首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quantification of the biological diversity in environmental samples using high‐throughput DNA sequencing is hindered by the PCR bias caused by variable primer–template mismatches of the individual species. In some dietary studies, there is the added problem that samples are enriched with predator DNA, so often a predator‐specific blocking oligonucleotide is used to alleviate the problem. However, specific blocking oligonucleotides could coblock nontarget species to some degree. Here, we accurately estimate the extent of the PCR biases induced by universal and blocking primers on a mock community prepared with DNA of twelve species of terrestrial arthropods. We also compare universal and blocking primer biases with those induced by variable annealing temperature and number of PCR cycles. The results show that reads of all species were recovered after PCR enrichment at our control conditions (no blocking oligonucleotide, 45 °C annealing temperature and 40 cycles) and high‐throughput sequencing. They also show that the four factors considered biased the final proportions of the species to some degree. Among these factors, the number of primer–template mismatches of each species had a disproportionate effect (up to five orders of magnitude) on the amplification efficiency. In particular, the number of primer–template mismatches explained most of the variation (~3/4) in the amplification efficiency of the species. The effect of blocking oligonucleotide concentration on nontarget species relative abundance was also significant, but less important (below one order of magnitude). Considering the results reported here, the quantitative potential of the technique is limited, and only qualitative results (the species list) are reliable, at least when targeting the barcoding COI region.  相似文献   

2.
The polymerase chain reaction (PCR) is sensitive to mismatches between primer and template, and mismatches can lead to inefficient amplification of targeted regions of DNA template. In PCRs in which a degenerate primer pool is employed, each primer can behave differently. Therefore, inefficiencies due to different primer melting temperatures within a degenerate primer pool, in addition to mismatches between primer binding sites and primers, can lead to a distortion of the true relative abundance of targets in the original DNA pool. A theoretical analysis indicated that a combination of primer-template and primer-amplicon interactions during PCR cycles 3–12 is potentially responsible for this distortion. To test this hypothesis, we developed a novel amplification strategy, entitled “Polymerase-exonuclease (PEX) PCR”, in which primer-template interactions and primer-amplicon interactions are separated. The PEX PCR method substantially and significantly improved the evenness of recovery of sequences from a mock community of known composition, and allowed for amplification of templates with introduced mismatches near the 3’ end of the primer annealing sites. When the PEX PCR method was applied to genomic DNA extracted from complex environmental samples, a significant shift in the observed microbial community was detected. Furthermore, the PEX PCR method provides a mechanism to identify which primers in a primer pool are annealing to target gDNA. Primer utilization patterns revealed that at high annealing temperatures in the PEX PCR method, perfect match annealing predominates, while at lower annealing temperatures, primers with up to four mismatches with templates can contribute substantially to amplification. The PEX PCR method is simple to perform, is limited to PCR mixes and a single exonuclease step which can be performed without reaction cleanup, and is recommended for reactions in which degenerate primer pools are used or when mismatches between primers and template are possible.  相似文献   

3.
The polymerase chain reaction (PCR) is most effectively performed using a thermostable DNA polymerase such as that isolated from Thermus aquaticus. Since temperature and oligonucleotide length are known to control the specificity of oligonucleotide hybridization, we have investigated the effect of oligonucleotide length, base composition, and the annealing temperature on the specificity and efficiency of amplification by the PCR. Generally, the specificity of PCR is controlled by the length of the oligonucleotide and/or the temperature of annealing of the primer to the template. An empirical relationship between oligonucleotide length and ability to support amplification was determined. This relationship allows for the design of specific oligonucleotide primers. A model is proposed which helps explain the observed dependence of PCR on annealing temperature and length of the primer.  相似文献   

4.

Background

Identification of DNA sequence diversity is a powerful means for assessing the species present in environmental samples. The most common molecular strategies for estimating taxonomic composition depend upon PCR with universal primers that amplify an orthologous DNA region from a range of species. The diversity of sequences within a sample that can be detected by universal primers is often compromised by high concentrations of some DNA templates. If the DNA within the sample contains a small number of sequences in relatively high concentrations, then less concentrated sequences are often not amplified because the PCR favours the dominant DNA types. This is a particular problem in molecular diet studies, where predator DNA is often present in great excess of food-derived DNA.

