首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
海绵生物活性物质及海绵细胞离体培养   总被引:12,自引:0,他引:12  
介绍了来自海绵的生物活性物质种类、分布及其潜在的应用价值。讨论了其作为抗癌、抗病毒、抗细菌等药用的生物活性物质及其相关的海绵种属 ;强调海绵生物活性物质的商业化和临床应用所面临的“供给短缺问题”。作为解决这一问题的途径之一 ,海绵细胞离体培养是最有前景的技术。讨论了海绵细胞离体培养技术的研究现状 ,存在的问题及未来的发展趋势。对我国海域的海绵生物活性物质的研究开发现状进行总结 ,强调海绵研究对开发具有我国自主知识产权的新药、新化合物的必要性及重要性 ,并提出进行研发的可能优先领域  相似文献   

2.
胡启平  舒雨雁 《四川动物》2006,25(2):257-260
目的:将江浙蝮蛇粗毒中新分离纯化的一种精氨酸酯酶Agkihpin应用于鼻咽癌细胞LXC的体外培养,观察Agkihpin对鼻咽癌细胞活力、增殖、迁移和细胞形态的影响,以期探索治疗鼻咽癌的新方法、新药物。方法:将不同剂量的Agkihpin加入细胞培养液中,用四甲基偶氮唑(MTT)法分析细胞活力,细胞计数法观察和分析细胞增殖和细胞迁移。结果:一定剂量的Agkihpin可抑制LXC的细胞活力、增殖、迁移,并可改变细胞形态和杀伤LXC,且剂量越大抑制、杀伤和细胞形态改变越明显。结论:Agkihpin对鼻咽癌的治疗具有潜在的重要意义,Agkihpin具有作为抗鼻咽癌新药物的开发潜力。  相似文献   

3.
以支持细胞为饲养层培养小鼠精原干细胞   总被引:12,自引:0,他引:12  
为探索精原干细胞(Spermatogonialstemcells,SSCs)体外自增殖的条件以及SSCs体外快速扩增的方法,以6-8日龄昆明乳鼠为材料,分离小鼠睾丸细胞,采用Percoll梯度离心法富集SSCs;以经丝裂霉素C处理的Sertoli细胞作饲养层,以DMEM为基本培养基,加入5%胎牛血清和103u/ml的白血病抑制因子(Leukemiainhibitoryfactor,LIF),体外培养SSCs;运用免疫荧光技术,以SSCs特异性表面分子Thy1为标志,对原代培养20d和传代培养14d的细胞进行鉴定。该培养体系下,SSCs贴壁时间为6h-9h,48h后可见细胞分裂,迅速增殖出现在接种12d以后。接种后第20d形成数十至上百个细胞的细胞团,细胞总数比接种时增加了45-245倍,100倍显微镜下观察可见,单位视野内细胞团数为26±4个。传代后细胞增殖较快。原代培养20d和传代培养14d的细胞均为Thy1阳性;而传代20d后,细胞周缘不整,有伪足出现,呈现出死亡迹象。该培养条比较适合SSCs短期快速增殖。  相似文献   

4.
角质细胞生长因子(KGF)是成纤维细胞生长因子(FGFs)家族的成员,即FGF-7,最初是从人胚胎肺成纤维细胞的培养上清中分离纯化获得的。成熟KGF为一163个氨基酸残基的单链多肽,分子量为26—28KD。KGF由各种来源的间质细胞分泌,受体分布于上皮细胞,其生物学活性是特异性地促进上皮细胞的增殖、迁移和分化。KGF的表达受激素和一些细胞因子的调控。有关研究表明,KGF对肺泡Ⅱ型细胞的增殖以及皮肤、胃肠道粘膜和角膜损伤的修复具有十分重要的作用。  相似文献   

