首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Singh SK  Babu MM  Balaram P 《Proteins》2003,51(2):167-171
The possible occurrence of a novel helix terminating structural motif in proteins involving a stabilizing short C-H...O interaction has been examined using a dataset of 634 non-homologous protein structures (相似文献   

2.
The triple-helix is a unique secondary structural motif found primarily within the collagens. In collagen, it is a homo- or hetero-tripeptide with a repeating primary sequence of (Gly-X-Y)(n), displaying characteristic peptide backbone dihedral angles. Studies of bulk collagen fibrils indicate that the triple-helix must be a highly repetitive secondary structure, with very specific constraints. Primary sequence analysis shows that most collagen molecules are primarily triple-helical; however, no high-resolution structure of any entire protein is yet available. Given the drastic morphological differences in self-assembled collagen structures with subtle changes in assembly conditions, a detailed knowledge of the relative locations of charged and sterically bulky residues in collagen is desirable. Its repetitive primary sequence and highly conserved secondary structure make collagen, and the triple-helix in general, an ideal candidate for a general parameterization for prediction of residue locations and for the use of a helical wheel in the prediction of residue orientation. Herein, a statistical analysis of the currently available high-resolution X-ray crystal structures of model triple-helical peptides is performed to produce an experimentally based parameter set for predicting peptide backbone and C(beta) atom locations for the triple-helix. Unlike existing homology models, this allows easy prediction of an entire triple-helix structure based on all existing high-resolution triple-helix structures, rather than only on a single structure or on idealized parameters. Furthermore, regional differences based on the helical propensity of residues may be readily incorporated. The parameter set is validated in terms of the predicted bond lengths, backbone dihedral angles, and interchain hydrogen bonding.  相似文献   

3.
The backbone NH groups of proteins can form N1N3‐bridges to δ‐ve or anionic acceptor atoms when the tripeptide in which they occur orients them appropriately, as in the RL and LR nest motifs, which have dihedral angles 1,2‐αRαL and 1,2‐αLαR, respectively. We searched a protein database for structures with backbone N1N3‐bridging to anionic atoms of the polypeptide chain and found that RL and LR nests together accounted for 92% of examples found (88% RL nests, 4% LR nests). Almost all the remaining 8% of N1N3‐bridges were found within a third tripeptide motif which has not been described previously. We term this a “crown,” because of the disposition of the tripeptide CO groups relative to the three NH groups and the acceptor oxygen anion, and the crown together with its bridged anion we term a “crown bridge.” At position 2 of these structures the dihedral angles have a tight αR distribution, but at position 1 they have a wider distribution, with ? and ψ values generally being lower than those at position 1. Over half of crown bridges involve the backbone CO group three residues N‐terminal to the tripeptide, the remainder being to other main‐chain or side‐chain carbonyl groups. As with nests, bridging of crowns to oxygen atoms within ligands was observed, as was bridging to the sulfur atom of an iron‐sulfur cluster. This latter property may be of significance for protein evolution. Proteins 2015; 83:2067–2076. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
The conformational features of a chemically synthesized 23-residue glycopeptide construct (II) carrying Gal-beta-(1,3)-alpha-GalNAc and its deglycosylated counterpart (I; Gal: galactose; GalNAc: N-acetyl galactosamine) derived from the C-terminal domain of human salivary mucin (MUC7) were investigated using CD spectroscopy as well as molecular dynamic simulation studies. The corresponding deglycosylated peptide (I) was essentially used to compare and study the influence of the sugar moiety on peptide backbone conformation. CD measurements in aqueous medium revealed that the apopeptide (I) contains significant populations of beta-strand conformation while the glycopeptide (II) possess, partly, helical structure. This transition in the secondary structure upon glycosylation from beta-strand to helical conformation clearly demonstrates that the carbohydrate moiety exerts significant influence on the peptide backbone. On the other hand, upon titrating structure stabilizing organic cosolvent, trifluoroethanol (TFE), both the peptides showed pronounced helical structure. However, the propensity for helical structure formation is less pronounced in glycopeptide compared to apopeptide suggesting that the bulky carbohydrate moiety possibly posing steric hindrance to the formation of TFE-induced secondary structure in II. Energy-minimized molecular model for the glycopeptide revealed that the preferred helix conformation in aqueous medium appears to be stabilized by the hydrogen-bonded salt bridge like interaction between carbohydrate --OH and Lys-10 side--N(+)H(3) group. Size exclusion chromatographic analysis of both (glyco)peptides I and II showed an apparent Kd of 2.3 and 0.52 microM, respectively, indicating that glycopeptide (II) has greater tendency for self-association. Due to high amphipathic character as well as due to the presence of a leucine zipper motif ( approximately LLYMKNLL approximately ), which is known to increase the stability at the coiled-coil interface via hydrophobic interactions, we propose therefore that, this domain could be one of the key elements involved in the self-association of intact MUC7 in vivo. Profound conformational effects governed by glycosylation exemplified herein could have implications in determining structure-function relationships of mucin glycoproteins.  相似文献   

