首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The events at the earliest stage of adipocyte differentiation are yet to be fully elucidated. Previously, we cloned the genes that are induced at the beginning of the differentiation of mouse 3T3-L1 preadipocyte cells. We found that the gene expression of regulators of G protein signaling-2 (RGS2) rapidly increased after the addition of inducers and decreased at 3-12 h. The expression pattern of RGS2 mRNAs differed among growth-arrested and proliferating 3T3-L1 cells and NIH-3T3 cells, indicating a specificity for adipogenesis. Here we report that the ectopic expression of RGS2 using a retroviral system in mouse NIH-3T3 cells promotes adipogenesis only in the presence of BRL49653, which is a ligand for the peroxisome proliferator-activated receptor gamma (PPARgamma). These results strongly suggest that RGS2 play a crucial role in the program of adipocyte differentiation and may contribute to the function of PPARgamma.  相似文献   

2.
3.
4.
Mutations dislocate caspase-12 from the endoplasmatic reticulum to the cytosol   总被引:10,自引:0,他引:10  
Hoppe V  Hoppe J 《FEBS letters》2004,577(1-2):277-283
  相似文献   

5.
6.
7.
Bhattacharya I  Ullrich A 《FEBS letters》2006,580(24):5765-5771
In adipogenesis, growth factors play a crucial role. Using serum depleted condition, we studied the causal role of endothelin-1 (ET-1) and epidermal growth factor (EGF), separately or together, in adipocyte differentiation of 3T3-L1 cells. ET-1 stimulation caused an anti-adipogenic response and this effect was potentiated upon treatment with EGF. Co-treatment with EGF and ET-1 blocked the expression of C/EBPalpha and PPARgamma, the adipogenic markers. The inhibition of adipogenesis was preceded by a biphasic (early and late) attenuation of Akt phosphorylation. We suggest that treatment with ET-1 and EGF together induce a more potent anti-adipogenic response, involving increased Erk1/2 phosphorylation and biphasic attenuation of Akt phosphorylation.  相似文献   

8.
9.
We have investigated the molecular mechanism whereby 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] inhibits adipogenesis in vitro. 1,25(OH)2D3 blocks 3T3-L1 cell differentiation into adipocytes in a dose-dependent manner; however, the inhibition is ineffective 24-48 h after the differentiation is initiated, suggesting that 1,25(OH)2D3 inhibits only the early events of the adipogenic program. Treatment of 3T3-L1 cells with 1,25(OH)2D3 does not block the mitotic clonal expansion or C/EBPbeta induction; rather, 1,25(OH)2D3 blocks the expression of C/EBPalpha, peroxisome proliferator-activated receptor-gamma (PPARgamma), sterol regulatory element-binding protein-1, and other downstream adipocyte markers. The inhibition by 1,25(OH)2D3 is reversible, since removal of 1,25(OH)2D3 from the medium restores the adipogenic process with only a temporal delay. Interestingly, although the vitamin D receptor (VDR) protein is barely detectable in 3T3-L1 preadipocytes, its levels are dramatically increased during the early phase of adipogenesis, peaking at 4-8 h and subsiding afterward throughout the rest of the differentiation program; 1,25(OH)2D3 treatment appears to stabilize the VDR protein levels. Consistently, adenovirus-mediated overexpression of human (h) VDR in 3T3-L1 cells completely blocks the adipogenic program, confirming that VDR is inhibitory. Inhibition of adipocyte differentiation by 1,25(OH)2D3 is ameliorated by troglitazone, a specific PPARgamma antagonist; conversely, hVDR partially suppresses the transacting activity of PPARgamma but not of C/EBPbeta or C/EBPalpha. Moreover, 1,25(OH)2D3 markedly suppresses C/EBPalpha and PPARgamma mRNA levels in mouse epididymal fat tissue culture. Taken together, these data indicate that the blockade of 3T3-L1 cell differentiation by 1,25(OH)2D3 occurs at the postclonal expansion stages and involves direct suppression of C/EBPalpha and PPARgamma upregulation, antagonization of PPARgamma activity, and stabilization of the inhibitory VDR protein.  相似文献   