Results

We have developed a strategy where a universal PCR simultaneously amplifies DNA from food items present in DNA purified from stomach samples, while the predator's own DNA is blocked from amplification by the addition of a modified predator-specific blocking primer. Three different types of modified primers were tested out; one annealing inhibiting primer overlapping with the 3' end of one of the universal primers, another annealing inhibiting primer also having an internal modification of five dI molecules making it a dual priming oligo, and a third elongation arrest primer located between the two universal primers. All blocking primers were modified with a C3 spacer. In artificial PCR mixtures, annealing inhibiting primers proved to be the most efficient ones and this method reduced predator amplicons to undetectable levels even when predator template was present in 1000 fold excess of the prey template. The prey template then showed strong PCR amplification where none was detectable without the addition of blocking primer. Our method was applied to identifying the winter food of one of the most abundant animals in the world, the Antarctic krill, Euphausia superba. Dietary item DNA was PCR amplified from a range of species in krill stomachs for which we had no prior sequence knowledge.

Conclusion

We present a simple, robust and cheap method that is easily adaptable to many situations where a rare DNA template is to be PCR amplified in the presence of a higher concentration template with identical PCR primer binding sites.  相似文献   

5.
A new Eucarya-specific 18S rDNA primer set was constructed and tested using denaturing gradient gel electrophoresis to analyze the genetic diversity of eukaryotic microorganisms in aquatic environments. All eukaryal lines of descent exhibited four or fewer nucleotide mismatches in the forward primer sequence, except for the Microspora line of descent. The reverse primer annealed to a more conserved region with fewer than two nucleotide mismatches. Genomic DNA from test organisms with different numbers of nucleotide mismatches were amplified to test primer specificity. Relatively low annealing temperatures allowed the amplification of sequences with up to four nucleotide mismatches while still maintaining specificity for the eukaryal domain. Denaturing gradient gel electrophoresis was used to separate similarly sized PCR products of environmental samples, and the obtained banding patterns were converted to a binary format for statistical comparisons. Cluster analysis of these patterns showed similar results to a cluster analysis based on environmental variables. This approach provides an analytical tool to study the population structure and molecular ecology of eukaryotic microbial communities inhabiting aquatic environments.  相似文献   

6.
目前,PCR引物设计主要依赖于软件对引物熔点的模拟计算,而PCR退火条件的优化需进行不同条件下的扩增实验。为开发一种可高效、精确评价引物和确定退火条件的方法,本研究采用高分辨率熔解曲线(high resolution melting,HRM)测定技术直接分析短链DNA的熔点,用于引物优劣性的评价,并为退火条件的优化提供参考。本文用HRM法直接测定了非完全互补的双链DNA以及DNA发卡结构的熔点,结果显示:(1)与完全互补的双链DNA相比,较为稳定的单碱基错配A?G、G?G和T?G的熔点只降低2℃ ~ 3℃,部分双碱基错配的熔点只降低4℃ ~ 6℃,单碱基突出熔点只降低4℃~ 5℃。因此,如果采用的退火温度不当,部分错配的非目的模板可能会被扩增。(2)即使发卡结构的茎干区只有6 bp,当其环区碱基少于10 nt时,其熔点也可达到60℃以上。此外,环区的长度对发卡熔点也有较大影响。根据本研究结果发现,引物设计时应尽量避免模板引物结合区同其邻近的30 nt碱基有6 bp以上的互补部分。综上所述,本研究证明HRM熔点法是一种高效评价引物及确定退火温度的方法。  相似文献   

7.
Summary DNA amplification fingerprinting (DAF) is the enzymatic amplification of arbitrary stretches of DNA which is directed by very short oligonucleotide primers of arbitrary sequence to generate complex but characteristic DNA fingerprints. To determine the contribution of primer sequence and length to the fingerprint pattern and the effect of primer-template mismatches, DNA was amplified from several sources using sequence-related primers. Primers of varying length, constructed by removing nucleotides from the 5 terminus, produced unique patterns only when primers were 8 nucleotides or fewer in length. Larger primers produced either identical or related fingerprints, depending on the sequence. Single base changes within this first 8-nucleotide region of the primer significantly altered the spectrum of amplification products, especially at the 3 terminus. Increasing annealing temperatures from 15° to 70° C during amplification did not shift the boundary of the 8-nucleotide region, but reduced the amplification ability of shorter primers. Our observations define a 3-terminal oligonucleotide domain that is at least 8 bases in length and largely conditions amplification, but that is modulated by sequences beyond it. Our results indicate that only a fraction of template annealing sites are efficiently amplified during DAF. A model is proposed in which a single primer preferentially amplifies certain products due to competition for annealing sites between primer and terminal hairpin loop structures of the template.  相似文献   