5.
The vesicular acetylcholine transporter (VAChT) contains six conserved sequence motifs that are rich in proline and glycine. Because these residues can have special roles in the conformation of polypeptide backbone, the motifs might have special roles in conformational changes during transport. Using published bioinformatics insights, the amino acid sequences of the 12 putative, helical, transmembrane segments of wild-type and mutant VAChTs were analyzed for propensity to form non-alpha-helical conformations and molecular notches. Many instances were found. In particular, high propensity for kinks and notches are robustly predicted for motifs D2, C and C'. Mutations in these motifs either increase or decrease Vmax for transport, but they rarely affect the equilibrium dissociation constants for ACh and the allosteric inhibitor, vesamicol. The near absence of equilibrium effects implies that the mutations do not alter the backbone conformation. In contrast, the Vmax effects demonstrate that the mutations alter the difficulty of a major conformational change in transport. Interestingly, mutation of an alanine to a glycine residue in motif C significantly increases the rates for reorientation across the membrane. These latter rates are deduced from the kinetics model of the transport cycle. This mutation is also predicted to produce a more flexible kink and tighter tandem notches than are present in wild-type. For the full set of mutations, faster reorientation rates correlate with greater predicted propensity for kinks and notches. The results of the study argue that conserved motifs mediate conformational changes in the VAChT backbone during transport.  相似文献   

6.
Nine neurodegenerative diseases, including Huntington's disease, are associated with the aggregation of proteins containing expanded polyglutamine sequences. The end result of polyglutamine aggregation is a beta-sheet-rich deposit. There exists evidence that an important intermediate in the aggregation process involves intramolecular beta-hairpin structures. However, little is known about the starting state, monomeric polyglutamine. Most experimental studies of monomeric polyglutamine have concluded that the backbone is completely disordered. However, such studies are hampered by the inherent tendency for polyglutamine to aggregate. A recent computational study suggested that the glutamine residues in polyglutamine tracts have a significant propensity to adopt the left-handed polyproline II (P(II)) helical conformation. In this work, we use NMR spectroscopy to demonstrate that glutamine residues possess a high propensity to adopt the P(II) conformation. We present circular dichroism spectra that indicate the presence of significant amounts of P(II) helical structure in short glutamine tracts. These data demonstrate that the propensity to adopt the P(II) structure is retained for glutamine repeats of up to at least 15 residues. Although other structures, such as alpha-helices and beta-sheets, become possible at greater lengths, our data indicate that glutamine residues in monomeric polyglutamine have a significant propensity to adopt the P(II) structure, although not necessarily in long contiguous helical stretches. We note that we have no evidence to suggest that the observed P(II) helical structure is a precursor to polyglutamine aggregation. Nonetheless, increased understanding of monomeric polyglutamine structures will aid our understanding of the aggregation process.  相似文献   

7.
Delineating structures of the transition states in protein folding reactions has provided great insight into the mechanisms by which proteins fold. The most common method for obtaining this information is Φ-value analysis, which is carried out by measuring the changes in the folding and unfolding rates caused by single amino acid substitutions at various positions within a given protein. Canonical Φ-values range between 0 and 1, and residues displaying high values within this range are interpreted to be important in stabilizing the transition state structure, and to elicit this stabilization through native-like interactions. Although very successful in defining the general features of transition state structures, Φ-value analysis can be confounded when non-native interactions stabilize this state. In addition, direct information on backbone conformation within the transition state is not provided. In the work described here, we have investigated structure formation at a conserved β-bulge (with helical conformation) in the Fyn SH3 domain by characterizing the effects of substituting all natural amino acids at one position within this structural motif. By comparing the effects on folding rates of these substitutions with database-derived local structure propensity values, we have determined that this position adopts a non-native backbone conformation in the folding transition state. This result is surprising because this position displays a high and canonical Φ-value of 0.7. This work emphasizes the potential role of non-native conformations in folding pathways and demonstrates that even positions displaying high and canonical Φ-values may, nevertheless, adopt a non-native conformation in the transition state.  相似文献   

