首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Chao Fang  Yi Shang  Dong Xu 《Proteins》2018,86(5):592-598
Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception‐inside‐inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD‐SS. The input to MUFOLD‐SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio‐chemical properties of amino acids, PSI‐BLAST profile, and HHBlits profile. MUFOLD‐SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD‐SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD‐SS outperformed the best existing methods and other deep neural networks significantly. MUFold‐SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html .  相似文献   

2.
Jie Hou  Tianqi Wu  Renzhi Cao  Jianlin Cheng 《Proteins》2019,87(12):1165-1178
Predicting residue-residue distance relationships (eg, contacts) has become the key direction to advance protein structure prediction since 2014 CASP11 experiment, while deep learning has revolutionized the technology for contact and distance distribution prediction since its debut in 2012 CASP10 experiment. During 2018 CASP13 experiment, we enhanced our MULTICOM protein structure prediction system with three major components: contact distance prediction based on deep convolutional neural networks, distance-driven template-free (ab initio) modeling, and protein model ranking empowered by deep learning and contact prediction. Our experiment demonstrates that contact distance prediction and deep learning methods are the key reasons that MULTICOM was ranked 3rd out of all 98 predictors in both template-free and template-based structure modeling in CASP13. Deep convolutional neural network can utilize global information in pairwise residue-residue features such as coevolution scores to substantially improve contact distance prediction, which played a decisive role in correctly folding some free modeling and hard template-based modeling targets. Deep learning also successfully integrated one-dimensional structural features, two-dimensional contact information, and three-dimensional structural quality scores to improve protein model quality assessment, where the contact prediction was demonstrated to consistently enhance ranking of protein models for the first time. The success of MULTICOM system clearly shows that protein contact distance prediction and model selection driven by deep learning holds the key of solving protein structure prediction problem. However, there are still challenges in accurately predicting protein contact distance when there are few homologous sequences, folding proteins from noisy contact distances, and ranking models of hard targets.  相似文献   

3.
Jinbo Xu  Sheng Wang 《Proteins》2019,87(12):1069-1081
This paper reports the CASP13 results of distance-based contact prediction, threading, and folding methods implemented in three RaptorX servers, which are built upon the powerful deep convolutional residual neural network (ResNet) method initiated by us for contact prediction in CASP12. On the 32 CASP13 FM (free-modeling) targets with a median multiple sequence alignment (MSA) depth of 36, RaptorX yielded the best contact prediction among 46 groups and almost the best 3D structure modeling among all server groups without time-consuming conformation sampling. In particular, RaptorX achieved top L/5, L/2, and L long-range contact precision of 70%, 58%, and 45%, respectively, and predicted correct folds (TMscore > 0.5) for 18 of 32 targets. Further, RaptorX predicted correct folds for all FM targets with >300 residues (T0950-D1, T0969-D1, and T1000-D2) and generated the best 3D models for T0950-D1 and T0969-D1 among all groups. This CASP13 test confirms our previous findings: (a) predicted distance is more useful than contacts for both template-based and free modeling; and (b) structure modeling may be improved by integrating template and coevolutionary information via deep learning. This paper will discuss progress we have made since CASP12, the strength and weakness of our methods, and why deep learning performed much better in CASP13.  相似文献   

4.
Meissner M  Koch O  Klebe G  Schneider G 《Proteins》2009,74(2):344-352
We present machine learning approaches for turn prediction from the amino acid sequence. Different turn classes and types were considered based on a novel turn classification scheme. We trained an unsupervised (self-organizing map) and two kernel-based classifiers, namely the support vector machine and a probabilistic neural network. Turn versus non-turn classification was carried out for turn families containing intramolecular hydrogen bonds and three to six residues. Support vector machine classifiers yielded a Matthews correlation coefficient (mcc) of approximately 0.6 and a prediction accuracy of 80%. Probabilistic neural networks were developed for beta-turn type prediction. The method was able to distinguish between five types of beta-turns yielding mcc > 0.5 and at least 80% overall accuracy. We conclude that the proposed new turn classification is distinct and well-defined, and machine learning classifiers are suited for sequence-based turn prediction. Their potential for sequence-based prediction of turn structures is discussed.  相似文献   

