首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostaglandin E(2) (PGE(2)), a major cyclooxygenase (COX-2) metabolite, plays important roles in tumor biology and its functions are mediated through one or more of its receptors EP1, EP2, EP3, and EP4. We have shown that the matrix glycoprotein fibronectin stimulates lung carcinoma cell proliferation via induction of COX-2 expression with subsequent PGE(2) protein biosynthesis. Ligands of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibited this effect and induced cellular apoptosis. Here, we explore the role of the PGE(2) receptor EP2 in this process and whether the inhibition observed with PPARgamma ligands is related to effects on this receptor. We found that human non-small cell lung carcinoma cell lines (H1838 and H2106) express EP2 receptors, and that the inhibition of cell growth by PPARgamma ligands (GW1929, PGJ2, ciglitazone, troglitazone, and rosiglitazone [also known as BRL49653]) was associated with a significant decrease in EP2 mRNA and protein levels. The inhibitory effects of BRL49653 and ciglitazone, but not PGJ2, were reversed by a specific PPARgamma antagonist GW9662, suggesting the involvement of PPARgamma-dependent and -independent mechanisms. PPARgamma ligand treatment was associated with phosphorylation of extracellular regulated kinase (Erk), and inhibition of EP2 receptor expression by PPARgamma ligands was prevented by PD98095, an inhibitor of the MEK-1/Erk pathway. Butaprost, an EP2 agonist, like exogenous PGE(2) (dmPGE(2)), increased lung carcinoma cell growth, however, GW1929 and troglitazone blocked their effects. Our studies reveal a novel role for EP2 in mediating the proliferative effects of PGE(2) on lung carcinoma cells. PPARgamma ligands inhibit human lung carcinoma cell growth by decreasing the expression of EP2 receptors through Erk signaling and PPARgamma-dependent and -independent pathways.  相似文献   

2.
3.
Synthetic high affinity peroxisome proliferator-activated receptor (PPAR) agonists are known, but biologic ligands are of low affinity. Oxidized low density lipoprotein (oxLDL) is inflammatory and signals through PPARs. We showed, by phospholipase A(1) digestion, that PPARgamma agonists in oxLDL arise from the small pool of alkyl phosphatidylcholines in LDL. We identified an abundant oxidatively fragmented alkyl phospholipid in oxLDL, hexadecyl azelaoyl phosphatidylcholine (azPC), as a high affinity ligand and agonist for PPARgamma. [(3)H]azPC bound recombinant PPARgamma with an affinity (K(d)((app)) approximately 40 nm) that was equivalent to rosiglitazone (BRL49653), and competition with rosiglitazone showed that binding occurred in the ligand-binding pocket. azPC induced PPRE reporter gene expression, as did rosiglitazone, with a half-maximal effect at 100 nm. Overexpression of PPARalpha or PPARgamma revealed that azPC was a specific PPARgamma agonist. The scavenger receptor CD36 is encoded by a PPRE-responsive gene, and azPC enhanced expression of CD36 in primary human monocytes. We found that anti-CD36 inhibited azPC uptake, and it inhibited PPRE reporter induction. Results with a small molecule phospholipid flippase mimetic suggest azPC acts intracellularly and that cellular azPC accumulation was efficient. Thus, certain alkyl phospholipid oxidation products in oxLDL are specific, high affinity extracellular ligands and agonists for PPARgamma that induce PPAR-responsive genes.  相似文献   

4.
Activation of the nuclear hormone peroxisome proliferator-activated receptor gamma (PPARgamma) inhibits cell growth and promotes differentiation in a broad spectrum of epithelial derived tumor cell lines. Here we utilized microarray technology to identify PPARgamma gene targets in intestinal epithelial cells. For each gene, the induction or repression was seen with two structurally distinct PPARgamma agonists, and the change in expression could be blocked by co-treatment with a specific PPARgamma antagonist. A majority of the genes could be regulated independently by a retinoid X receptor specific agonist. Genes implicated in lipid transport or storage (adipophilin and liver fatty acid-binding protein) were also activated by agonists of PPAR subtypes alpha and/or delta. In contrast, PPARgamma-selective targets included genes linked to growth regulatory pathways (regenerating gene IA), colon epithelial cell maturation (GOB-4 and keratin 20), and immune modulation (neutrophil-gelatinase-associated lipocalin). Additionally, three different genes of the carcinoembryonic antigen family were induced by PPARgamma. Cultured cells treated with PPARgamma ligands demonstrated an increase in Ca(2+)-independent, carcinoembryonic antigen-dependent homotypic aggregation, suggesting a potential role for PPARgamma in regulating intercellular adhesion. Collectively, these results will help define the mechanisms by which PPARgamma regulates intestinal epithelial cell biology.  相似文献   