8.
Conformational analysis of long spacers in PROSITE patterns   总被引:2,自引:0,他引:2  
To determine if variable sequences (spacers) between conserved positions in a sequence motif or pattern share a consensus structure, three-dimensional structures containing PROSITE patterns with spacers of fixed length greater than three residues were analyzed. Structural similarities of a given pattern were evaluated by computing the backbone phi, psi and side-chain chi1 dihedral order parameters. The exact bias information in analyzing the conformational variability of the patterns was taken into account by introducing a new parameter, the bias coefficient, which describes the number and distribution of residue types found at each position of a pattern in the structures. The results of the analyses show that backbone conformational heterogeneity at a given position in a sequence motif does not necessarily correlate with the residue-type variability at that position, and the long spacer region can adopt a well-defined backbone conformation, in addition to the conserved residues. Furthermore, a PROSITE pattern may be redefined to yield two or more "refined" regular expressions, each corresponding to a distinct backbone conformation. A way in which the observed structural consensus in a pattern may be employed to improve the accuracy of function prediction from sequence is suggested.  相似文献   

9.
The nest is a protein motif of three consecutive amino acid residues with dihedral angles 1,2‐αRαL (RL nests) or 1,2‐αLαR (LR nests). Many nests form a depression in which an anion or δ‐negative acceptor atom is bound by hydrogen bonds from the main chain NH groups. We have determined the extent and nature of this bridging in a database of protein structures using a computer program written for the purpose. Acceptor anions are bound by a pair of bridging hydrogen bonds in 40% of RL nests and 20% of LR nests. Two thirds of the bridges are between the NH groups at Positions 1 and 3 of the motif (N1N3‐bridging)—which confers a concavity to the nest; one third are of the N2N3 type—which does not. In bridged LR nests N2N3‐bridging predominates (14% N1N3: 75% N2N3), whereas in bridged RL nests the reverse is true (69% N1N3: 25% N2N3). Most bridged nests occur within larger motifs: 45% in (hexapeptide) Schellman loops with an additional 4 → 0 hydrogen bond (N1N3), 11% in Schellman loops with an additional 5 → 1 hydrogen bond (N2N3), 12% in a composite structure including a type 1β‐bulge loop and an asx‐ or ST‐ motif (N1N3)—remarkably homologous to the N1N3‐bridged Schellman loop—and 3% in a composite structure including a type 2β‐bulge loop and an asx‐motif (N2N3). A third hydrogen bond is a previously unrecognized feature of Schellman loops as those lacking bridged nests have an additional 4 → 0 hydrogen bond. Proteins 2014; 82:3023–3031. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
The solution conformation of three peptides corresponding to the two beta-hairpins and the alpha-helix of the protein L B1 domain have been analyzed by circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR). In aqueous solution, the three peptides show low populations of native and non-native locally folded structures, but no well-defined hairpin or helix structures are formed. In 30% aqueous trifluoroethanol (TFE), the peptide corresponding to the alpha-helix adopts a high populated helical conformation three residues longer than in the protein. The hairpin peptides aggregate in TFE, and no significant conformational change occurs in the NMR observable fraction of molecules. These results indicate that the helical peptide has a significant intrinsic tendency to adopt its native structure and that the hairpin sequences seem to be selected as non-helical. This suggests that these sequences favor the structure finally attained in the protein, but the contribution of the local interactions alone is not enough to drive the formation of a detectable population of native secondary structures. This pattern of secondary structure tendencies is different to those observed in two structurally related proteins: ubiquitin and the protein G B1 domain. The only common feature is a certain propensity of the helical segments to form the native structure. These results indicate that for a protein to fold, there is no need for large native-like secondary structure propensities, although a minimum tendency to avoid non-native structures and to favor native ones could be required.  相似文献   

