首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 169 毫秒
1.
Aim Spatial evolutionary and ecological vicariance analysis (SEEVA) is a simple analytical method that evaluates environmental or ecological divergence associated with evolutionary splits. It integrates evolutionary hypotheses, phylogenetic data, and spatial, temporal, environmental and geographical information to elucidate patterns. Using a phylogeny of Prepusa Mart. and Senaea Taub. (Angiospermae: Gentianaceae), SEEVA is used to describe the radiation and ecological patterns of this basal gentian group across south‐eastern Brazil. Location Latin America, global. Methods Environmental data for 151 geolocated botanical collections, associated with specimens from seven species, were compiled with Arc GIS, and were matched with geolocated base layers of eight climatological variables, as well as one each of geological, soil type, elevational and vegetation variables. Sister groups were defined on the basis of the six nested nodes that defined the phylogenetic tree of these two genera. A (0, 1)‐scaled divergence index (D) was defined and tested for each of 12 environmental and for each of the six phylogenetic nodes, by means of contingency analyses. We contrast divergence indices of nested clades, allopatric and sympatric sister clades. Results The level of ecological divergence between sister clades/species, defined in terms of D measures, was substantial for five of six nodes, with 21 of 72 environmental comparisons having D > 0.75. Soil types and geological age of bedrock were strongly divergent only for basal nodes in the phylogeny, by contrast with temperature and precipitation, which exhibited strong divergence at all nodes. There has been strong divergence and progressive occupation of wetter and colder habitats throughout the history of Prepusa. Nodes separating allopatric sister clades exhibited larger niche divergence than did those separating sympatric sister clades. Main conclusions SEEVA provides a multi‐source, direct analysis method for correlating field collections, phylogenetic hypotheses, species distributions and georeferenced environmental data. Using SEEVA, it was possible to quantify and test the divergence between sister lineages, illustrating both niche conservatism and ecological specialization. SEEVA permits elucidation of historical and ecological vicariance for evolutionary lineages, and is amenable to wide application, taxonomically, geographically and ecologically.  相似文献   

2.
Environmental niche models, which are generated by combining species occurrence data with environmental GIS data layers, are increasingly used to answer fundamental questions about niche evolution, speciation, and the accumulation of ecological diversity within clades. The question of whether environmental niches are conserved over evolutionary time scales has attracted considerable attention, but often produced conflicting conclusions. This conflict, however, may result from differences in how niche similarity is measured and the specific null hypothesis being tested. We develop new methods for quantifying niche overlap that rely on a traditional ecological measure and a metric from mathematical statistics. We reexamine a classic study of niche conservatism between sister species in several groups of Mexican animals, and, for the first time, address alternative definitions of "niche conservatism" within a single framework using consistent methods. As expected, we find that environmental niches of sister species are more similar than expected under three distinct null hypotheses, but that they are rarely identical. We demonstrate how our measures can be used in phylogenetic comparative analyses by reexamining niche divergence in an adaptive radiation of Cuban anoles. Our results show that environmental niche overlap is closely tied to geographic overlap, but not to phylogenetic distances, suggesting that niche conservatism has not constrained local communities in this group to consist of closely related species. We suggest various randomization tests that may prove useful in other areas of ecology and evolutionary biology.  相似文献   

3.
Aim There is increasing evidence that the quality and breadth of ecological niches vary among individuals, populations, evolutionary lineages and therefore also across the range of a species. Sufficient knowledge about niche divergence among clades might thus be crucial for predicting the invasion potential of species. We tested for the first time whether evolutionary lineages of an invasive species vary in their climate niches and invasive potential. Furthermore, we tested whether lineage‐specific models show a better performance than combined models. Location Europe. Methods We used species distribution models (SDMs) based on climatic information at native and invasive ranges to test for intra‐specific niche divergence among mitochondrial DNA (mtDNA) clades of the invasive wall lizard Podarcis muralis. Using DNA barcoding, we assigned 77 invasive populations in Central Europe to eight geographically distinct evolutionary lineages. Niche similarity among lineages was assessed and the predictive power of a combination of clade‐specific SDMs was compared with a combined SDM using the pooled records of all lineages. Results We recorded eight different invasive mtDNA clades in Central Europe. The analysed clades had rather similar realized niches in their native and invasive ranges, whereas inter‐clade niche differentiation was comparatively strong. However, we found only a weak correlation between geographic origin (i.e. mtDNA clade) and invasive occurrences. Clades with narrow realized niches still became successful invaders far outside their native range, most probably due to broader fundamental niches. The combined model using data for all invasive lineages achieved a much better prediction of the invasive potential. Conclusions Our results indicate that the observed niche differentiation among evolutionary lineages is mainly driven by niche realization and not by differences in the fundamental niches. Such cryptic niche conservatism might hamper the success of clade‐specific niche modelling. Cryptic niche conservatism may in general explain the invasion success of species in areas with apparently unsuitable climate.  相似文献   

