首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Peptides have been an integral part of the collagen triple-helix structure story, and have continued to serve as useful models for biophysical studies and for establishing biologically important sequence-structure-function relationships. High resolution structures of triple-helical peptides have confirmed the basic Ramachandran triple-helix model and provided new insights into the hydration, hydrogen bonding, and sequence dependent helical parameters in collagen. The dependence of collagen triple-helix stability on the residues in its (Gly-X-Y)(n) repeating sequence has been investigated by measuring melting temperatures of host-guest peptides and an on-line collagen stability calculator is now available. Although the presence of Gly as every third residue is essential for an undistorted structure, interruptions in the repeating (Gly-X-Y)(n) amino acid sequence pattern are found in the triple-helical domains of all nonfibrillar collagens, and are likely to play a role in collagen binding and degradation. Peptide models indicate that small interruptions can be incorporated into a rod-like triple-helix with a highly localized effect, which perturbs hydrogen bonds and places the standard triple-helices on both ends out of register. In contrast to natural interruptions, missense mutations which replace one Gly in a triple-helix domain by a larger residue have pathological consequences, and studies on peptides containing such Gly substitutions clarify their effect on conformation, stability, and folding. Recent studies suggest peptides may also be useful in defining the basic principles of collagen self-association to the supramolecular structures found in tissues.  相似文献   

2.
The collagen model peptide with sequence (Pro-Hyp-Gly)4-Pro-Gly-(Pro-Hyp-Gly)5 contains a central Gly-Pro-Gly interruption in the consensus collagen sequence. Its high-resolution crystal structure defines the molecular consequences of such an interruption for the collagen triple-helical conformation, and provides insight into possible structural and biological roles of similar interruptions in the -Gly-X-Y- repeating pattern found in non-fibrillar collagens. The peptide (denoted as the Hyp minus peptide or Hyp-) forms a rod-like triple helix structure without any bend or kink, and crystallizes in a quasi-hexagonal lattice. The two Pro-Hyp-Gly zones adopt the typical triple-helical collagen conformation with standard Rich and Crick II hydrogen bonding topology. Notably, the central zone containing the Gly-Pro-Gly interruption deviates from the standard structure in terms of hydrogen bonding topology, torsion angles, helical, and superhelical parameters. These deviations are highly localized, such that the standard features are regained within one to two residues on either side. Conformational variations and high temperature factors seen for the six chains of the asymmetric unit in the zone around the interruption point to the presence of a local region of considerable plasticity and flexibility embedded within two highly rigid and ordered standard triple-helical segments. The structure suggests a role for Gly-X-Gly interruptions as defining regions of flexibility and molecular recognition in the otherwise relatively uniform repeating collagen conformation.  相似文献   

3.
Mohs A  Li Y  Doss-Pepe E  Baum J  Brodsky B 《Biochemistry》2005,44(6):1793-1799
Missense mutations in the collagen triple-helix that replace one of the required Gly residues in the (Gly-Xaa-Yaa)(n)() repeating sequence have been implicated in various disorders. Although most hereditary collagen disorders are rare, a common occurrence of a Gly replacement mutation is found in the collagenous domain of mannose binding lectin (MBL). A Gly --> Asp mutation at position 54 in MBL is found at a frequency as high as 30% in certain populations and leads to increased susceptibility to infections. The structural and energetic consequences of this mutation are investigated by comparing a triple-helical peptide containing the N-terminal Gly-X-Y units of MBL with the homologous peptide containing the Gly to Asp replacement. The mutation leads to a loss of triple-helix content but only a small decrease in the stability of the triple-helix (DeltaT(m) approximately 2 degrees C) and no change in the calorimetric enthalpy. NMR studies on specifically labeled residues indicate the portion of the peptide C-terminal to residue 54 is in a highly ordered triple-helix in both peptides, while residues N-terminal to the mutation site have a weak triple-helical signal in the parent peptide and are completely disordered in the mutant peptide. These results suggest that the N-terminal triplet residues are contributing little to the stability of this peptide, a hypothesis confirmed by the stability and enthalpy of shorter peptides containing only the region C-terminal to the mutation site. The Gly to Asp replacement at position 54 in MBL occurs at the boundary of a highly stable triple-helix region and a very unstable sequence. The junctional position of this mutation minimizes its destabilizing effect, in contrast with the significant destabilization seen for Gly replacements in peptides modeling collagen diseases.  相似文献   