5.
6.
Cyclooxygenase-2 (COX-2) expression is up-regulated in colorectal cancer tissue. Peroxisome proliferator-activated receptors (PPARs) are expressed in human colorectal tissue and activation of PPARs can alter COX-2 expression. In macrophages, activation of PPARs down-regulates COX-2 expression. We examined the effect of PPARalpha and PPARgamma ligands on untreated and TNF-alpha-induced COX-2 expression in the human colorectal epithelial cell line HT-29. The expression of PPARalpha and PPARgamma was confirmed in these cells. TNF-alpha, an inflammatory cytokine, increased COX-2 expression via the NFkappaB pathway. In the absence of TNF-alpha, WY14643 (PPARalpha activator) caused an increase, while BRL49653 (PPARgamma activator) did not alter COX-2 expression. When HT-29 cells were incubated with TNF-alpha and WY14643, a further increase in COX-2 expression was detected. Incubation with TNF-alpha and BRL49653 caused an additional twofold increase in COX-2 expression. Our results suggest that both PPARalpha signaling and TNF-alpha signaling increase COX-2 expression by independent pathways, while PPARgamma stimulates COX-2 expression by up-regulation of the TNF-alpha pathway.  相似文献   

7.
To characterize the specificity of synthetic compounds for peroxisome proliferator-activated receptors (PPARs), three stable cell lines expressing the ligand binding domain (LBD) of human PPARalpha, PPARdelta, or PPARgamma fused to the yeast GAL4 DNA binding domain (DBD) were developed. These reporter cell lines were generated by a two-step transfection procedure. First, a stable cell line, HG5LN, expressing the reporter gene was developed. These cells were then transfected with the different receptor genes. With the help of the three PPAR reporter cell lines, we assessed the selectivity and activity of PPAR agonists GW7647, WY-14-643, L-165041, GW501516, BRL49653, ciglitazone, and pioglitazone. GW7647, L-165041, and BRL49653 were the most potent and selective agonists for hPPARalpha, hPPARdelta, and hPPARgamma, respectively. Two PPAR antagonists, GW9662 and BADGE, were also tested. GW9662 was a selective PPARgamma antagonist, whereas BADGE was a low-affinity PPAR ligand. Furthermore, GW9662 was a full antagonist on PPARgamma and PPARdelta, whereas it showed partial agonism on PPARalpha. We conclude that our stable models allow specific and sensitive measurement of PPAR ligand activities and are a high-throughput, cell-based screening tool for identifying and characterizing PPAR ligands.  相似文献   

8.
9.
Sottile V  Seuwen K 《FEBS letters》2000,475(3):201-204
Bone morphogenetic proteins (BMPs) were discovered as potent bone-inducing molecules. Their effect on adipogenic differentiation is not well understood, both stimulation and inhibition of the process have been described. We show here that BMP-2 strongly stimulates adipogenic differentiation of murine 3T3-L1 preadipocytes if applied together with an agonist of peroxisome proliferator-activated receptor gamma (PPARgamma). On its own, BMP-2 (500 ng/ml) did not stimulate adipogenesis as quantified by flow cytometry with the lipophilic dye Nile Red. However, the protein strongly potentiated adipogenesis stimulated by the thiazolidinedione BRL 49653 as well as glycerol-3-phosphate dehydrogenase activity and induction of mRNAs for the adipogenic markers PPARgamma and adipsin. We confirmed the synergistic action of BMP-2 and BRL 49653 with primary cultures of rat bone marrow stromal cells. Our data demonstrate that BMP-2 can act as a potent adipogenic agent if presented together with activators of PPARgamma.  相似文献   