4.
Losos JB 《Ecology letters》2008,11(10):995-1003
Ecologists are increasingly adopting an evolutionary perspective, and in recent years, the idea that closely related species are ecologically similar has become widespread. In this regard, phylogenetic signal must be distinguished from phylogenetic niche conservatism. Phylogenetic niche conservatism results when closely related species are more ecologically similar that would be expected based on their phylogenetic relationships; its occurrence suggests that some process is constraining divergence among closely related species. In contrast, phylogenetic signal refers to the situation in which ecological similarity between species is related to phylogenetic relatedness; this is the expected outcome of Brownian motion divergence and thus is necessary, but not sufficient, evidence for the existence of phylogenetic niche conservatism. Although many workers consider phylogenetic niche conservatism to be common, a review of case studies indicates that ecological and phylogenetic similarities often are not related. Consequently, ecologists should not assume that phylogenetic niche conservatism exists, but rather should empirically examine the extent to which it occurs.  相似文献   

5.
The progressive expansion of the Australian arid zone during the last 20 Ma appears to have spurred the diversification of several families of plants, vertebrates and invertebrates, yet such taxonomic groups appear to show limited niche radiation. Here, we test whether speciation is associated with niche conservatism (constraints on ecological divergence) or niche divergence in a tribe of marsupial mice (Sminthopsini; 23 taxa) that includes the most speciose genus of living dasyurids, the sminthopsins. To that end, we integrated phylogenetic data with ecological niche modelling, to enable us to reconstruct the evolution of climatic suitability within Sminthopsini. Niche overlap among species was low‐moderate (but generally higher than expected given environmental background similarity), and the degree of phylogenetic clustering increased with aridity. Climatic niche reconstruction illustrates that there has been little apparent evolution of climatic tolerance within clades. Accordingly, climatic disparity tends to be accumulated among clades, suggesting considerable niche conservatism. Our results also indicate that evolution of climatic tolerances has been heterogeneous across different dimensions of climate (temperature vs. precipitation) and across phylogenetic clusters (Sminthopsis murina group vs. other groups). Although some results point to the existence of shifts in climatic niches during the speciation of sminthopsins, our study provides evidence for substantial phylogenetic niche conservatism in the group. We conclude that niche diversification had a low impact on the speciation of this tribe of small, but highly mobile marsupials.  相似文献   

6.
There are many hypotheses of relationships, and also of speciation processes, in North American freshwater fishes, although, to date, there have been no direct tests of whether there is evidence of ecological niche conservatism. In the present study, ecological niche modeling is used to look for evidence of ecological niche conservatism in six clades of freshwater fishes: the starheaded topminnows, sand darters, black basses, Notropis rubellus species group, Notropis longirostris species group, and the Hybopsis amblops species group. This is achieved by evaluating the reciprocal predictivity of distributional predictions based on ecological niche models developed for each individual taxon in a clade under the assumption that high reciprical predictivity between sister species can be taken as evidence of niche conservatism. Omission percentages, total and average commission, and the area under the curve in a receiver operating characteristic analysis, where calculated, are used to evaluate predictive ability. Occurrence data for each species were subset into a training and independent validation data set where possible. Across all clades and species, models predicted the validation data for a given species well. Ecological niche conservatism was found generally across the starheaded topminnows, the sand darters, and the N. longirostris species group. There was some inter-predictivity within the N. rubellus group, but almost no inter-predictivity within the black basses, indicating a lack of conservatism. These results demonstrate that ecological niches generally act as stable constraints on freshwater fish distributions in North America.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 282–295.  相似文献   

