首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have compared Pax6 expression during embryonic development in the eyed surface form (surface fish) and several different eyeless cave forms (cavefish) of the teleost Astyanax mexicanus. Despite lacking functional eyes as adults, cavefish embryos form small optic primordia, which later arrest in development and show various degrees of eye degeneration. The pattern of Pax6 mRNA expression was modified early and late during cavefish development. In early surface fish embryos, two bilateral Pax6 expression domains are present in the anterior neural plate, which extend across the midline and fuse to form the forebrain and optic primordia. In cavefish embryos, these Pax6 domains are diminished in size and remain separated, resulting in an anterior gap in Pax6 expression and presumably the formation of smaller optic primordia. The anterior gap in Pax6 expression was confirmed by double staining for Pax6 and distalless-3 mRNA, which marks the anterior margin of the neural plate and is unaltered in cavefish. Similar anterior gaps in Pax6 expression occurred in independently derived cavefish populations, suggesting that they are important in eye degeneration. Later during surface fish development, Pax6 protein is expressed in the cornea, lens, and ganglion and amacrine cells of the neural retina. Pax6 expression was gradually reduced during cavefish lens development, concomitant with lens arrest and degeneration, and was absent in the corneal epithelium, which does not differentiate in cavefish. In contrast, Pax6 expression in the retinal ganglion and amarcine cells is unmodified in cavefish, despite retarded retinal development. The results suggest that changes in Pax6 expression are involved in the evolution of cavefish eye degeneration.  相似文献   

2.
We have investigated expression of the homeobox gene Prox 1 during eye degeneration and sensory organ compensation in cavefish embryos. The teleost Astyanax mexicanus consists of sighted surface-dwelling forms (surface fish) and several populations of blind cave-dwelling forms (cavefish), which have evolved independently. Eye formation is initiated during cavefish development, but the lens vesicle undergoes apoptosis, and the eye subsequently arrests and degenerates. The requirement of Prox 1 for lens fiber differentiation and γ-crystallin expression in the mouse suggests that changes in the expression of this gene could be involved in cavefish eye degeneration. Surface fish and cavefish embryos stained with a Prox 1 antibody showed Prox 1 expression in the lens, neuroretina, myotomes, heart, hindbrain, and gut, as reported in other vertebrates. We found that Prox 1 expression is not altered during cavefish lens development. Prox 1 protein was detected in the lens vesicle as soon as it formed and persisted until the time of lens degeneration in each cavefish population. The cavefish lens vesicle was also shown to express a γ-crystallin gene, suggesting that Prox 1 is functional in cavefish lens development. In addition to the tissues described above, Prox 1 is expressed in developing taste buds and neuromasts in cavefish, which are enhanced to compensate for blindness. It is concluded that the Prox 1 gene is not involved in lens degeneration, but that expansion of the Prox 1 expression domain occurs during taste bud and neuromast development in cavefish. Received: 31 July 1999 / Accepted: 8 November 1999  相似文献   

3.
The teleost Astyanax mexicanus exhibits eyed surface dwelling (surface fish) and blind cave dwelling (cavefish) forms. Despite lacking functional eyes as adults, cavefish embryos form eye primordia, which later arrest in development, degenerate and sink into the orbit. We are comparing the expression patterns of various eye regulatory genes during surfacefish and cavefish development to determine the cause of eye degeneration. Here we examine Rx and Chx/Vsx family homeobox genes, which have a major role in cell proliferation in the vertebrate retina. We isolated and sequenced a full-length RxcDNA clone (As-Rx1) and part of a Chx/Vsx(As-Vsx2) gene, which appear to be most closely related to the zebrafish Rx1 and Alx/Vsx2 genes respectively. In situ hybridization shows that these genes have similar but non-identical expression patterns during Astyanax eye development. Expression is first detected in the optic vesicle, then throughout the presumptive retina of the optic cup, and finally in the ciliary marginal zone (CMZ), the region of the growing retina where most new retinoblasts are formed. In addition, As-Rx1 is expressed in the outer nuclear layer (ONL) of the retina, which contains the photoreceptor cells, and As-Vsx2 is expressed in the inner nuclear layer, probably in the bipolar cells. With the exception of reduced As-Rx-1 expression in the ONL, the As-Rx1 and As-Vsx2 expression patterns were unchanged in the developing retina of two different cavefish populations, suggesting that cell proliferation is not inhibited. These results were confirmed by using PCNA and BrdU markers for retinal cell division. We conclude that the CMZ is active in cell proliferation long after eye growth is diminished and is therefore not the major cause of eye degeneration.  相似文献   