10.
Peroxisome proliferator-activated receptor gamma (PPARgamma) might not be permissive to ligand activation in prostate cancer cells. Association of PPARgamma with repressing factors or posttranslational modifications in PPARgamma protein could explain the lack of effect of PPARgamma ligands in a recent randomized clinical trial. Using cells and prostate cancer xenograft mouse models, we demonstrate in this study that a combination treatment using the PPARgamma agonist pioglitazone and the histone deacetylase inhibitor valproic acid is more efficient at inhibiting prostate tumor growth than each individual therapy. We show that the combination treatment impairs the bone-invasive potential of prostate cancer cells in mice. In addition, we demonstrate that expression of E-cadherin, a protein involved in the control of cell migration and invasion, is highly up-regulated in the presence of valproic acid and pioglitazone. We show that E-cadherin expression responds only to the combination treatment and not to single PPARgamma agonists, defining a new class of PPARgamma target genes. These results open up new therapeutic perspectives in the treatment of prostate cancer.  相似文献   

11.
Adipophilin is a sensitive marker for lipid loading in human blood monocytes.   总被引:18,自引:0,他引:18  
Adipophilin, a marker of lipid accumulation initially described in adipocytes, was recently shown to be induced in macrophage foam cells. We found that even freshly isolated blood monocytes express adipophilin and that the amount of adipophilin protein is variable in monocytes from different healthy individuals. However, the physiological expression of adipophilin does not correlate with the levels of free fatty acids, cholesterylesters or free cholesterol. Enzymatically modified low-density lipoprotein (E-LDL) induces rapid foam cell formation in monocytes and upregulates adipophilin mRNA and protein within 2 h of incubation. This rapid induction of adipophilin is accompanied by a significant increase of free fatty acids in monocytes incubated with E-LDL. Adipophilin facilitates the uptake of free fatty acids, and here we demonstrate that free fatty acids increase is related to the early upregulation of adipophilin expression in blood monocytes. Fatty acids are ligands for peroxisome proliferator-activated receptor-gamma (PPARgamma), and the upregulation of adipophilin mRNA by PPARgamma agonists like 15d-PGJ(2) and ciglitazone indicates that PPARgamma may mediate the induction of adipophilin expression in human blood monocytes.  相似文献   

12.
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-regulated nuclear receptor superfamily member. Liganded PPARgamma exerts diverse biological effects, promoting adipocyte differentiation, inhibiting tumor cellular proliferation, and regulating monocyte/macrophage and anti-inflammatory activities in vitro. In vivo studies with PPARgamma ligands showed enhancement of tumor growth, raising the possibility that reduced immune function and tumor surveillance may outweigh the direct inhibitory effects of PPARgamma ligands on cellular proliferation. Recent findings that PPARgamma ligands convey PPARgamma-independent activities through IkappaB kinase (IKK) raises important questions about the specific mechanisms through which PPARgamma ligands inhibit cellular proliferation. We investigated the mechanisms regulating the antiproliferative effect of PPARgamma. Herein PPARgamma, liganded by either natural (15d-PGJ(2) and PGD(2)) or synthetic ligands (BRL49653 and troglitazone), selectively inhibited expression of the cyclin D1 gene. The inhibition of S-phase entry and activity of the cyclin D1-dependent serine-threonine kinase (Cdk) by 15d-PGJ(2) was not observed in PPARgamma-deficient cells. Cyclin D1 overexpression reversed the S-phase inhibition by 15d-PGJ(2). Cyclin D1 repression was independent of IKK, as prostaglandins (PGs) which bound PPARgamma but lacked the IKK interactive cyclopentone ring carbonyl group repressed cyclin D1. Cyclin D1 repression by PPARgamma involved competition for limiting abundance of p300, directed through a c-Fos binding site of the cyclin D1 promoter. 15d-PGJ(2) enhanced recruitment of p300 to PPARgamma but reduced binding to c-Fos. The identification of distinct pathways through which eicosanoids regulate anti-inflammatory and antiproliferative effects may improve the utility of COX2 inhibitors.  相似文献   

13.
The liver X receptor (LXR) was demonstrated to play a key role in cholesterol metabolism in liver, intestine and macrophage. However, its function on the regulation of preadipocyte differentiation remains unclear since contradictory results were reported. The objective of the present study was to unravel the functionality of LXR in human preadipocytes. We show that the LXR agonist T0901317 strongly stimulated the expression of SREBP-1c and the lipogenic enzymes ACC-1, FAS and SCD-1 in both the human preadipose cell line Chub-S7 as well as human primary stromal vascular fraction (SVF) cells. The effects on gene expression were associated with the stimulation of de novo lipogenesis in both cell models, resulting in the induction of lipid accumulation. In contrast with a PPARgamma agonist (BRL49653), T0901317 enhanced only slightly the expression of PPARgamma dependent genes (PPARgamma, aP2 and adiponectin) in Chub-S7 cells and failed to change their expression in human SVF cells. These results show that LXR stimulated preferentially triglyceride accumulation in human preadipocytes via the induction of de novo lipogenesis, rather than activating the differentiation process through PPARgamma activation.  相似文献   