7.
Diversification on an ecologically constrained adaptive landscape   总被引:3,自引:2,他引:1  
We used phylogenetic analysis of body-size ecomorphs in a crustacean species complex to gain insight into how spatial complexity of ecological processes generates and maintains biological diversity. Studies of geographically widespread species of Hyalella amphipods show that phenotypic evolution is tightly constrained in a manner consistent with adaptive responses to alternative predation regimes. A molecular phylogeny indicates that evolution of Hyalella ecomorphs is characterized by parallel evolution and by phenotypic stasis despite substantial levels of underlying molecular change. The phylogeny suggests that species diversification sometimes occurs by niche shifts, and sometimes occurs without a change in niche. Moreover, diversification in the Hyalella ecomorphs has involved the repeated evolution of similar phenotypic forms that exist in similar ecological settings, a hallmark of adaptive evolution. The evolutionary stasis observed in clades separated by substantial genetic divergence, but existing in similar habitats, is also suggestive of stabilizing natural selection acting to constrain phenotypic evolution within narrow bounds. We interpret the observed decoupling of genetic and phenotypic diversification in terms of adaptive radiation on an ecologically constrained adaptive landscape, and suggest that ecological constraints, perhaps acting together with genetic and functional constraints, may explain the parallel evolution and evolutionary stasis inferred by the phylogeny.  相似文献   

8.
In this study, we explore the interplay of population demography with the evolution of ecological niches during or after speciation in Hordeum. While large populations maintain a high level of standing genetic diversity, gene flow and recombination buffers against fast alterations in ecological adaptation. Small populations harbour lower allele diversity but can more easily shift to new niches if they initially survive under changed conditions. Thus, large populations should be more conservative regarding niche changes in comparison to small populations. We used environmental niche modelling together with phylogenetic, phylogeographic and population genetic analyses to infer the correlation of population demography with changes in ecological niche dimensions in 12 diploid Hordeum species from the New World, forming four monophyletic groups. Our analyses found both shifts and conservatism in distinct niche dimensions within and among clades. Speciation due to vicariance resulted in three species with no pronounced climate niche differences, while species originating due to long‐distance dispersals or otherwise encountering genetic bottlenecks mostly revealed climate niche shifts. Niche convergence among clades indicates a niche‐filling pattern during the last 2 million years in South American Hordeum. We provide evidence that species, which did not encounter population reductions mainly showed ecoclimatic niche conservatism, while major niche shifts occurred in species which have undergone population bottlenecks. Our data allow the conclusion that population demography influences adaptation and niche shifts or conservatism in South American Hordeum species.  相似文献   

9.
Understanding how the climatic niche of species evolved has been a topic of high interest in current theoretical and applied macroecological studies. However, little is known regarding how species traits might influence climatic niche evolution. Here, we evaluated patterns of climatic niche evolution in turtles (tortoises and freshwater turtles) and whether species habitat (terrestrial or aquatic) influences these patterns. We used phylogenetic, climatic and distribution data for 261 species to estimate their climatic niches. Then, we compared whether niche overlap between sister species was higher than between random species pairs and evaluated whether niche optima and rates varied between aquatic and terrestrial species. Sister species had higher values of niche overlap than random species pairs, suggesting phylogenetic climatic niche conservatism in turtles. The climatic niche evolution of the group followed an Ornstein–Uhlenbeck model with different optimum values for aquatic and terrestrial species, but we did not find consistent evidence of differences in their rates of climatic niche evolution. We conclude that phylogenetic climatic niche conservatism occurs among turtle species. Furthermore, terrestrial and aquatic species occupy different climatic niches but these seem to have evolved at similar evolutionary rates, reinforcing the importance of habitat in understanding species climatic niches and their evolution.  相似文献   

10.
The role of ecology in the origin of species has been the subject of long‐standing interest to evolutionary biologists. New sources of spatially explicit ecological data allow for large‐scale tests of whether speciation is associated with niche divergence or whether closely related species tend to be similar ecologically (niche conservatism). Because of the confounding effects of spatial autocorrelation of environmental variables, we generate null expectations for niche divergence for both an ecological‐niche modeling and a multivariate approach to address the question: do allopatrically distributed taxa occupy similar niches? In a classic system for the study of niche evolution—the Aphelocoma jays—we show that there is little evidence for niche divergence among Mexican Jay (A. ultramarina) lineages in the process of speciation, contrary to previous results. In contrast, Aphelocoma species that exist in partial sympatry in some regions show evidence for niche divergence. Our approach is widely applicable to the many cases of allopatric lineages in the beginning stages of speciation. These results do not support an ecological speciation model for Mexican Jay lineages because, in most cases, the allopatric environments they occupy are not significantly more divergent than expected under a null model.  相似文献   