5.
MOTIVATION: The prediction of beta-turns is an important element of protein secondary structure prediction. Recently, a highly accurate neural network based method Betatpred2 has been developed for predicting beta-turns in proteins using position-specific scoring matrices (PSSM) generated by PSI-BLAST and secondary structure information predicted by PSIPRED. However, the major limitation of Betatpred2 is that it predicts only beta-turn and non-beta-turn residues and does not provide any information of different beta-turn types. Thus, there is a need to predict beta-turn types using an approach based on multiple sequence alignment, which will be useful in overall tertiary structure prediction. RESULTS: In the present work, a method has been developed for the prediction of beta-turn types I, II, IV and VIII. For each turn type, two consecutive feed-forward back-propagation networks with a single hidden layer have been used where the first sequence-to-structure network has been trained on single sequences as well as on PSI-BLAST PSSM. The output from the first network along with PSIPRED predicted secondary structure has been used as input for the second-level structure-to-structure network. The networks have been trained and tested on a non-homologous dataset of 426 proteins chains by 7-fold cross-validation. It has been observed that the prediction performance for each turn type is improved significantly by using multiple sequence alignment. The performance has been further improved by using a second level structure-to-structure network and PSIPRED predicted secondary structure information. It has been observed that Type I and II beta-turns have better prediction performance than Type IV and VIII beta-turns. The final network yields an overall accuracy of 74.5, 93.5, 67.9 and 96.5% with MCC values of 0.29, 0.29, 0.23 and 0.02 for Type I, II, IV and VIII beta-turns, respectively, and is better than random prediction. AVAILABILITY: A web server for prediction of beta-turn types I, II, IV and VIII based on above approach is available at http://www.imtech.res.in/raghava/betaturns/ and http://bioinformatics.uams.edu/mirror/betaturns/ (mirror site).  相似文献   

6.
A neural network has been used to predict both the location and the type of beta-turns in a set of 300 nonhomologous protein domains. A substantial improvement in prediction accuracy compared with previous methods has been achieved by incorporating secondary structure information in the input data. The total percentage of residues correctly classified as beta-turn or not-beta-turn is around 75% with predicted secondary structure information. More significantly, the method gives a Matthews correlation coefficient (MCC) of around 0.35, compared with a typical MCC of around 0.20 using other beta-turn prediction methods. Our method also distinguishes the two most numerous and well-defined types of beta-turn, types I and II, with a significant level of accuracy (MCCs 0.22 and 0.26, respectively).  相似文献   

7.
In this article, we describe our efforts in contact prediction in the CASP13 experiment. We employed a new deep learning-based contact prediction tool, DeepMetaPSICOV (or DMP for short), together with new methods and data sources for alignment generation. DMP evolved from MetaPSICOV and DeepCov and combines the input feature sets used by these methods as input to a deep, fully convolutional residual neural network. We also improved our method for multiple sequence alignment generation and included metagenomic sequences in the search. We discuss successes and failures of our approach and identify areas where further improvements may be possible. DMP is freely available at: https://github.com/psipred/DeepMetaPSICOV .  相似文献   

8.
Prediction of beta-turns in proteins using neural networks   总被引:7,自引:0,他引:7  
The use of neural networks to improve empirical secondary structure prediction is explored with regard to the identification of the position and conformational class of beta-turns, a four-residue chain reversal. Recently an algorithm was developed for beta-turn predictions based on the empirical approach of Chou and Fasman using different parameters for three classes (I, II and non-specific) of beta-turns. In this paper, using the same data, an alternative approach to derive an empirical prediction method is used based on neural networks which is a general learning algorithm extensively used in artificial intelligence. Thus the results of the two approaches can be compared. The most severe test of prediction accuracy is the percentage of turn predictions that are correct and the neural network gives an overall improvement from 20.6% to 26.0%. The proportion of correctly predicted residues is 71%, compared to a chance level of about 58%. Thus neural networks provide a method of obtaining more accurate predictions from empirical data than a simpler method of deriving propensities.  相似文献   

9.
目的 长非编码RNA(lncRNAs)参与多种重要的生物学过程并与各种人类疾病密切相关,因此,lncRNA-疾病关联预测研究有助于疾病的诊断、治疗和在分子水平理解人类疾病的发生发展机制。目前,大多数lncRNA-疾病关联预测方法倾向于浅层整合lncRNA和疾病的相关信息,忽略网络拓扑结构中的深层嵌入特征;另外通过随机选取lncRNA-疾病非关联对构建负样本训练集合,影响预测方法的鲁棒性。方法 本文提出一种基于网络嵌入的NELDA方法,预测潜在的lncRNA-疾病关联关系。NELDA首先利用lncRNA 表达谱、疾病本体论和已知的lncRNA-疾病关联关系,构建lncRNA相似性网络、疾病相似性网络和lncRNA-疾病关联网络。然后,通过设计4个深度自编码器分别从lncRNA/疾病的相似性网络、lncRNA-疾病关联网络学习lncRNA和疾病的低维网络嵌入特征。串联lncRNA和疾病的相似性网络嵌入特征及lncRNA和疾病的关联网络嵌入特征,分别输入两个支持向量机分类器预测lncRNA-疾病关联。最后,采用加权融合策略融合两个支持向量机分类器的预测结果,给出lncRNA-疾病关联关系的最终预测结果。另外,根据已知的lncRNA-疾病关联对和疾病语义相似性,设计一种负样本选取策略构建可信度相对较高的lncRNA-疾病非关联对样本集,用以改善分类器的鲁棒性,该策略通过设计一种打分函数为每对lncRNA-疾病进行打分,选取得分较低的lncRNA-疾病对作为lncRNA-疾病非关联对样本(即负样本)。结果 十折交叉验证实验结果表明:NELDA能够有效预测lncRNA-疾病关联关系,其AUC达到0.982 7,比现有LDASR和 LDNFSGB方法分别提高了0.062 7和0.020 7。另外,负样本选取策略与决策级加权融合策略能够有效改善NELDA预测性能。胃癌和乳腺癌案例研究中,29/40(72.5%)预测的与胃癌和乳腺癌关联lncRNAs,在近期文献和公共数据库中能够发现相关的支撑证据。结论 这些实验结果表明,NELDA是一种有效的lncRNA-疾病关联关系预测方法,具有挖掘潜在lncRNA-疾病关联关系的能力。  相似文献   

