo. The development of endosperm is cellular type.  相似文献   

11.
The nucellar ultrastructure of apomictic Panicum maximum was analyzed during the meiocytic stage and during aposporous embryo sac formation. At pachytene the megameiocyte shows a random cell organelle distribution and sometimes only an incomplete micropylar callose wall. The chalazal nucellar cells are meristematic until the tetrad stage. They can turn into initial cells of aposporous embryo sacs. The aposporous initials can be recognized by their increased cell size, large nucleus, and the presence of many vesicles. The cell wall is thin with few plasmodesmata. If only a sexual embryo sac is formed, the nucellar cells retain their meristematic character. The aposporous initial cell is somewhat comparable to a vacuolated functional megaspore. It shows large vacuoles around the central nucleus and is surrounded by a thick cell wall without plasmodesmata. In the mature aposporous embryo sac the structure of the cells of the egg apparatus is similar to each other. In the chalazal part of the egg apparatus the cell walls are thin and do not hamper the transfer of sperm cells. Structural and functional aspects of nucellar cell differentiation and aposporous and sexual embryo sac development are discussed.  相似文献   

12.
Megasporogenesis and embryo sac development in Stellaria media were investigated using cytochemical methods for the demonstration of nucleic acids, proteins, and polysaccharides. RNA concentrations were high in the archesporial cells, low in the megaspore mother cell, and increased again to high concentrations with the formation of the megaspore and 2-, 4-, and early 8-nucleate embryo sac. RNA levels were also high in the egg and primary endosperm nucleus but low in the synergid and antipodal cells. Nucleolar size and vacuolation were indicative of RNA synthetic activity. Protein concentrations were parallel in concentration and distribution to those observed for RNA. Polysaccharides were conspicuously absent from all stages except the synergids and nucellar cells. Feulgen-stained DNA was demonstrable in the antipodal cells, megaspore mother cell, and megaspore cell, but was not visible in the 2-, 4-, or early 8-nucleate embryo sac. Feulgen staining was also absent from the egg and primary endosperm nucleus but was visible in the synergids and antipodals. Histones were difficult to visualize anywhere except in the egg cytoplasm and the nuclei of the antipodals.  相似文献   

13.
Sporogenesis, gametogenesis, fertilization and embryogenesis of Iris mandshurica Maxim. were observed using the normal paraffin method. The results are as follows: the development of the anther wall following the dicotyledonous type consisting of four layers, the epidermis, the endothecium, one middle layer and the secretory tapetum. Fibrous thickenings develop in the endothecium when the anther is shed. Simultaneous cytokinesis during microsporogenesis results in a tetrahedral tetrad of microspores. Mature pollen grains are two-celled. The ovary is inferior and trilocular with axial placenta. The ovule is anatropous, bitegminous and crassinucellate. The archesporial cell below the nucellar epidermis undergoes periclinal division producing the primary parietal cell and the primary sporogenous cell. The primary parietal cell participates in the nucellar formation; the primary sporogenous cell differentiates directly as the megasporocyte. Successive cytokinesis in the megasporocyte usually produces the linear tetrad, and the chalazal megaspore of the tetrad develops into a Polygonum-type embryo sac. The fertilization mode is porogamy. The pollen tube enters into the embryo sac and discharges two sperm 16?C20?h after pollination. The fertilization is the postmitotic type of syngamy. The first division of the zygote is transversal. Endosperm formation is of the nuclear type. The systematic significance of the embryological characters of I. mandshurica is discussed.  相似文献   

14.
采用石蜡切片方法对粉叶小檗(Berberis pruinosa Franch.)的大孢子发生和雌配子体形成过程进行了研究。主要结果如下:雌蕊1枚,子房单心皮,边缘胎座,2枚胚珠倒生,具双珠被,厚珠心,珠孔由内外两层珠被共同形成,呈“Z”字形;单孢原,位于珠心表皮下;直线形大孢子四分体,合点端的1个大孢子发育为功能大孢子,胚囊发育类型为蓼型;成熟胚囊中,2个极核在受精前融合为次生核;3个反足细胞不发达,较早退化;"品"字形卵器,其中助细胞发达且具丝状器。  相似文献   

15.
冠果草的胚胎学研究   总被引:1,自引:0,他引:1  
冠果草花药壁的发育为单子口十型,绒毡层为周原质团型。小孢子母细胞减数分裂为连续型,四分体呈左右对称式排列,成熟花粉为三细胞型。双珠被,假厚珠心,倒生胚珠。胚囊发育为葱型,成熟胚囊的特点是两个极核分别位于中央细胞两端,不融合成次生核。受精过程中,一个精于与卵核融合形成合子,另一精子先与珠孔端极核融合,之后受精极核再移动到合点端与另一极核融合,形成初生胚乳核。胚的发育为石竹型。成熟胚呈马蹄形,具有2片真叶。胚乳发育为沼生目型。随着胚的发育,胚乳细胞逐渐解体,成熟种子中无胚乳。  相似文献   