8.
云锦杜鹃ISSR扩增条件的优化   总被引:6,自引:0,他引:6       下载免费PDF全文
以云锦杜鹃基因组DNA为研究对象,对影响ISSR-PCR扩增效果的一些因素,包括镁离子浓度、dNTP浓度、模板DNA含量、TaqDNA聚合酶量、BSA浓度、引物用量以及退火温度等进行筛选和优化,建立了稳定、可重复的最佳反应体系:10μLPCR反应体积中,1×Taq酶配套缓冲液(10mmol/LTris.HClpH9.0,50mmol/LKCl,0.1%TritonX-100),1.5mmol/LMgCl2,0.15mmol/LdNTP,0.45UTaqDNA聚合酶,2mg/mLBSA,12pmol引物,16ng模板DNA。利用所建立的优化反应体系从100个ISSR引物中共筛选出12个稳定性好、重复性高的引物,对5个居群共100个云锦杜鹃个体的DNA进行扩增,检测到170个位点,其中多态位点150个,多态位点百分率88.24%,5个居群的多态位点百分率平均为48.23%。云锦杜鹃ISSR反应体系的建立为利用ISSR分子标记技术研究云锦杜鹃的遗传多样性奠定了良好的基础。  相似文献   

9.
PCR has been extensively used for amplification of DNA sequences. We conducted a study to obtain the best amplification conditions for cytochrome b (Cyt b), cytochrome c oxidase I (COI) and 12S rRNA (12S) gene fragments of Malayan gaur mtDNA. DNA from seven Malayan gaur samples were extracted for PCR amplification. Various trials and combinations were tested to determine the best conditions of PCR mixture and profile to obtain the best PCR products for sequencing purposes. Four selected target factors for enhancing PCR, annealing temperature, concentration of primer pairs, amount of Taq polymerase, and PCR cycle duration, were optimized by keeping the amount of DNA template (50 ng/μL) and concentration of PCR buffer (1X), MgCl(2) (2.5 mM) and dNTP mixture (200 μM each) constant. All genes were successfully amplified, giving the correct fragment lengths, as assigned for both forward and reverse primers. The optimal conditions were determined to be: 0.1 μM primers for Cyt b and COI, 0.3 μM primers for 12S, 1 U Taq polymerase for all genes, 30 s of both denaturation and annealing cycles for Cyt b, 1 min of both stages for 12S and COI and annealing temperature of 58.4 ° C for Cyt b, 56.1 ° C for 12S and 51.3 ° C for COI. PCR products obtained under these conditions produced excellent DNA sequences.  相似文献   

10.
Synthetic DNA oligonucleotides can serve as efficient primers for DNA synthesis even when there is a single base mismatch between the primers and the corresponding DNA template. However, when the primer-template annealing is carried out with a mixture of primers and at low stringency the binding of a perfectly matched primer is strongly favored relative to a primer differing by a single base. This primer competition is observed over a range of oligonucleotide sizes from twelve to sixteen bases and with a variety of base mismatches. When coupled with the polymerase chain reaction, for the amplification of specific DNA sequences, competitive oligonucleotide priming provides a simple general strategy for the detection of single DNA base differences.  相似文献   

11.
We introduce quantitative polymerase chain reaction (qPCR) primers and multiplex end-point PCR primers modified by the addition of a single ortho-Twisted Intercalating Nucleic Acid (o-TINA) molecule at the 5'-end. In qPCR, the 5'-o-TINA modified primers allow for a qPCR efficiency of 100% at significantly stressed reaction conditions, increasing the robustness of qPCR assays compared to unmodified primers. In samples spiked with genomic DNA, 5'-o-TINA modified primers improve the robustness by increased sensitivity and specificity compared to unmodified DNA primers. In unspiked samples, replacement of unmodified DNA primers with 5'-o-TINA modified primers permits an increased qPCR stringency. Compared to unmodified DNA primers, this allows for a qPCR efficiency of 100% at lowered primer concentrations and at increased annealing temperatures with unaltered cross-reactivity for primers with single nucleobase mismatches. In a previously published octaplex end-point PCR targeting diarrheagenic Escherichia coli, application of 5'-o-TINA modified primers allows for a further reduction (>45% or approximately one hour) in overall PCR program length, while sustaining the amplification and analytical sensitivity for all targets in crude bacterial lysates. For all crude bacterial lysates, 5'-o-TINA modified primers permit a substantial increase in PCR stringency in terms of lower primer concentrations and higher annealing temperatures for all eight targets. Additionally, crude bacterial lysates spiked with human genomic DNA show lesser formation of non-target amplicons implying increased robustness. Thus, 5'-o-TINA modified primers are advantageous in PCR assays, where one or more primer pairs are required to perform at stressed reaction conditions.  相似文献   