4.
The Mexican tetra Astyanax mexicanus has many of the favorable attributes that have made the zebrafish a model system in developmental biology. The existence of eyed surface (surface fish) and blind cave (cavefish) dwelling forms in Astyanax also provides an attractive system for studying the evolution of developmental mechanisms. The polarity of evolutionary changes and the environmental conditions leading to the cavefish phenotype are known with certainty, and several different cavefish populations have evolved constructive and regressive changes independently. The constructive changes include enhancement of the feeding apparatus (jaws, taste buds, and teeth) and the mechanosensory system of cranial neuromasts. The homeobox gene Prox 1, which is expressed in the expanded taste buds and cranial neuromasts, is one of the genes involved in the constructive changes in sensory organ development. The regressive changes include loss of pigmentation and eye degeneration. Although adult cavefish lack functional eyes, small eye primordia are formed during embryogenesis, which later arrest in development, degenerate, and sink into the orbit. Apoptosis and lens signaling to other eye parts, such as the cornea, iris, and retina, result in the arrest of eye development and ultimate optic degeneration. Accordingly, an eye with restored cornea, iris, and retinal photoreceptor cells is formed when a surface fish lens is transplanted into a cavefish optic cup, indicating that cavefish optic tissues have conserved the ability to respond to lens signaling. Genetic analysis indicates that multiple genes regulate eye degeneration, and molecular studies suggest that Pax6 may be one of the genes controlling cavefish eye degeneration. Further studies of the Astyanax system will contribute to our understanding of the evolution of developmental mechanisms in vertebrates.  相似文献   

5.
The cavefish morph of the Mexican tetra (Astyanax mexicanus) is blind at adult stage, although an eye that includes a retina and a lens develops during embryogenesis. There are, however, two major defects in cavefish eye development. One is lens apoptosis, a phenomenon that is indirectly linked to the expansion of ventral midline sonic hedgehog (Shh) expression during gastrulation and that induces eye degeneration. The other is the lack of the ventral quadrant of the retina. Here, we show that such ventralisation is not extended to the entire forebrain because fibroblast growth factor 8 (Fgf8), which is expressed in the forebrain rostral signalling centre, is activated 2 hours earlier in cavefish embryos than in their surface fish counterparts, in response to stronger Shh signalling in cavefish. We also show that neural plate patterning and morphogenesis are modified in cavefish, as assessed by Lhx2 and Lhx9 expression. Inhibition of Fgf receptor signalling in cavefish with SU5402 during gastrulation/early neurulation mimics the typical surface fish phenotype for both Shh and Lhx2/9 gene expression. Fate-mapping experiments show that posterior medial cells of the anterior neural plate, which lack Lhx2 expression in cavefish, contribute to the ventral quadrant of the retina in surface fish, whereas they contribute to the hypothalamus in cavefish. Furthermore, when Lhx2 expression is rescued in cavefish after SU5402 treatment, the ventral quadrant of the retina is also rescued. We propose that increased Shh signalling in cavefish causes earlier Fgf8 expression, a crucial heterochrony that is responsible for Lhx2 expression and retina morphogenesis defect.  相似文献   

6.
Experimental manipulation and other lines of evidence indicate that the lens plays a prominent role in the growth and differentiation of the vertebrate eye. Here we describe a lens transplantation method for studying the role of the lens in teleost eye development. The method involves three steps: (1) preparing embryos for the operations by embedding them in agar, (2) microsurgery with tungsten needles to remove the lens from a donor embryo and insert it into the optic cup of a host embryo lacking its own lens, and (3) a recovery period allowing surface ectoderm to close over the wound left by insertion of the lens into the host embryo. A movie illustrating the method can be found at http://www.life.umd.edu/labs/jeffery. A troubleshooting guide and summary of assays for evaluating the development of the transplanted lens and its effects on other eye parts, including the retina, are presented. Finally, some current applications of the lens transplantation method are briefly described: (1) determination of the autonomy of zebrafish lens mutants and (2) investigation of the role of the lens in eye degeneration in the cavefish Astyanax. The transplantation method will help characterize the mechanisms through which vertebrate eye development is regulated by the lens.  相似文献   