16.
This paper deals with the embryological characteristics of Sagittaria guayanensis H. B.K. subsp. lappula (D. Don) Bojin. The anther wall development follows the Monocotyledonous type. The cytokinesis of microspore mother cell in meiosis is of the Successive type. The tetrads of microspores show an isobilateral arrangement, and the mature pollen grains are 3-celled. The ovule is bitegminous, pseudo-crassinucellate and anatropous. The megaspore mother cell originates directly from a single archesporial cell. The mature embryo sac consists of 7 cells including 8 nuclei and conforms to the Allium type. The two polar nuclei do not fuse into a secondary nucleus before fertilization. Instead, one sperm fuses with the micropylar end polar nucleus first , and the fertilized polar nucleus then migrates to the chalazal end, where it fuses with the second polar nucleus, forming the primary endosperm nucleus. The embryo development conforms to the Caryophyllad type. The mature embryo is U-shaped and forms the embryonic shoot apex accompanied by two leaves. The endosperm development corresponds to the Helobial type. The primary endosperm nucleus (invariably lying in the chalazal part of the embryo sac) divides and forms two chambers:large micropylar one and small chalazal one. The chalazal endosperm chamber remains binucleate, while, in the micropylar chamber free nuclear divisions occur and then cellnlarization takes place. During the embryo formation the endosperm gradually degrades and can not be found in the mature seed. The subgenus Lophotocarpus is different from the subgenus Sagittaria in some embryological aspects, especially in the structure of mature embryo sac and the double fertilization process.  相似文献   

17.
掌叶大黄胚珠的发育及胼胝质的变化   总被引:1,自引:0,他引:1  
  相似文献   

18.
利用石蜡切片技术,对百合科植物开口箭(Tupistra chinensis Baker)大小孢子发生及雌雄配子体发育进程进行胚胎学观察分析,以明确开口箭胚胎发育的特征,为百合科植物的研究提供生殖生物学依据。结果表明:(1)开口箭花药具有4个药室,花药壁的发育方式为基本型,由表皮、药室内壁、中层及绒毡层组成;绒毡层发育类型为分泌型,到四分体花药阶段绒毡层细胞开始解体退化,花药成熟时完全消失。(2)花粉母细胞减数分裂为连续型,依次形成二分体、四分体,四分体为左右对称形;成熟花粉为2-细胞花粉,具单萌发沟。(3)子房3室,倒生型胚珠6枚,双珠被,薄珠心;在花部的分化早期,由珠心顶端表皮下方分化出雌性孢原细胞,孢原细胞经过一次平周分裂形成周缘细胞和造孢细胞,造孢细胞发育为大孢子母细胞;大孢子母细胞第一次减数分裂后形成二分体,珠孔端的二分体孢子退化,合点端的二分体孢子继续第二次分裂,形成两个子细胞依次发育为二核胚囊、四核胚囊和八核胚囊;开口箭的胚囊发育类型为葱型。  相似文献   

19.
Megasporogenesis was examined in cleared ovaries of 23 accessions of hexaploid Elymus from southeastern Queensland, northeastern New South Wales, the Australian Capital Territory, and the South Island of New Zealand. Apomixis was confined to the 17 accessions that morphologically corresponded to E. rectisetus (Nees in Lehm.) Löve et Connor. Female meiotic development followed the Polygonum type. Apomeiotic development was delayed relative to meiotic development because of a lengthy period of MMC vacuolation and nuclear stretching that occurred in place of meiosis I. Amitosis was evident in up to possibly five percent of the MMC's during nuclear stretching. A subsequent mitotic division facultatively functioned as meiosis II or the first embryo-sac mitosis to yield a 2n megaspore dyad, a hemidyad with an incomplete crosswall, or a directly binucleate embryo sac. Nuclear stretching generally resumed in the chalazal daughter nucleus from the apomeiotic division, but was not seen later in embryo sac development. When a dyad formed, its chalazal member would enlarge and develop into the embryo sac. The organized embryo sac was of the conventional eight-nucleate, seven-celled structure prior to antipodal proliferation, regardless of meiotic or apomeiotic origin. Microsporocyte meiosis was normal in both sexuals and apomicts. Deposition of a slightly birefringent substance, possibly callose, was deficient around megasporocytes, megaspores, and microsporocytes in the apomicts.  相似文献   

20.
Observed in this paper was the development of the microspore and megaspore, male and female gametophytes in Sinojakia xylocarpa, which is endemic to China. The anther comprises four microsporangia. Microspore wall forms simultaneously after meiotic division in PMCs. The arrangment of microspore in a tetrad is tetrahedral. Bicel lular pollen grains appear at the shedding stage. ‘They are 3-colporate, with irregular min ute-faveolate exine sculpture. The anther wall development is of the dicotyledonous type, and its endothecitum develops slight fibrous thickenings, which also form on some epidermal cells. The tapetum is glandular. The pistil with hollow style is composed of three carpels, and its ovary contains several anatropous ovules. The ovule is unitegmic, tenuinucellar, but no obturator was observed. The archesporial cell functions directly as the megaspore mother cell which forms a linear tetrad, but T-shaped tetrad was found in a few ovules. A Polygonum type embryo sac forms from the functional chalazal megaspore. In the mature embryo sac, the synergids are elongate with a large vacuole at the chalazal end, but the distrihution of vacuoles in the egg cell appears random. Two polar nuclei remain in contact with each other for a spell before the fertilization and the 3 antipodal cells may persist into early postfertilzation stages. Numerous starch gra ins occur in the embryo sac. According to the present embryological studies on Sinojakia xylocarpa and the works on embryogenesis by some early embryologist, authors consider that Styracaceae, Symplocaceae, Sapotaceae and Ebenaceae are rather closely related, and we alsoconsider it reasonable to put the 4 families mentioned above in Ebenales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号