11.
Intrinsically disordered proteins are found extensively in cell signaling pathways where they often are targets of posttranslational modifications e.g. phosphorylation. Such modifications can sometimes induce or disrupt secondary structure elements present in the modified protein. CD79a and CD79b are membrane-spanning, signal-transducing components of the B-cell receptor. The cytosolic domains of these proteins are intrinsically disordered and each has an immunoreceptor tyrosine-based activation motif (ITAM). When an antigen binds to the receptor, conserved tyrosines located in the ITAMs are phosphorylated which initiate further downstream signaling. Here we use NMR spectroscopy to examine the secondary structure propensity of the cytosolic domains of CD79a and CD79b in vitro before and after phosphorylation. The phosphorylation patterns are identified through analysis of changes of backbone chemical shifts found for the affected tyrosines and neighboring residues. The number of the phosphorylated sites is confirmed by mass spectrometry. The secondary structure propensities are calculated using the method of intrinsic referencing, where the reference random coil chemical shifts are measured for the same protein under denaturing conditions. Our analysis revealed that CD79a and CD79b both have an overall propensity for α-helical structure that is greatest in the C-terminal region of the ITAM. Phosphorylation of CD79a caused a decrease in helical propensity in the C-terminal ITAM region. For CD79b, the opposite was observed and phosphorylation resulted in an increase of helical propensity in the C-terminal part.  相似文献   

12.
To examine how a short secondary structural element derived from a native protein folds when in a different protein environment, we inserted an 11-residue beta-sheet segment (cassette) from human immunoglobulin fold, Fab new, into an alpha-helical coiled-coil host protein (cassette holder). This de novo design protein model, the structural cassette mutagenesis (SCM) model, allows us to study protein folding principles involving both short- and long-range interactions that affect secondary structure stability and conformation. In this study, we address whether the insertion of this beta-sheet cassette into the alpha-helical coiled-coil protein would result in conformational change nucleated by the long-range tertiary stabilization of the coiled-coil, therefore overriding the local propensity of the cassette to form beta-sheet, observed in its native immunoglobulin fold. The results showed that not only did the nucleating helices of the coiled-coil on either end of the cassette fail to nucleate the beta-sheet cassette to fold with an alpha-helical conformation, but also the entire chimeric protein became a random coil. We identified two determinants in this cassette that prevented coiled-coil formation: (1) a tandem dipeptide NN motif at the N-terminal of the beta-sheet cassette, and (2) the hydrophilic Ser residue, which would be buried in the hydrophobic core if the coiled-coil structure were to fold. By amino acid substitution of these helix disruptive residues, that is, either the replacement of the NN motif with high helical propensity Ala residues or the substitution of Ser with Leu to enhance hydrophobicity, we were able to convert the random coil chimeric protein into a fully folded alpha-helical coiled-coil. We hypothesized that this NN motif is a "secondary structural specificity determinant" which is very selective for one type of secondary structure and may prevent neighboring residues from adopting an alternate protein fold. These sequences with secondary structural specificity determinants have very strong local propensity to fold into a specific secondary structure and may affect overall protein folding by acting as a folding initiation site.  相似文献   

13.
This study tested expectations of the palatable forage hypothesis for Atta sexdens (L.). Literature records on Atta and Acromyrmex nest density in the Neotropics were analyzed and A. sexdens demographical aspects were studied in six transects located along the Colombian Amazon River. Literature research results did not show that Atta and Acromyrmex nest densities are consistently higher in disturbed habitats. In transects, 56 active and 182 inactive nests were found in 2008. Higher active nest numbers and densities were determined for 1992, 1999, and 2006. Nests were present in old forest, in agricultural plot and grassland secondary forest, and absent from open spaces around houses, grasslands, agricultural plots, and a particular sector of old forest. Nest densities were higher in secondary forest. Between 1992 and 2008, the size of disturbed areas increased, whereas nest numbers and densities diminished. Average nest age was higher in secondary forest, but maximum nest age was comparable in the three habitats. On average, nests were superficially larger in old forest. Nests were mostly established in old forest, at sites without fallen trees. Almost all of those currently present in secondary forest were established in old forest before any disturbance occurred. In disturbed habitats, nest inactivity was slightly higher and possibly affected by human control efforts. This study suggested that the palatable forage hypothesis alone did not explain observed demographic patterns. Soil physiochemical variables or microclimatic conditions also are thought to play important roles in determining A. sexdens demography.  相似文献   