7.
Lens apoptosis plays a central role in cavefish eye degeneration. Heat shock proteins (hsps) can regulate apoptosis; therefore, we examined the relationship between constitutive hsp70 and hsp90 expression and lens apoptosis. The model system is Astyanax mexicanus, a teleost species consisting of an eyed surface-dwelling (surface fish) form and numerous blind cave-dwelling (cavefish) forms. Optic primordia are formed in the cavefish embryo but they subsequently undergo lens apoptosis, arrest in development and degenerate. Astyanax hsp90 and hsp70 DNAs were isolated to use as probes to compare gene expression during surface fish and cavefish development. Hsp90beta, which encodes one of two hsp90 isoforms, was not expressed in the surface fish or cavefish lens, whereas hsp70 was expressed in the lens of both forms, suggesting that neither is directly involved in lens apoptosis. In contrast, hsp90alpha, the other hsp90 isoform, was expressed in the cavefish but not the surface fish lens. Hsp90alpha expression peaked shortly before the beginning of lens apoptosis in three convergent cavefish populations, suggesting a close relationship with lens apoptosis. The absence of hsp90beta in the lens allowed us to use geldanamycin and radicicol, specific inhibitors of hsp90 chaperone function, to determine whether lens cell death requires hsp90alpha expression. Both inhibitors blocked TUNEL labeling in the cavefish lens, suggesting that hsp90alpha is required for apoptosis. In contrast to their effects on the lens, these inhibitors induced TUNEL labeling in the surface epidermis, presumably due to effects on hsp90beta function, implying that the two-hsp90 isoforms may have contrasting roles in cell survival. We conclude that hsp90alpha plays a novel role in lens apoptosis and cavefish eye degeneration.  相似文献   

8.
9.
Optic cup morphogenesis (OCM) generates the basic structure of the vertebrate eye. Although it is commonly depicted as a series of epithelial sheet folding events, this does not represent an empirically supported model. Here, we combine four-dimensional imaging with custom cell tracking software and photoactivatable fluorophore labeling to determine the cellular dynamics underlying OCM in zebrafish. Although cell division contributes to growth, we find it dispensable for eye formation. OCM depends instead on a complex set of cell movements coordinated between the prospective neural retina, retinal pigmented epithelium (RPE) and lens. Optic vesicle evagination persists for longer than expected; cells move in a pinwheel pattern during optic vesicle elongation and retinal precursors involute around the rim of the invaginating optic cup. We identify unanticipated movements, particularly of central and peripheral retina, RPE and lens. From cell tracking data, we generate retina, RPE and lens subdomain fate maps, which reveal novel adjacencies that might determine corresponding developmental signaling events. Finally, we find that similar movements also occur during chick eye morphogenesis, suggesting that the underlying choreography is conserved among vertebrates.  相似文献   

10.
Fgf signaling plays crucial roles in morphogenesis. Fgf19 is required for zebrafish forebrain development. Here, we examined the roles of Fgf19 in the formation of the lens and retina in zebrafish. Knockdown of Fgf19 caused a size reduction of the lens and the retina, failure of closure of the choroids fissure, and a progressive expansion of the retinal tissue to the midline of the forebrain. Fgf19 expressed in the nasal retina and lens was involved in cell survival but not cell proliferation during embryonic lens and retina development. Fgf19 was essential for the differentiation of lens fiber cells in the lens but not for the neuronal differentiation and lamination in the retina. Loss of nasal fate in the retina caused by the knockdown of Fgf19, expansion of nasal fate in the retina caused by the overexpression of Fgf19 and eye transplantation indicated that Fgf19 in the retina was crucial for the nasal-temporal patterning of the retina that is critical for the guidance of retinal ganglion cell axons. Knockdown of Fgf19 also caused incorrect axon pathfinding. The present findings indicate that Fgf19 positively regulates the patterning and growth of the retina, and the differentiation and growth of the lens in zebrafish.  相似文献   

11.
A study was made of proliferative activity and transdifferentiation of the cells of retinal pigment epithelium (RPE) cultivated in the cavity of the lensectomized eye of adult newt. Implantation of the newt RPE together with vascular membrane and scleral coat resulted in the regeneration of retina. In this process the character of changes in the proliferative activity of RPE and differentiation of retinal cells were the same as in the regeneration of retina in situ. RPE implanted with the vascular membrane alone, despite a high level of proliferation during the first ten days of cultivation, no differentiated retina was formed. Possible causes of these differences are discussed, and the comparison is made of the data obtained with those on RPE cultivation in vitro. After lens removal, with RPE implants present in the eye cavity, in addition to the regenerated lens, 2-3 extra lenses and retina were formed from the cells of the inner layer of the recipient's dorsal iris. Also some cases were revealed of lens formation from the cells of ventral iris. With a complete detachment of the recipient's retina (an after-effect of transplantation) a second differentiated retina regenerated in situ from the recipient's RPE cells.  相似文献   