11.
Aim Because of their broad distribution in geographical and ecological dimensions, seaweeds (marine macroalgae) offer great potential as models for marine biogeographical inquiry and exploration of the interface between macroecology and macroevolution. This study aims to characterize evolutionary niche dynamics in the common green seaweed genus Halimeda, use the observed insights to gain understanding of the biogeographical history of the genus and predict habitats that can be targeted for the discovery of species of special biogeographical interest. Location Tropical and subtropical coastal waters. Methods The evolutionary history of the genus is characterized using molecular phylogenetics and relaxed molecular clock analysis. Niche modelling is carried out with maximum entropy techniques and uses macroecological data derived from global satellite imagery. Evolutionary niche dynamics are inferred through application of ancestral character state estimation. Results A nearly comprehensive molecular phylogeny of the genus was inferred from a six‐locus dataset. Macroecological niche models showed that species distribution ranges are considerably smaller than their potential ranges. We show strong phylogenetic signal in various macroecological niche features. Main conclusions The evolution of Halimeda is characterized by conservatism for tropical, nutrient‐depleted habitats, yet one section of the genus managed to invade colder habitats multiple times independently. Niche models indicate that the restricted geographical ranges of Halimeda species are not due to habitat unsuitability, strengthening the case for dispersal limitation. Niche models identified hotspots of habitat suitability of Caribbean species in the eastern Pacific Ocean. We propose that these hotspots be targeted for discovery of new species separated from their Caribbean siblings since the Pliocene rise of the Central American Isthmus.  相似文献   

12.
The causes of exceptionally high plant diversity in Mediterranean‐climate biodiversity hotspots are not fully understood. We asked whether a mechanism similar to the tropical niche conservatism hypothesis could explain the diversity of four large genera (Protea, Moraea, Banksia, and Hakea) with distributions within and adjacent to the Greater Cape Floristic Region (South Africa) or the Southwest Floristic Region (Australia). Using phylogenetic and spatial data we estimated the environmental niche of each species, and reconstructed the mode and dynamics of niche evolution, and the geographic history, of each genus. For three genera, there were strong positive relationships between the diversity of clades within a region and their inferred length of occupation of that region. Within genera, there was evidence for strong evolutionary constraint on niche axes associated with climatic seasonality and aridity, with different niche optima for hotspot and nonhotspot clades. Evolutionary transitions away from hotspots were associated with increases in niche breadth and elevated rates of niche evolution. Our results point to a process of “hotspot niche conservatism” whereby the accumulation of plant diversity in Mediterranean‐type ecosystems results from longer time for speciation, with dispersal away from hotspots limited by narrow and phylogenetically conserved environmental niches.  相似文献   

13.
The latitudinal diversity gradient (LDG) is one of the most striking ecological patterns on our planet. Determining the evolutionary causes of this pattern remains a challenging task. To address this issue, previous LDG studies have usually relied on correlations between environmental variables and species richness, only considering evolutionary processes indirectly. Instead, we use a phylogenetically integrated approach to investigate the ecological and evolutionary processes responsible for the global LDG observed in swallowtail butterflies (Papilionidae). We find evidence for the 'diversification rate hypothesis' with different diversification rates between two similarly aged tropical and temperate clades. We conclude that the LDG is caused by (1) climatically driven changes in both clades based on evidence of responses to cooling and warming events, and (2) distinct biogeographical histories constrained by tropical niche conservatism and niche evolution. This multidisciplinary approach provides new findings that allow better understanding of the factors that shape LDGs.  相似文献   

14.
Phylogenetic niche conservatism is the pattern where close relatives occupy similar niches, whereas distant relatives are more dissimilar. We suggest that niche conservatism will vary across clades in relation to their characteristics. Specifically, we investigate how conservatism of environmental niches varies among mammals according to their latitude, range size, body size and specialization. We use the Brownian rate parameter, σ(2), to measure the rate of evolution in key variables related to the ecological niche and define the more conserved group as the one with the slower rate of evolution. We find that tropical, small-ranged and specialized mammals have more conserved thermal niches than temperate, large-ranged or generalized mammals. Partitioning niche conservatism into its spatial and phylogenetic components, we find that spatial effects on niche variables are generally greater than phylogenetic effects. This suggests that recent evolution and dispersal have more influence on species' niches than more distant evolutionary events. These results have implications for our understanding of the role of niche conservatism in species richness patterns and for gauging the potential for species to adapt to global change.  相似文献   