14.
We studied the effect of peroxisome proliferator-activated receptor gamma (PPARgamma) activation on thromboxane A(2)(TXA(2)) and prostaglandin E(2)(PGE(2)) production in monocyte/macrophage cell lines. In present experiment, we used human peripheral blood monocyte (PBMC), monocyte-cell line THP-1 and mouse macrophage-like cell line RAW264.7. The expression of PPARgamma is reported in PBMC and THP-1. Synthetic PPARgamma ligands (troglitazone or BRL49653) inhibited TXA(2) production and enhanced PGE(2) production of PBMC and THP-1. When treated with 0.5-10 microM of troglitazone, there were no significant changes of TXA(2) and PGE(2) production of RAW264.7 cells, which express very low levels of PPARgamma. When RAW264.7 cells was transfected with PPARgamma expression plasmid and treated with troglitazone, PPARgamma was activated in a dose-dependent manner. In PPARgamma-transfected RAW264.7, TXA(2) production was decreased and PGE(2) production was increased by troglitazone treatment. But it needs high concentration of troglitazone (10 microM) for increasing PGE(2) production. These results suggest that PPARgamma may have negative effect on TXA(2) production, and also have slightly positive effect on PGE(2) production of macrophage.  相似文献   

15.
Helicobacter pylori colonization leads to epithelial cell hyperproliferation within inflamed mucosa, but levels of apoptosis vary, suggesting that imbalances between rates of cell production and loss may contribute to differences in gastric cancer risk among infected populations. Peroxisome proliferator-activated receptor gamma (PPARgamma) regulates inflammatory and growth responses of intestinal epithelial cells. We determined whether activation of PPARgamma modified H. pylori-induced apoptosis in gastric epithelial cells. PPARgamma was expressed and functionally active in gastric epithelial cell lines sensitive to H. pylori-induced apoptosis. PPARgamma ligands 15d-PGJ(2) and BRL-49653 significantly attenuated H. pylomicronri-induced apoptosis, effects that could be reversed by co-treatment with a specific PPARgamma antagonist. Cyclopentanone prostaglandins that do not bind and activate PPARgamma had no effects on H. pylori-induced apoptosis. The ability of H. pylori to activate nuclear factor (NF)-kappaB and increase levels of the NF-kappaB target IL-8 was blocked by co-treatment with PPARgamma agonists, and direct inhibition of NF-kappaB also abolished H. pylori-stimulated apoptosis. These results suggest that activation of the PPARgamma pathway attenuates the ability of H. pylori to induce NF-kappaB-mediated apoptosis in gastric epithelial cells. Because PPARgamma regulates a multitude of host responses, activation of this receptor may contribute to varying levels of cellular turnover as well as the diverse pathologic outcomes associated with chronic H. pylori colonization.  相似文献   

16.
17.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands seem to induce anticancer effects on prostate cancer cells, but the mechanism is not clear. The effect of PPARgamma ligands omega-6 fatty acids and ciglitazone (2-15 microM)--on proliferation, and apoptosis of LNCaP, PC-3, DU145, CA-K and BPH-K cells was studied. PPARgamma ligands led to: (1) reduction of proliferation (20-50%) of all the studied cell lines, (2) stimulation of differentiation of prostate cancer cells through an increased expression (1.5-3-fold: LNCaP, DU145, BPH-K) or reexpression (PC-3, CA-K) of E-cadherin with parallel inhibition of N-cadherin expression (PC-3, CA-K) and (3) down-regulation (1-2-fold) of beta-catenin and c-myc expression. The selective PPARgamma antagonist GW9662 abolished the effect of those ligands on prostate cancer cells. These results suggest that inhibition of beta-catenin and in effect c-myc expression through activation of PPARgamma may help prostate cancer cells to restore several characteristics of normal prostate cells phenotype.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号