12.
采用组织学方法观察了胭脂鱼(Myxocyprinus asiaticus) 眼的发生过程, 结果显示: 胭脂鱼眼的发育经历了眼原基形成期、眼囊形成期、视杯形成期、晶体板形成期、晶体囊形成期、角膜原基形成期、角膜上皮形成期、视网膜细胞增殖期、晶状体成熟期、眼色素形成期以及眼成型期等11个时期。视网膜发育最早, 起始于眼原基的形成, 直至眼成型期分化完成, 形成了厚度不一的8层细胞, 由内向外依次为神经纤维层、神经细胞层、内网层、内核层、外网层、外核层、视杆视锥层和色素上皮层, 且发育历时最长, 约264h。晶状体的发育在视网膜之后, 始于晶体板的形成, 于出膜前期成熟, 发育历时最短, 约74h。角膜发育最晚, 始于角膜原基的形成, 出膜1 d分化为透明的成熟角膜, 发育历时约96h。出膜4 d仔鱼眼色素沉积明显, 视网膜各层分化明显, 晶状体内部完全纤维化, 眼的形态结构基本发育完全。  相似文献   

13.
14.
The ventral region of the chick embryo optic cup undergoes a complex process of differentiation leading to the formation of four different structures: the neural retina, the retinal pigment epithelium (RPE), the optic disk/optic stalk, and the pecten oculi. Signaling molecules such as retinoic acid and sonic hedgehog have been implicated in the regulation of these phenomena. We have now investigated whether the bone morphogenetic proteins (BMPs) also regulate ventral optic cup development. Loss-of-function experiments were carried out in chick embryos in ovo, by intraocular overexpression of noggin, a protein that binds several BMPs and prevents their interactions with their cognate cell surface receptors. At optic vesicle stages of development, this treatment resulted in microphthalmia with concomitant disruption of the developing neural retina, RPE and lens. At optic cup stages, however, noggin overexpression caused colobomas, pecten agenesis, replacement of the ventral RPE by neuroepithelium-like tissue, and ectopic expression of optic stalk markers in the region of the ventral retina and RPE. This was frequently accompanied by abnormal growth of ganglion cell axons, which failed to enter the optic nerve. The data suggest that endogenous BMPs have significant effects on the development of ventral optic cup structures.  相似文献   

15.
During eye development, retinal pigmented epithelium (RPE) and neural retina (NR) arise from a common origin, the optic vesicle. One of the early distinctions of RPE from NR is the reduced mitotic activity of the RPE. Growth arrest specific gene 1 (Gas1) has been documented to inhibit cell cycle progression in vitro (G. Del Sal et al., 1992, Cell 70, 595--607). We show here that the expression pattern of Gas1 in the eye supports its negative role in RPE proliferation. To test this hypothesis, we generated a mouse carrying a targeted mutation in the Gas1 locus. Gas1 mutant mice have microphthalmia. Histological examination revealed that the remnant mutant eyes are ingressed from the surface with minimal RPE and lens, and disorganized eyelid, cornea, and NR. Analysis of the Gas1 mutant indicates that there is overproliferation of the outer layer of optic cup (E10.5) immediately after the initial specification of the RPE. This defect is specific to the ventral region of the RPE. Using molecular markers for RPE (Mi and Tyrp2) and NR (Math5), we demonstrate that there is a gradual loss of Mi and Tyrp2 expression and an appearance of Math5 expression in the mutant ventral RPE region, indicating that this domain becomes respecified to NR. This "ectopic" NR develops as a mirror image of the normal NR and is entirely of ventral identity. Our data not only support Gas1's function in regulating cell proliferation, but also uncover an unexpected regional-specific cell fate change associated with dysregulated growth. Furthermore, we provide evidence that the dorsal and ventral RPEs are maintained by distinct genetic components.  相似文献   