15.
昆承湖优势种鱼类时空-营养生态位   总被引:1,自引:0,他引:1  
陈亚东  任泷  徐跑  凡迎春  徐东坡 《生态学报》2023,43(4):1655-1663
为了解昆承湖优势种鱼类资源利用情况,首先利用生态位方法计算了时间、空间及营养三个资源维度的生态位宽度及重叠值,然后根据时空-营养生态位宽度值将优势种鱼类划分为广位种、中位种和窄位种,最后讨论了生态位宽度及重叠的可能原因。结果显示:刀鲚Coilia nasus、蒙古鲌Chanodichthys mongolicus、似鱎Toxabramis swinhonis、似鳊Pseudobrama simoni、鳙Hypophthalmichthys nobilis、鲢Hypophthalmichthys molitrix、花鱼骨Hemibarbus maculatus、似刺鳊鮈Paracanthobrama guichenoti、大鳍鱊Acheilognathus macropterus和鲫Carassius auratus为优势种。在时间维度:鲢的生态位宽度最大,似鳊的最小;生态位重叠具有显著意义的有24对,占总的53.33%。在空间维度,似刺鳊鮈最大,鲢最小;生态位重叠具有显著意义的有36对,占总的80%。在营养维度,最大的为鲫,最小的为花鱼骨;生态位重叠具有显著意义的有8对,占17.78%...  相似文献   

16.
Climate may play important roles in speciation, such as causing the range fragmentation that underlies allopatric speciation (through niche conservatism) or driving divergence of parapatric populations along climatic gradients (through niche divergence). Here, we developed new methods to test the frequency of climate niche conservatism and divergence in speciation, and applied it to species pairs of squamate reptiles (lizards and snakes). We used a large‐scale phylogeny to identify 242 sister species pairs for analysis. From these, we selected all terrestrial allopatric pairs with sufficient occurrence records (= 49 pairs) and inferred whether each originated via climatic niche conservatism or climatic niche divergence. Among the 242 pairs, allopatric pairs were most common (41.3%), rather than parapatric (19.4%), partially sympatric (17.7%), or fully sympatric species pairs (21.5%). Among the 49 selected allopatric pairs, most appeared to have originated via climatic niche divergence (61–76%, depending on the details of the methods). Surprisingly, we found greater climatic niche divergence between allopatric sister species than between parapatric pairs, even after correcting for geographic distance. We also found that niche divergence did not increase with time, further implicating niche divergence in driving lineage splitting. Overall, our results suggest that climatic niche divergence may often play an important role in allopatric speciation, and the methodology developed here can be used to address the generality of these findings in other organisms.  相似文献   

17.
In the past decades, it has been debated whether ecological niche should be conserved among closely related species (phylogenetic niche conservatism, PNC) or largely divergent (traditional ecological niche theory and ecological speciation) and whether niche specialist and generalist might remain in equilibrium or niche generalist could not appear. In this study, we employed morphological traits to describe ecological niche and test whether different niche dimensions exhibit disparate evolutionary patterns. We conducted our analysis on three Rhinogobio fish species (R. typus, R. cylindricus, and R. ventralis) from the upper Yangtze River, China. Among the 32 measured morphological traits except body length, PCA extracted the first four principal components with their loading scores >1.000. To find the PNC among species, Mantel tests were conducted with the Euclidean distances calculated from the four principal components (representing different niche dimensions) against the pairwise distances calculated from mitochondrial cytochrome b sequence variations. The results showed that the second and the third niche dimension, both related to swimming ability and behavior, exhibited phylogenetic conservatism. Further comparison on niche breadth among these three species revealed that the fourth dimension of R. typus showed the greatest width, indicating that this dimension exhibited niche generalism. In conclusion, our results suggested that different niche dimensions could show different evolutionary dynamic patterns: they may exhibit PNC or not, and some dimensions may evolve generalism.  相似文献   