10.
The liver X receptor (LXR) was demonstrated to play a key role in cholesterol metabolism in liver, intestine and macrophage. However, its function on the regulation of preadipocyte differentiation remains unclear since contradictory results were reported. The objective of the present study was to unravel the functionality of LXR in human preadipocytes. We show that the LXR agonist T0901317 strongly stimulated the expression of SREBP-1c and the lipogenic enzymes ACC-1, FAS and SCD-1 in both the human preadipose cell line Chub-S7 as well as human primary stromal vascular fraction (SVF) cells. The effects on gene expression were associated with the stimulation of de novo lipogenesis in both cell models, resulting in the induction of lipid accumulation. In contrast with a PPARgamma agonist (BRL49653), T0901317 enhanced only slightly the expression of PPARgamma dependent genes (PPARgamma, aP2 and adiponectin) in Chub-S7 cells and failed to change their expression in human SVF cells. These results show that LXR stimulated preferentially triglyceride accumulation in human preadipocytes via the induction of de novo lipogenesis, rather than activating the differentiation process through PPARgamma activation.  相似文献   

11.
12.
In this study, we show that expression of FoxC2 blocks the capacity of 3T3-L1 preadipocytes to undergo adipogenesis in the presence of dexamethasone, isobutylmethylxanthine, and insulin. This block is characterized by an extensive decrease in the expression of proteins associated with the function of the mature fat cell, most notably C/EBPalpha, adiponectin, perilipin, and the adipose-specific fatty acid-binding protein, FABP4/aP2. Since the expression of these proteins lies downstream of PPARgamma, we overexpressed PPARgamma in Swiss mouse fibroblasts to promote adipocyte differentiation. We show that FoxC2 blocks the ability of PPARgamma to induce adipogenic gene expression in response to exposure of the cells to dexamethasone, isobutylmethylxanthine, insulin, and a PPARgamma ligand. Interestingly, the expression of aP2 escapes the inhibitory action of FoxC2 under conditions that promote maximum PPARgamma activity. In contrast, FoxC2 inhibits the expression of C/EBPalpha, perilipin, and adiponectin even in the presence of potent PPARgamma ligands. Finally, we show that FoxC2 does not affect the ability of PPARgamma to bind to or transactivate from a PPARgamma response element. These data suggest that FoxC2 blocks adipogenesis by inhibiting the capacity of PPARgamma to promote the expression of a subset of adipogenic genes.  相似文献   

13.
14.
15.
16.
17.
Pasteurella multocida toxin (PMT) is a potent mitogen and a specific activator of Gq-dependent signalling pathways. PMT impairs osteoblast differentiation and causes bone loss and fat reduction in vivo. We examined the effect of PMT on cell signalling pathways involved in 3T3-L1 adipocyte differentiation. We demonstrate that PMT treatment before or together with differentiation induction factors inhibits adipogenesis and prevents upregulation of important adipocyte markers - peroxisome-proliferator-activated receptor gamma (PPARgamma) and CAATT enhancer-binding protein alpha (C/EBPalpha). Moreover, PMT completely downregulates PPARgamma and C/EBPalpha expression in mature adipocytes. Differentiation of pre-adipocytes into adipocytes requires the suppression of pre-adipocyte factor 1 (Pref1) and Wnt signalling, along with the degradation of beta-catenin. PMT prevents downregulation of Pref1 and beta-catenin under differentiation-inducing conditions. In addition, PMT treatment downregulates expression of Notch1, a protein responsible for cell fate decision and implicated in regulation of adipogenesis in 3T3-L1 cells. PMT action on adipogenesis was not reversed by cyclosporin A, an inhibitor of Galphaq-PLC-calcium-dependent calcineurin activation. Our results reveal new pathways involved in PMT action on cellular physiology and differentiation. Our study further demonstrates that the effect of PMT on Pref1/PPARgamma/C/EBPalpha expression and adipogenesis does not occur just through activation of the Galphaq-calcium-calcineurin pathway, but involves Wnt/beta-catenin and Notch1 signalling pathways, two signalling pathways strongly linked to cancer predisposition, neurological and immunological dysfunctions, and fat and bone development.  相似文献   

18.
Uncoupling protein-2 (UCP2) is a novel mitochondrial protein that may be involved in the control of energy expenditure. We have previously reported an upregulation of adipose tissue UCP2 mRNA expression during fasting in humans. Analysis of changes in metabolic parameters suggested that fatty acids may be associated with the increased UCP2 mRNA level. Culture of human adipose tissue explants was used to study in vitro regulation of adipocyte UCP2 gene expression. A 48-h treatment with BRL49653 and bromopalmitate, two potent activators of PPARgamma, resulted in a dose-dependent increase in UCP2 mRNA levels. The induction by BRL49653 was rapid (from 6 h) and maintained up to 5 days. TNFalpha provoked a 2-fold decrease in UCP2 mRNA levels. Human recombinant leptin did not affect UCP2 mRNA expression. The data support the hypothesis that fatty acids are involved in the control of adipocyte UCP2 mRNA expression in humans.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号