10.
Proteins play important roles in living organisms, and their function is directly linked with their structure. Due to the growing gap between the number of proteins being discovered and their functional characterization (in particular as a result of experimental limitations), reliable prediction of protein function through computational means has become crucial. This paper reviews the machine learning techniques used in the literature, following their evolution from simple algorithms such as logistic regression to more advanced methods like support vector machines and modern deep neural networks. Hyperparameter optimization methods adopted to boost prediction performance are presented. In parallel, the metamorphosis in the features used by these algorithms from classical physicochemical properties and amino acid composition, up to text-derived features from biomedical literature and learned feature representations using autoencoders, together with feature selection and dimensionality reduction techniques, are also reviewed. The success stories in the application of these techniques to both general and specific protein function prediction are discussed.  相似文献   

11.
This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.  相似文献   

12.
Developing new drugs remains prohibitively expensive, time-consuming, and often involves safety issues. Accurate prediction of drug-target interactions (DTIs) can guide the drug discovery process and thus facilitate drug development. Non-Euclidian data such as drug-like molecule structures, key pocket residue structures, and protein interaction networks can be represented effectively using graphs. Therefore, the emerging graph neural network has been rapidly applied to predict DTIs, and proved effective in finding repositioning drugs and accelerating drug discovery. In this review, we provide a brief overview of deep neural networks used in DTI models. Then, we summarize the database required for DTI prediction, followed by a comprehensive introduction of applications of graph neural networks for DTI prediction. We also highlight current challenges and future directions to guide the further development of this field.  相似文献   

13.
药物从研发到临床应用需要耗费较长的时间,研发期间的投入成本可高达十几亿元。而随着医药研发与人工智能的结合以及生物信息学的飞速发展,药物活性相关数据急剧增加,传统的实验手段进行药物活性预测已经难以满足药物研发的需求。借助算法来辅助药物研发,解决药物研发中的各种问题能够大大推动药物研发进程。传统机器学习方法尤其是随机森林、支持向量机和人工神经网络在药物活性方面能够达到较高的预测精度。深度学习由于具有多层神经网络,模型可以接收高维的输入变量且不需要人工限定数据输入特征,可以拟合较为复杂的函数模型,应用于药物研发可以进一步提高各个环节的效率。在药物活性预测中应用较为广泛的深度学习模型主要是深度神经网络(deep neural networks,DNN)、循环神经网络(recurrent neural networks,RNN)和自编码器(auto encoder,AE),而生成对抗网络(generative adversarial networks,GAN)由于其生成数据的能力常常被用来和其他模型结合进行数据增强。近年来深度学习在药物分子活性预测方面的研究和应用综述表明,深度学习模型的准确度和效率均高于传统实验方法和传统机器学习方法。因此,深度学习模型有望成为药物研发领域未来十年最重要的辅助计算模型。  相似文献   

14.
神经网络在蛋白质二级结构预测中的应用   总被引:3,自引:0,他引:3  
介绍了蛋白质二级结构预测的研究意义,讨论了用在蛋白质二级结构预测方面的神经网络设计问题,并且较详尽地评述了近些年来用神经网络方法在蛋白质二级结构预测中的主要工作进展情况,展望了蛋白质结构预测的前景。  相似文献   