14.
Conformational equilibrium within the ubiquitous GNRA tetraloop motif was simulated at the ensemble level, including 10 000 independent all-atom molecular dynamics trajectories totaling over 110 µs of simulation time. This robust sampling reveals a highly dynamic structure comprised of 15 conformational microstates. We assemble a Markov model that includes transitions ranging from the nanosecond to microsecond timescales and is dominated by six key loop conformations that contribute to fluctuations around the native state. Mining of the Protein Data Bank provides an abundance of structures in which GNRA tetraloops participate in tertiary contact formation. Most predominantly observed in the experimental data are interactions of the native loop structure within the minor groove of adjacent helical regions. Additionally, a second trend is observed in which the tetraloop assumes non-native conformations while participating in multiple tertiary contacts, in some cases involving multiple possible loop conformations. This tetraloop flexibility can act to counterbalance the energetic penalty associated with assuming non-native loop structures in forming tertiary contacts. The GNRA motif has thus evolved not only to readily participate in simple tertiary interactions involving native loop structure, but also to easily adapt tetraloop secondary conformation in order to participate in larger, more complex tertiary interactions.  相似文献   

15.
A 34-amino acid portion of the third domain of alpha-fetoprotein possesses antigrowth and anticancer activities. Three analogs of this sequence were chemically synthesized, in which the two cysteines of the original sequence were replaced by alanines, glycines or serines. The original cysteine and alanine peptides formed trimers at 0.20 g/L in pH 7.4 phosphate buffer, and the glycine and serine peptides formed dimers. Trimer preparations were more potent in inhibiting estrogen-induced growth in the mouse uterine assays than the two dimeric oligomers. Of salient importance is that the alanine peptide retained its trimeric form in solution much longer than the cysteine peptide. Antigrowth assays were performed starting with stock solutions at a peptide concentration of 0.20 g/L, because at very high peptide concentration (8.0 g/L) the peptides aggregated extensively. All the peptides, although differing in biological activity, had almost identical secondary structures. Unlike alpha-fetoprotein, the three peptides have low amounts of alpha-helix. Trifluoroethanol has the ability to convert peptides into a helical conformation when they have a propensity for that structure. At trifluoroethanol concentrations of 20% and higher, the alanine and glycine peptides were changed into highly helical structures.  相似文献   

16.
Despite the clear importance of the left-handed polyproline II (PPII) helical conformation in many physiologically important processes as well as its potential significance in protein unfolded states, little is known about the physical determinants of this conformation. We present here a scale of relative PPII helix-forming propensities measured for all residues, except tyrosine and tryptophan, in a proline-based host peptide system. Proline has the highest measured propensity in this system, a result of strong steric interactions that occur between adjacent prolyl rings. The other measured propensities are consistent with backbone solvation being an important component in PPII helix formation. Side chain to backbone hydrogen bonding may also play a role in stabilizing this conformation. The PPII helix-forming propensity scale will prove useful in future studies of the conformational properties of proline-rich sequences as well as provide insights into the prevalence of PPII helices in protein unfolded states.  相似文献   

17.
Wang J  Feng JA 《Protein engineering》2003,16(11):799-807
This paper reports an extensive sequence analysis of the alpha-helices of proteins. alpha-Helices were extracted from the Protein Data Bank (PDB) and were divided into groups according to their sizes. It was found that some amino acids had differential propensity values for adopting helical conformation in short, medium and long alpha-helices. Pro and Trp had a significantly higher propensity for helical conformation in short helices than in medium and long helices. Trp was the strongest helix conformer in short helices. Sequence patterns favoring helical conformation were derived from a neighbor-dependent sequence analysis of proteins, which calculated the effect of neighboring amino acid type on the propensity of residues for adopting a particular secondary structure in proteins. This method produced an enhanced statistical significance scale that allowed us to explore the positional preference of amino acids for alpha-helical conformations. It was shown that the amino acid pair preference for alpha-helix had a unique pattern and this pattern was not always predictable by assuming proportional contributions from the individual propensity values of the amino acids. Our analysis also yielded a series of amino acid dyads that showed preference for alpha-helix conformation. The data presented in this study, along with our previous study on loop sequences of proteins, should prove useful for developing potential 'codes' for recognizing sequence patterns that are favorable for specific secondary structural elements in proteins.  相似文献   