16.
Regressive evolution of morphological features is a common evolutionary event. However, the relationship between structural degeneration and loss of physiological function is often unclear because the ancestral and derived states of a character are usually not available for comparison. Here, we report studies on retinomotor rhythms during development of the blind cavefish Astyanax mexicanus, a single teleost species consisting of a sighted surface-dwelling form (surface fish) and several blind cave-dwelling (cavefish) forms. The eyed and blind forms of Astyanax diverged from a common sighted ancestor within the past million years. Despite the absence of functional eyes in cavefish adults, optic primordia are formed in embryos, but then gradually arrest in development, degenerate, and sink into the orbits. Although a layered retina is formed in cavefish embryos, it is deficient in photoreceptor cells, and in some cases the retinal pigment epithelium has lost its pigmentation. We show that the capacity to exhibit light-entrained retinomotor rhythms has been conserved in the degenerating embryonic eyes of two different Astyanax cavefish populations. The results indicate that loss of circadian retinal function does not precede and is therefore not required for eye degeneration in the blind cavefish.  相似文献   

17.
A multitude of signalling pathways are involved in the process of forming an eye. Here we demonstrate that β-catenin is essential for eye development as inactivation of β-catenin prior to cellular specification in the optic vesicle caused anophthalmia in mice. By achieving this early and tissue-specific β-catenin inactivation we find that retinal pigment epithelium (RPE) commitment was blocked and eye development was arrested prior to optic cup formation due to a loss of canonical Wnt signalling in the dorsal optic vesicle. Thus, these results show that Wnt/β-catenin signalling is required earlier and play a more central role in eye development than previous studies have indicated. In our genetic model system a few RPE cells could escape β-catenin inactivation leading to the formation of a small optic rudiment. The optic rudiment contained several neural retinal cell classes surrounded by an RPE. Unlike the RPE cells, the neural retinal cells could be β-catenin-negative revealing that differentiation of the neural retinal cell classes is β-catenin-independent. Moreover, although dorsoventral patterning is initiated in the mutant optic vesicle, the neural retinal cells in the optic rudiment displayed almost exclusively ventral identity. Thus, β-catenin is required for optic cup formation, commitment to RPE cells and maintenance of dorsal identity of the retina.  相似文献   

18.
19.
SYNOPSIS. The eye is an extraordinary organ in terms of itsdevelopment and evolution. In cave animals, the eye is sometimesreduced or eliminated as a consequence of adaptation to lifein perpetual darkness. We have used the characid teleost Astyanaxmexicanus as a model system to investigate the mechanisms ofeye degeneration during the evolution of a cave vertebrate.Eyed surface populations of Astyanax entered caves during thePleistocene, and their descendants lost their eyes and pigmentation.Astyanax populations exhibiting various degrees of eye regressionhave been reported in 29 Mexican caves. Surface populationswith characteristics of the ancestral stock still exist in thevicinity of these caves. Thus, Astyanax represents one of thefew instances in which the ancestral (surface fish) and thederived (cavefish) developmental modes are extant and availablefor comparative studies. The cavefish embryo develops an opticprimordium consisting of a lens vesicle and optic cup but therudimentary eye arrests in development and degenerates. Herewe report that eye degeneration is accompanied by extensiveapoptosis and downregulation of the Pax-6 gene in the developinglens. The results suggest that alterations in lens developmentare important factors in eye regression during cavefish evolution.  相似文献   

20.
We studied the development and evolution of craniofacial features in the teleost fish, Astyanax mexicanus. This species has an eyed surface dwelling form (surface fish) and many different cave dwelling forms (cavefish) with various degrees of reduced eyes and pigmentation. The craniofacial features we examined are the tooth-bearing maxillary bones, the nasal and antorbital bones, the circumorbital bones, and the opercular bones, all of which show evolutionary modifications in different cavefish populations. Manipulations of eye formation by transplantation of the embryonic lens, by lentectomy, or by removing the optic vesicle showed that eye-dependent and -independent processes change both the surface fish and cavefish craniofacial skeletons. The size of the olfactory pits, which the nasal and antorbital bones define, and the size and positioning of the circumorbital bones were found to correlate with eye development. For the six suborbital bones (SO1-6), the relationship with the developing eye appears to be due to ossification initiated from foci in the suborbital canal of cranial neuromasts, whose patterning is also highly correlated with the presence or absence of an eye. By contrast, we found that the number of maxillary teeth, the number of SO3 bone elements, the positioning of SO4-6 with respect to the opercular bone, and the shape of the opercular bone are not dependent on eye formation and vary among different cavefish populations. The results suggest that evolution of the cavefish craniofacial skeleton is controlled by multiple developmental events, some a direct consequence of eye degeneration and others unrelated to loss of the eye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号