12.
《Epigenetics》2013,8(4):231-234
Many protocols in methylation studies utilize one primer set to generate a PCR product from bisulfite modified template regardless of its methylation status (methylation independent amplification MIP). However, proportional amplification of methylated and unmethylated alleles is hard to achieve due to PCR bias favoring amplification of unmethylated relatively GC poor sequence. Two primer design systems have been proposed to overcome PCR bias in methylation independent amplifications. The first advises against including any CpG dinucleoteides into the primer sequence (CpG-free primers) and the second, recently published by us, is based on inclusion of a limited number of CpG sites into the primer sequence. Here we used the Methylation Sensitive High Resolution Melting (MS-HRM) technology to investigate the ability of primers designed according to both of the above mentioned primer design systems to proportionally amplify methylated and unmethylated templates. Ten “CpG-free” primer pairs and twenty primers containing limited number of CpGs were tested. In reconstruction experiments the “CpG-free” primers showed primer specific sensitivity and allowed us to detect methylation levels in the range from 5 to 50%. Whereas while using primers containing limited number of CpG sites we were able to consistently detect 1–0.1% methylation levels and effectively control PCR amplification bias. In conclusion, the primers with limited number of CpG sites are able to effectively reverse PCR bias and therefore detect methylated templates with significantly higher sensitivity than CpG free primers.  相似文献   

13.
采用加玻璃珠混合振荡1800r/min15分钟并95℃水浴加热10~20分钟的物理破壁方法由真菌菌丝直接提取DNA用于PCR扩增,具有所提DNA可扩增性好、提取方法简便易行、便宜等优点。相同引物或不同引物的二次扩增产物均好于一次扩增,且以引物B1和B3扩增后再用引物Fg1和Fg2扩增的效果最好。此法可广泛应用于大量样品的PCR和RAPD扩增实验。  相似文献   

14.
We describe a new application of megaprimer polymerase chain reaction (PCR) for constructing a tandemly repeated DNA sequence using the drought responsive element (DRE) from Arabidopsis thaliana as an example. The key feature in the procedure was PCR primers with partial complementarity but differing melting temperatures (T(m)). The reverse primer had a higher T(m), a 3' end complementary to the DRE sequence and a 5' region complementary to the forward primer. The initial cycles of the PCR were conducted at a lower primer annealing temperature to generate products that served as megaprimers in the later cycles conducted at a higher temperature to prevent annealing of the forward primer. The region of overlap between the megaprimers was extended for generating products with a variable copy number (one to four copies) of tandem DRE sequence repeats (71?bp). The PCR product with four tandem repeats (4× DRE) was used as a template to generate tandem repeats with higher copies (copy number large than four) or demonstrated to bind DRE-binding protein in an yeast one-hybrid assay using promotorless reporter genes (HIS and lacZ). This PCR protocol has numerous applications for generating DNA fragments of repeated sequences.  相似文献   

15.
In the summer of 1999, typical yellows-type symptoms were observed on garlic and green onion plants in a number of gardens and plots around Edmonton, Alberta, Canada. DNA was extracted from leaf tissues of evidently healthy and infected plants. DNA amplifications were conducted on these samples, using two primer pairs, R16F2n/R2 and R16(1)F1/R1, derived from phytoplasma rDNA sequences. DNA samples of aster yellows (AY), lime witches'-broom (LWB) and potato witches'-broom (PWB) phytoplasmas served as controls and were used to determine group relatedness. In a direct polymerase chain reaction (PCR) assay, DNA amplification with universal primer pair R16F2n/R2 gave the expected amplified products of 1.2 kb. Dilution (1/40) of each of the latter products were used as template and nested with specific primer pair R16(1)F1/R1. An expected PCR product of 1.1 kb was obtained from each phytoplasma-infected garlic and green onion samples, LWB and AY phytoplasmas but not from PWB phytoplasma. An aliquot from each amplification product (1.2 kb) with universal primers was subjected to PCR-based restriction fragment length polymorphism (RFLP) to identify phytoplasma isolates, using four restriction endonucleases (AluI, KpnI, MseI and RsaI). DNA amplification with specific primer pair R16(1)F1/R1 and RFLP analysis indicated the presence of AY phytoplasma in the infected garlic and green onion samples. These results suggest that AY phytoplasma in garlic and green onion samples belong to the subgroup 16Sr1-A.  相似文献   