5.
对亚洲百合的花丝进行离体培养,并利用常规石蜡制片技术对诱导效果最好的材料进行细胞形态学观察,研究花丝在离体培养过程中器官形成的细胞形态学变化。结果表明:花丝在MS+BA0.5 mg/L+NAA0.5 mg/L的培养基上诱导效果最好。离体培养后其形态学下端切口内方的1~3层细胞首先启动脱分化,然后是内方的10~12层细胞,而其他部位的细胞自始至终未启动脱分化。亚洲百合的再生方式为器官发生型,器官通过胚性愈伤组织间接产生,在胚性愈伤组织团表面附近形成芽原基,或在胚性愈伤组织团内部形成根原基,有时同时分别在内、外形成根原基和芽原基后再通过维管组织连接成完整的植株。本研究为亚洲百合的人工调控提供基础理论依据。  相似文献   

6.
角质细胞生长因子(KGF)是成纤维细胞生长因子(FGFs)家族的成员,即FGF-7,最初是从人胚胎肺成纤维细胞的培养上清中分离纯化获得的。成熟KGF为一163个氨基酸残基的单链多肽,分子量为26-28KD。KGF由各种来源的间质细胞分泌,受体分布于上皮细胞,其生物学活性是特异性地促进上皮细胞的增殖、迁移和分化。FGF的表达受激素和一些细胞因子的调控。有关研究表明,KGF对肺泡Ⅱ型细胞的增殖以及皮肤、胃肠道粘膜和角膜损伤的修复具有十分重要的作用。  相似文献   

7.
大鼠脑皮质星形胶质细胞的限制性细胞培养   总被引:5,自引:0,他引:5  
介绍一种新的脑组织星形胶质细胞培养方法即限制性细胞培养(constraint cell culture)。常规分离纯化星形胶质细胞,将其低密度种植,维持在添中低量血清的化学成分限定的培养基中培养,并在长时期内不给予更换或补加培养液。利用波形蛋白(vimentin)和胶质纤维酸性蛋白(glial fibrary acidic protein)抗体的免疫荧光染色法鉴定观察不同培养时期的星形胶质细胞及其形态学变化。结果发现星形胶质细胞在最初的5天之内有一定程度的增殖,未出现过度增殖导致的细胞相互融合现象;接下来的3-5天内细胞形态明显分化,星形胶质细胞突起细长、胞体明显缩小、形态多样,最后细胞突起之间相互连接形成星形胶质细胞网络,并在相当长的时间内保持不变。实验结果显示在限制细胞种植密度和限制给予培养液的培养条件下星形质细胞的体外形态发育与在体的情形基本一致。提示该细胞培养方法可能有助于研究中枢神经系统中星形胶质细胞的生理功能。  相似文献   

8.
银杏悬浮培养细胞的生长、分化与萜内酯化合物的积累   总被引:6,自引:0,他引:6  
研究了来源于银杏种子胚和幼苗茎的悬浮细胞的生长、分化和培养物中的白果内酯、银杏内酯A和B的含量变化。结果表明:在悬浮培养中,细胞聚集而成的细胞团大小、细胞中叶绿体的分化、外植体来源都影响培养物中的萜内酯的种类和含量,胚来源的悬浮细胞培养物中,银杏内酯B仅存在于直径<2mm的小细胞团悬浮培养中,且在<1 mm的细胞团中的含量最高,达0.437 mg /g(DW);而直径>3mm的细胞团悬浮培养物中只含有白果内酯和银杏内酯A。相同大小的悬浮细胞团中,胚来源的细胞中萜内酯含量高于茎来源的细胞。  相似文献   

9.
为探讨胶原海绵对颌下腺 (submandibulargland ,SMG)导管细胞的细胞相容性 ,采用HE染色光镜观察及免疫组化观察SMG导管细胞接种于胶原海绵后 ,细胞的生长情况。光镜下可见接种后第 1d细胞数量较少 ,分散于胶原海绵支架中间 ,第 7d细胞数量明显增加 ,免疫组织化学染色抗IV型胶原抗体染色呈阳性 ,说明细胞与支架材料之间已经有细胞外基质产生。胶原海绵具有良好的细胞相容性 ,是一种理想的支架材料。与胶原海绵复合培养 ,颌下腺导管细胞仍可保持良好的增殖能力。  相似文献   