15.
We describe AlphaFold, the protein structure prediction system that was entered by the group A7D in CASP13. Submissions were made by three free-modeling (FM) methods which combine the predictions of three neural networks. All three systems were guided by predictions of distances between pairs of residues produced by a neural network. Two systems assembled fragments produced by a generative neural network, one using scores from a network trained to regress GDT_TS. The third system shows that simple gradient descent on a properly constructed potential is able to perform on par with more expensive traditional search techniques and without requiring domain segmentation. In the CASP13 FM assessors' ranking by summed z-scores, this system scored highest with 68.3 vs 48.2 for the next closest group (an average GDT_TS of 61.4). The system produced high-accuracy structures (with GDT_TS scores of 70 or higher) for 11 out of 43 FM domains. Despite not explicitly using template information, the results in the template category were comparable to the best performing template-based methods.  相似文献   

16.
Hamilton N  Burrage K  Ragan MA  Huber T 《Proteins》2004,56(4):679-684
We describe a new method for using neural networks to predict residue contact pairs in a protein. The main inputs to the neural network are a set of 25 measures of correlated mutation between all pairs of residues in two "windows" of size 5 centered on the residues of interest. While the individual pair-wise correlations are a relatively weak predictor of contact, by training the network on windows of correlation the accuracy of prediction is significantly improved. The neural network is trained on a set of 100 proteins and then tested on a disjoint set of 1033 proteins of known structure. An average predictive accuracy of 21.7% is obtained taking the best L/2 predictions for each protein, where L is the sequence length. Taking the best L/10 predictions gives an average accuracy of 30.7%. The predictor is also tested on a set of 59 proteins from the CASP5 experiment. The accuracy is found to be relatively consistent across different sequence lengths, but to vary widely according to the secondary structure. Predictive accuracy is also found to improve by using multiple sequence alignments containing many sequences to calculate the correlations.  相似文献   

17.
The support vector machines (SVMs) method is proposed because it can reflect the sequence-coupling effect for a tetrapeptide in not only a beta-turn or non-beta-turn, but also in different types of beta-turn. The results of the model for 6022 tetrapeptides indicate that the rates of self-consistency for beta-turn types I, I', II, II', VI and VIII and non-beta-turns are 99.92%, 96.8%, 98.02%, 97.75%, 100%, 97.19% and 100%, respectively. Using these training data, the rate of correct prediction by the SVMs for a given protein: rubredoxin (54 residues. 51 tetrapeptides) which includes 12 beta-turn type I tetrapeptides, 1 beta-turn type II tetrapeptide and 38 non-beta-turns reached 82.4%. The high quality of prediction of the SVMs implies that the formation of different beta-turn types or non-beta-turns is considerably correlated with the sequence of a tetrapeptide. The SVMs can save CPU time and avoid the overfitting problem compared with the neural network method.  相似文献   

18.
Cascaded multiple classifiers for secondary structure prediction   总被引:11,自引:0,他引:11       下载免费PDF全文
We describe a new classifier for protein secondary structure prediction that is formed by cascading together different types of classifiers using neural networks and linear discrimination. The new classifier achieves an accuracy of 76.7% (assessed by a rigorous full Jack-knife procedure) on a new nonredundant dataset of 496 nonhomologous sequences (obtained from G.J. Barton and J.A. Cuff). This database was especially designed to train and test protein secondary structure prediction methods, and it uses a more stringent definition of homologous sequence than in previous studies. We show that it is possible to design classifiers that can highly discriminate the three classes (H, E, C) with an accuracy of up to 78% for beta-strands, using only a local window and resampling techniques. This indicates that the importance of long-range interactions for the prediction of beta-strands has been probably previously overestimated.  相似文献   

19.
Optical coherence tomography angiography (OCTA) is a widely applied tool to image microvascular networks with high spatial resolution and sensitivity. Due to limited imaging speed, the artifacts caused by tissue motion can severely compromise visualization of the microvascular networks and quantification of OCTA images. In this article, we propose a deep-learning-based framework to effectively correct motion artifacts and retrieve microvascular architectures. This method comprised two deep neural networks in which the first subnet was applied to distinguish motion corrupted B-scan images from a volumetric dataset. Based on the classification results, the artifacts could be removed from the en face maximum-intensity-projection (MIP) OCTA image. To restore the disturbed vasculature induced by artifact removal, the second subnet, an inpainting neural network, was utilized to reconnect the broken vascular networks. We applied the method to postprocess OCTA images of the microvascular networks in mouse cortex in vivo. Both image comparison and quantitative analysis show that the proposed method can significantly improve OCTA image by efficiently recovering microvasculature from the overwhelming motion artifacts.  相似文献   

20.
A neural network-based method has been developed for the prediction of beta-turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST-generated position-specific scoring matrices. The initial predictions from the first network and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been achieved by using evolutionary information contained in the multiple sequence alignment. The final network yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426 nonhomologous protein chains. The corresponding Q(pred), Q(obs), and Matthews correlation coefficient values are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published beta-turn prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been developed based on this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号