16.
To overcome the shortcomings of universal 16S rRNA gene primers 8F and 907R when studying the diversity of complex microbial communities, the 3' termini of both primers were replaced with inosine. A comparison of the clone libraries derived using both primer sets showed seven bacterial phyla amplified by the altered primer set (8F-I/907R-I) whereas the original set amplified sequences belonging almost exclusively to Proteobacteria (95.8%). Sequences belonging to Firmicutes (42.6%) and Thermotogae (9.3%) were more abundant in a library obtained by using 8F-I/907R-I at a PCR annealing temperature of 54 degrees C, while Proteobacteria sequences were more frequent (62.7%) in a library obtained at 50 degrees C, somewhat resembling the result obtained using the original primer set. The increased diversity revealed by using primers 8F-I/907R-I confirms the usefulness of primers with inosine at the 3' termini in studying the microbial diversity of environmental samples.  相似文献   

17.
采用正交设计L9(34)对影响葡萄ISSR-PCR反应体系的4个因素(dNTP、TaqDNA聚合酶、引物、模板DNA)在3个浓度水平上进行试验,并通过直观分析初步确定其反应体系;在此基础上,通过单因素试验探讨了dNTP、TaqDNA聚合酶、引物、模板DNA、退火温度及循环次数等因素或条件对葡萄ISSR-PCR扩增结果的影响,确定最佳反应水平。最终建立了葡萄ISSR-PCR扩增的最佳反应体系:在25μL的反应体系中,dNTP浓度0.2 mmol/L,TaqDNA聚合酶的用量0.5 U,引物浓度0.4mmol/L,DNA模板用量40 ng。反应程序:94℃预变性5 min;94℃变性1 min,52℃退火1 min,72℃延伸1 min 30 s,40次循环;最后72℃延伸10 min,10℃保存。  相似文献   

18.
We investigated the effects of internal primer-template mismatches on the efficiency of PCR amplification using the 16S rRNA gene as the model template DNA. We observed that the presence of a single mismatch in the second half of the primer extension sequence can result in an underestimation of up to 1,000-fold of the gene copy number, depending on the primer and position of the mismatch.  相似文献   

19.
Proofreading polymerases have 3′ to 5′ exonuclease activity that allows the excision and correction of mis-incorporated bases during DNA replication. In a previous study, we demonstrated that in addition to correcting substitution errors and lowering the error rate of DNA amplification, proofreading polymerases can also edit PCR primers to match template sequences. Primer editing is a feature that can be advantageous in certain experimental contexts, such as amplicon-based microbiome profiling. Here we develop a set of synthetic DNA standards to report on primer editing activity and use these standards to dissect this phenomenon. The primer editing standards allow next-generation sequencing-based enzymological measurements, reveal the extent of editing, and allow the comparison of different polymerases and cycling conditions. We demonstrate that proofreading polymerases edit PCR primers in a concentration-dependent manner, and we examine whether primer editing exhibits any sequence specificity. In addition, we use these standards to show that primer editing is tunable through the incorporation of phosphorothioate linkages. Finally, we demonstrate the ability of primer editing to robustly rescue the drop-out of taxa with 16S rRNA gene-targeting primer mismatches using mock communities and human skin microbiome samples.  相似文献   

20.
Annealing control primer system for improving specificity of PCR amplification   总被引:16,自引:0,他引:16  
Hwang IT  Kim YJ  Kim SH  Kwak CI  Gu YY  Chun JY 《BioTechniques》2003,35(6):1180-1184
A novel primer designed to improve the specificity of PCR amplification, called the annealing control primer (ACP), comprises a tripartite structure with a polydeoxyinosine [poly(dI)] linker between the 3' end target core sequence and the 5' end nontarget universal sequence. We show that this ACP linker prevents annealing of the 5' end nontarget sequence to the template and facilitates primer hybridization at the 3' end to the target sequence at specific temperatures, resulting in a dramatic improvement of annealing specificity. The effect of this linker is demonstrated by the incorporation of ACP sequences as primers during the amplification of target nucleotide sequence and as hybridization probes in the genotyping of single nucleotide polymorphisms. This is the first report to show that a poly(dI) linker between two different sequences of ACP forms a bubble-like structure and disrupts or destabilizes DNA duplex formation at certain annealing temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号