10.
对屋顶长生草叶的解剖结构及其在离体培养条件下形态发生过程进行了研究。结果表明,屋顶长生草的叶具有肉质旱生植物叶的特点,表皮细胞外有角质层,叶有较密的腺毛分布,气孔器由两个肾形的保卫细胞和两个镰刀形的护卫细胞组成;叶肉细胞没有栅栏组织与海绵组织之分,细胞比较大,有贮水作用;维管束平行排列,导管和筛管分子都很小,为一圈维管束鞘所包围。屋顶长生草叶片离体培养形态发生途径主要有两种:一种是由外植体直接产生不定芽(器官型)途径;另一种是叶肉细胞脱分化成胚性细胞,经胚性细胞团形成愈伤组织,再分化产生芽、根等器官(器官发生型),芽分化为内起源。  相似文献   

11.
This study aims to test the feasibility of introducing functional chemical groups into biogenic silica spicules by examining the effect of supplementing a silican coupler [3-(trimethoxysilyl)propyl]urea (3-TMOSPU) as silica source in the cultures of archaeocytes-dominant-cell-population (ADCP) primmorphs and explants of the marine sponge Hymeniacidon perleve. Analysis by Fourier Transform Infrared Spectroscopy (FT-IR) confirmed that the organic group in 3-TMOSPU was introduced into silica spicules. By comparing ADCP-primmorph cultures when supplemented with Na2SiO3, 3-TMOSPU supplementation showed no notable effect on the primmorphs development and cell locomotion behaviors. A decline in silicatein expression quantified by real-time RT-PCR was, however, observed during spiculogenesis. The decline was slower for the 3-TMOSPU group whereas significantly fewer spicules were formed. When sponge papillae explants were cultured, 3-TMOSPU supplementation had no negative effect on sponge growth but inhibited the growth biofouling of the diatom Nitzschia closterium. By monitoring the detectable Si concentration, it seemed that 3-TMOSPU was converted by the sponge and its conversion was related to spiculogenesis. Analysis of spicule dimensional changes indicated that the inhibition of spiculogenesis by 3-TMOSPU supplementation was less in ADCP-primmorphs culture due to lower 3-TMOSPU/detectable Si ratio in the media.  相似文献   

12.
Marine sponges (Porifera) possess an extraordinary diversity of bioactive metabolites for new drug discovery and development. In vitro cultivation of sponge cells in a bioreactor system is very attractive for the sustainable production of sponge-derived bioactive metabolites; however, it is still a challenging task. The recent establishment of sponge primmorphs, multicellular aggregates from dissociated mixed-cell population (MCP), has been widely acknowledged to hold great promise for cultivation in vitro. Here we present a new method to establish an in vitro sponge primmorph culture from archaeocyte-dominant cell population (ADCP) enriched by a Ficoll gradient, rather than a mixed-cell population (MCP). Our rationale is based upon the totipotency (the ability of a cell to differentiate into other cell types) of archaeocyte cells and the different biological functions of various sponge cell types. A sponge, Hymeniacidon perleve collected from the China Yellow Sea was used as a model system for this investigation. Distinct dynamics of primmorph formation were observed while significant increases in DNA synthesis, cell proliferation (up to threefold), and cell growth (up to fourfold) were achieved. Furthermore, a time-dependent spiculogenesis was clearly demonstrated in our longterm culture, indicating high metabolic activity of primmorphs from the ADCP. This new method represents an important step forward to advance sponge cell culture in vitro that may lead to commercial exploitation of sponge-derived drugs.  相似文献   

13.
The possibility to cryopreserve cells allows for wide opportunities of flexible handling of cell cultures from different sponge species. Primmorphs model, a multicellular 3D aggregate formed by dissociated sponge cells, is considered one of the best approaches to establish sponge cell culture but, in spite of the available protocols for freezing sponge cells, there is no information regarding the ability of the latter to form primmorphs after thawing. In the present work, we demonstrate that, after a freezing and thawing cycle using dissociated Petrosia ficiformis cells as a model, cells viability was high but it was not possible to obtain primmorphs. The same protocol for cryopreservation was then used to directly freeze primmorphs. In this second case, after thawing, viability and the cellular proliferative level were similar to unfrozen standard primmorphs. Spiculogenesis in thawed primmorphs was evaluated by quantifying the silicatein gene expression level and by assaying the silica amount in the newly formed spicules, then compared with the correspondent values obtained in standard unfrozen primmorphs. Results indicate that the freezing cycle does not affect the spiculogenesis rate. Finally, the expression level of heat shock protein 70, a well-known stress marker, was assayed and the results showed no differences between frozen and unfrozen samples. These findings are likely to promote relevant improvements in sponge cell culture technique, allowing for a worldwide exchange of living biological material, paving the way for cell banking of Porifera.  相似文献   