18.
The aggregation behavior of peptides Ac‐VQIVYK‐amide (AcPHF6) and Ac‐QIVYK‐amide (AcPHF5) from the amyloidogenic protein tau was examined by atomic force microscopy (AFM) and fluorescence microscopy. Although AcPHF5 did not show enhancement of thioflavin T (ThT) fluorescence in aqueous buffer, distinct aggregates were discernible when peptide was dissolved in organic solvents such as methanol (MeOH), trifluoroethanol (TFE), and hexafluoroisopropanol (HFIP) dried on mica and examined by AFM. Self‐association was evident even though the peptide did not have the propensity to form secondary structures in the organic solvents. In dried films, the peptide adopts predominantly β‐conformation which results in the formation of distinct aggregates. ThT fluorescence spectra and fluorescence images indicate the formation of fibrils when AcPHF6 solutions in organic solvents were diluted into buffer. AcPHF6 had the ability to organize into fibrillar structures when AFM samples were prepared from peptide dissolved in MeOH, TFE, HFIP, and also when diluted into buffer. AcPHF6 showed propensity for β‐structure in aqueous buffer. In MeOH and TFE, AcPHF6 showed helical and β‐structure. Morphology of the fibrils was dependent on peptide conformation in the organic solvents. The structures observed for AcPHF6 are formed rapidly and long incubation periods in the solvents are not necessary. The structures with varying morphologies observed for AcPHF5 and AcPHF6 appear to be mediated by surfaces such as mica and the organic solvents used for dissolution of the peptides. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Amino acid propensities for the collagen triple-helix   总被引:2,自引:0,他引:2  
Determination of the tendencies of amino acids to form alpha-helical and beta-sheet structures has been important in clarifying stabilizing interactions, protein design, and the protein folding problem. In this study, we have determined for the first time a complete scale of amino acid propensities for another important protein motif: the collagen triple-helix conformation with its Gly-X-Y repeating sequence. Guest triplets of the form Gly-X-Hyp and Gly-Pro-Y are used to quantitate the conformational propensities of all 20 amino acids for the X and Y positions in the context of a (Gly-Pro-Hyp)(8) host peptide. The rankings for both the X and Y positions show the highly stabilizing nature of imino acids and the destabilizing effects of Gly and aromatic residues. Many residues show differing propensities in the X versus Y position, related to the nonequivalence of these positions in terms of interchain interactions and solvent exposure. The propensity of amino acids to adopt a polyproline II-like conformation plays a role in their triple-helix rankings, as shown by a moderate correlation of triple-helix propensity with frequency of occurrence in polyproline II-like regions. The high propensity of ionizable residues in the X position suggests the importance of interchain hydrogen bonding directly or through water to backbone carbonyls or hydroxyprolines. The low propensity of side chains with branching at the C(delta) in the Y position supports models suggesting these groups block solvent access to backbone C=O groups. These data provide a first step in defining sequence-dependent variations in local triple-helix stability and binding, and are important for a general understanding of side chain interactions in all proteins.  相似文献   

20.
W. V. Brelsford 《Ostrich》2013,84(3):170-178
Cooper, J. 1986. Biology of the Bank Cormorant, Part 4: Nest construction and characteristics. Ostrich 57: 170–179.

Bank Cormorants Phalacrocorax neglectus construct their nests of material gathered by diving. Males undertake diving bouts of approximately 3–5 min, made up of several dives lasting on average 28 s. Nest material is gathered throughout the breeding cycle: number of diving bouts per day varies from a mean of 7,6 during pre-egg laying to 1,5 bouts per day when rearing young in the nest. Nest building recommences within 24 h of loss of nest due to storms. Both sexes occasionally steal nest material from the nests of neighbours. Bank Cormorants sometimes defecate onto their nests. This is assumed to make the nests better able to withstand rough seas. Nest construction takes approximately 34 d, a period similar to that of other ground-nesting species of cormorants. Construction of a nest in 34 d represents 238 diving bouts of a total duration of 18 h. Nests are heavy (up to 6 kg) and are made up primarily of seaweed. Feathers, sticks and artificial material are also incorporated into the nest. Bank Cormorant nests are large (up to 54 litres in total volume). Nests do not change significantly in size between egg laying and hatching. Nests in which at least one egg hatches are larger in all dimensions measured than those in which no eggs hatch. Nests are larger at the time of laying of repeat clutches than at the time of laying the first clutch. The Bank Cormorant's seaweed nest has enabled it to breed on bare offshore rocks where no nest material exists. The species' large nest is a necessary prerequisite for successful breeding close to the sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号