18.
Whether or not niche conservatism is common is widely debated. Despite this uncertainty, closely related species are often assumed to be ecologically similar. This principle has led to the proposed use of phylogenetic information in forecasting species responses to environmental change. Tests of niche conservatism often focus on ‘functional traits’ and environmental tolerances, but there have been limited tests for conservatism in species’ responses to changes in the environment, especially in the field. The prevalence of functional convergence and the likelihood of functional trade-offs in a heterogeneous environment suggest that conservatism of the response niche is unlikely to be detectable under natural conditions. To test the relevance of evolutionary information in predicting ecological responses, we tested for conservatism (measured as phylogenetic signal) of grassland plant population responses to 14 treatments (e.g. light, nutrients, water, enemies, mutualists), each manipulated for 2–3 years, and 4 treatment categories (aboveground, belowground, resource, and herbivory) at a single site. Individual treatment responses showed limited evidence of conservatism, with only weak conservatism in plant responses to mycorrhizae and grazing. Aspects of the response niche were conserved among monocots both aboveground and belowground, although the pattern varied. Conservatism was limited to grazing aboveground, but belowground responses were conserved as a group, suggesting fundamental differences in how selection has led to niche conservatism in aboveground and belowground environments. Overall, our results suggest that conservatism of the response niche is not common, but is actually rare. As such, evolutionary relationships are likely to be of limited relevance for predicting species responses under field conditions, at least over the short time scales used in this study.  相似文献   

19.
Ecological niche theory predicts that coexistence is facilitated by resource partitioning mechanisms that are influenced by abiotic and biotic interactions. Alternative hypotheses suggest that under certain conditions, species may become phenotypically similar and functionally equivalent, which invokes the possibility of other mechanisms, such as habitat filtering processes. To test these hypotheses, we examined the coexistence of the giant redfin Pseudobarbus skeltoni, a newly described freshwater fish, together with its congener Pseudobabus burchelli and an anabantid Sandelia capensis by assessing their scenopoetic and bionomic patterns. We found high habitat and isotope niche overlaps between the two redfins, rendering niche partitioning a less plausible sole mechanism that drives their coexistence. By comparison, environment–trait relationships revealed differences in species–environment relationships, making habitat filtering and functional equivalence less likely alternatives. Based on P. skeltoni's high habitat niche overlap with other species, and its large isotope niche width, we inferred the likelihood of differential resource utilization at trophic level as an alternative mechanism that distinguished it from its congener. In comparison, its congener P. burchelli appeared to have a relatively small trophic niche, suggesting that its trophic niche was more conserved despite being the most abundant species. By contrast, S. capensis was distinguished by occupying a higher trophic position and by having a trophic niche that had a low probability of overlapping onto those of redfins. Therefore, trophic niche partitioning appeared to influence the coexistence between S. capensis and redfins. This study suggests that coexistence of these fishes appears to be promoted by their differences in niche adaptation mechanisms that are probably shaped by historic evolutionary and ecological processes.  相似文献   

20.
Niche conservatism and niche divergence are both important ecological mechanisms associated with promoting allopatric speciation across geographical barriers. However, the potential for variable responses in widely distributed organisms has not been fully investigated. For allopatric sister lineages, three patterns for the interaction of ecological niche preference and geographical barriers are possible: (i) niche conservatism at a physical barrier; (ii) niche divergence at a physical barrier; and (iii) niche divergence in the absence of a physical barrier. We test for the presence of these patterns in a transcontinentally distributed snake species, the common kingsnake ( Lampropeltis getula ), to determine the relative frequency of niche conservatism or divergence in a single species complex inhabiting multiple distinct ecoregions. We infer the phylogeographic structure of the kingsnake using a range-wide data set sampled for the mitochondrial gene cytochrome b . We use coalescent simulation methods to test for the presence of structured lineage formation vs. fragmentation of a widespread ancestor. Finally, we use statistical techniques for creating and evaluating ecological niche models to test for conservatism of ecological niche preferences. Significant geographical structure is present in the kingsnake, for which coalescent tests indicate structured population division. Surprisingly, we find evidence for all three patterns of conservatism and divergence. This suggests that ecological niche preferences may be labile on recent phylogenetic timescales, and that lineage formation in widespread species can result from an interaction between inertial tendencies of niche conservatism and natural selection on populations in ecologically divergent habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号