14.
The work was aimed at performing long-term cultivation of primmorphs in vitro from freshwater sponge Lubomirskia baikalensis (Pallas 1776), collected from Lake Baikal, obtaining its long-term primmorph culture in both natural (NBW) and artificial (ABW) Baikal water and at identifying the impact of different environmental factors on formation and growth of primmorphs. The first fine aggregates of L. baikalensis are formed in vitro 10–15 min after dissociation of sponge cells. Epithelization of aggregates begins 4 h later after the dissociation. Young primmorphs are formed 1 or 2 days later. The surface of primmorphs is covered with a layer of exopinacocytes. The primmorphs remain viable for more than 10 months at 3–6°C. Over 50% of primmorphs in NBW and 25% in ABW are attached to the substrate and grow like adult sponges. Thus, the long-term primmorph cultivation in vitro allows the creation of a controlled live model system under experimental conditions. The results of this work will allow the creation of a cell culture collection of Baikal freshwater sponges for studying morphogenesis of primmorphs during cultivation at different stages and transdifferentiation of their cells, physiological functions of sponge cells, processes of spiculogenesis, identification of proteins involved in biomineralization process, decoding of their genes, as well as a spectrum of secondary metabolites.  相似文献   

15.
Cao X  Fu W  Yu X  Zhang W 《Cell and tissue research》2007,329(3):595-608
To characterize the formation of silica spicules, the dynamics of spiculogenesis of an intertidal marine sponge Hymeniacidon perlevis (Montagu 1818) (Porifera: Demospongiae) were investigated by measuring the gene expression of silicatein (the enzyme responsible for spicule silicification) and the dimensional changes of spicules during the developmental process of individual sponges and in cell cultures of primmorphs of archaeocyte-dominant cell populations. The different developmental stages of spicules were documented by time-lapse microscopy and observed by transmission electron microscopy during a 1-month culture period. During its annual life cycle, H. perlevis has four different developmental stages: dormancy, resuscitation, bloom, and decline. Field-grown individual sponge samples at different stages were collected over 7 months (March to September 2005). The dimensions of the silica spicules from these samples were microscopically measured and statistically analyzed. This analysis and the material properties of the spicules allowed them to be classified into four groups representing the different developmental stages of spiculogenesis. Silicatein expression in the bloom stage was more than 100 times higher than that in the other stages and was correlated with the spicule developmental stage. The trend of spicule formation in field-grown sponges was consistent with the trend in cell culture. A new parameter, the maturation degree (MD) of spicules (defined as the ratio of actual to theoretical silica deposition of mature spicules), was introduced to quantify spicule development. Silica spiculogenesis during H. perlevis development was delineated by comparing MD and silicatein expression.  相似文献   

16.
Sun L  Song Y  Qu Y  Yu X  Zhang W 《Cell and tissue research》2007,328(1):223-237
Marine sponges (Porifera) are the best source of marine bioactive metabolites for drug discovery and development, although the sustainable production of most sponge-derived metabolites remains a difficult task. In vitro cultivation of sponge cells in bioreactors has been proposed as a promising technology. However, no continuous cell line has as yet been developed. Archaeocytes are considered to be toti/multipotent stem cells in sponges and, when purified, may allow the development of continuous sponge cell lines. As a prerequisite, we have developed a novel four-step protocol for the purification of archaeocytes from a marine sponge, Hymeniacidon perleve: (1) differential centrifugation to separate large sponge cells including archaeocytes; (2) selective agglomeration in low-Ca2+/Mg2+ artificial seawater in which living archaeocytes form small loose aggregates with some pinacocytes and collencytes; (3) differential adherence to remove anchorage-dependent pinacocytes, collencytes and other mesohyl cells; (4) Ficoll-Vrografin density gradient centrifugation to purify archaeocytes. The final purity of archaeocytes is greater than 80%. The proliferation potential of the archaeocytes has been demonstrated by high levels of BrdU incorporation, PCNA expression and telomerase activity. In 4-day primary cultures, the purified archaeocytes show a 2.5-fold increase in total cell number. This study opens an important avenue towards developing sponge cell cultures for the commercial exploitation of sponge-derived drugs. The authors are grateful for the financial support of the Chinese Academy of Sciences under the “100 Talent Project”, the “Innovation Fund” from the Dalian Institute of Chemical Physics, the “Hi-Tech Research and Development Program of China” (2001AA620404), and the European Commission (project: Silicon Biotechnology).  相似文献   

17.
Marine sponges (Porifera) display an ancestral type of cell-cell adhesion, based on carbohydrate-carbohydrate interaction. The aim of the present work was to investigate further details of this adhesion by using, as a model, the in vitro aggregation of dissociated sponge cells. Our results showed the participation of sulfated polysaccharides in this cell-cell interaction, as based on the following observations: (1) a variety of sponge cells contained similar sulfated polysaccharides as surface-associated molecules and as intracellular inclusions; (2) 35S-sulfate metabolic labeling of dissociated sponge cells revealed that the majority (two thirds) of the total sulfated polysaccharide occurred as a cell-surface-associated molecule; (3) the aggregation process of dissociated sponge cells demanded the active de novo synthesis of sulfated polysaccharides, which ceased as cell aggregation reached a plateau; (4) the typical well-organized aggregates of sponge cells, known as primmorphs, contained three cell types showing sulfated polysaccharides on their cell surface; (5) collagen fibrils were also produced by the primmorphs in order to fill the extracellular spaces of their inner portion and the external layer surrounding their entire surface. Our data have thus clarified the relevance of sulfated polysaccharides in this system of in vitro sponge cell aggregation. The molecular basis of this system has practical relevance, since the culture of sponge cells is necessary for the production of molecules with biotechnological applications.  相似文献   

18.
One of the main characteristics of sponges is their capacity for cell dedifferentiation. This capability can allow an impressive amount of asexual reproduction in these animals, because they are able to develop new individuals from just a few somatic cells. Studies of dedifferentiation, however, have focused mainly on sponges of the class Demospongiae. Therefore, we investigated here whether individuals of three different species of Calcarea are able to reconstitute new individuals following artificial fragmentation. We observed that fragmentation releases clumps of choanoderm able to initiate somatic embryogenesis. In Borojevia brasiliensis (asconoid aquiferous system, subclass Calcinea) and Paraleucilla magna (leuconoid aquiferous system, subclass Calcaronea), these clumps started to develop, but they did not pass through the first developmental phases. In Sycettusa hastifera (syconoid aquiferous system, subclass Calcaronea), the choanoderm was reorganized into primmorphs that fused to each other and formed an exopinacoderm. The first primmorphs’ spicules were triactines. Despite a large mortality rate, the primmorphs developed into olynthus stages. The somatic embryogenesis and the metamorphosis of the olynthus were similar to those observed during the sexual development of this and other calcareous sponge species. Our results show that in S. hastifera, and perhaps in other syconoid calcareous sponges, somatic embryogenesis occurs mainly from choanocytes, at least in vitro. However, primmorph development does not follow the same pattern observed in post‐metamorphic sexual development, as in that case diactines are always the first spicules to be synthesized in calcaronean species.  相似文献   

19.
Primmorphs (a three-dimensional sponge primary cell culture system) have been revealed to be a cell/tissue nano-factory for the production of tailor-made hybrid nanostructures. Growth of primmorphs is stimulated by the presence of a titanium alkoxide precursor tolerating titania (TiO2) concentrations up to 250 μM. The presence and activity of silicatein in primmorphs has been analyzed by gel electrophoresis and Western blotting. Results of studies by scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy have revealed silica and titania to be co-localized on nanosized spicules. Our findings suggest that the incorporation of titania into the nanosized spicule is enzymatically mediated via active silicatein in an orchestrated mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号