4.
We have isolated two overlapping cDNA clones covering 2425 base pairs encoding a short type VIII collagen chain synthesized by rabbit corneal endothelial cells. The cDNAs encode an open reading frame of 744 amino acid residues containing a triple-helical domain of 454 residues flanked by 117- and 173-residue amino and carboxyl non-triple-helical domains (called NC2 and NC1, respectively). Based on the identity between the DNA-derived amino acid sequence and the amino acid sequence of a type VIII collagen CNBr peptide obtained from rabbit corneal Descemet's membrane, we conclude that the cDNAs code for a type VIII collagen chain. We give this chain the designation alpha 1(VIII). The alpha 1(VIII) triple-helical domain contains eight imperfections in the Gly-X-Y repeated structure with Gly-X instead of a full triplet. The length of the triple-helical domain and number and relative locations of these imperfections are remarkably similar to those of chicken alpha 1(X) collagen. The amino acid sequence of the carboxyl three-quarters of the NC1 domain has high sequence similarity to that of alpha 1(X) collagen. These data suggest that the triple-helix coding portions and carboxyl three-quarters of the NC1 domains of the alpha 1(VIII) and alpha 1(X) genes have a common evolutionary origin.  相似文献   

5.
The effect of heparin on the conformation and stability of triple-helical peptide models of the collagen tail of asymmetric acetylcholinesterase expands our understanding of heparin interactions with proteins and presents an opportunity for clarifying the nature of binding of ligands to collagen triple-helix domains. Within the collagen tail of AChE, there are two consensus sequences for heparin binding of the form BBXB, surrounded by additional basic residues. Circular dichroism studies were used to determine the effect of the addition of increasing concentrations of heparin on triple-helical peptide models for the heparin binding domains, including peptides in which the basic residues within and surrounding the consensus sequence were replaced by alanine residues. The addition of heparin caused an increased triple-helix content with saturation properties for the peptide modeling the C-terminal site, while precipitation, with no increased helix content resulted from heparin addition to the peptide modeling the N-terminal site. The results suggest that the two binding sites with a similar triple-helical conformation have distinctive ways of interacting with heparin, which must relate to small differences in the consensus sequence (GRKGR vs GKRGK) and in the surrounding basic residues. Addition of heparin increased the thermal stability of all peptides containing the consensus sequence. Heparan sulfate produced conformational and stabilization effects similar to those of heparin, while chondroitin sulfate led to a cloudy solution, loss of circular dichroism signal, and a smaller increase in thermal stability. Thus, specificity in both the sequence of the triple helix and the type of glycosaminoglycan is required for this interaction.  相似文献   

6.
Alexandrescu AT 《Proteins》2004,56(1):117-129
Introductory biochemistry texts often note that the fold of a protein is completely defined when the dihedral angles phi and psi are known for each amino acid. This assertion was examined with torsion angle dynamics and simulated annealing (TAD/SA) calculations of protein G using only dihedral angle restraints. When all dihedral angles were restrained to within 1 degrees of the values of the X-ray structure, the TAD/SA structures gave a backbone root mean square deviation to the target of 4 A. Factors that contributed to divergence from the correct solution include deviations of peptide bonds from planarity, internal conflicts resulting from the nonuniform energies of different phi, psi combinations, and relaxation to extended conformations in the absence of long-range constraints. Simulations including hydrogen-bond restraints showed that even a few long-range contacts constrain the fold better than a complete set of accurate dihedral restraints. A procedure is described for TAD/SA calculations using hydrogen-bond restraints, idealized dihedral restraints for residues in regular secondary structures, and "hydrophobic distance restraints" derived from the positions of hydrophobic residues in the amino acid sequence. The hydrogen-bond restraints are treated as inviolable, whereas violated hydrophobic restraints are removed following reduction of restraint upper bounds from 2 to 1 times the predicted radius of gyration. The strategy was tested with simulated restraints from X-ray structures of proteins from different fold classes and NMR data for cold shock protein A that included only backbone chemical shifts and hydrogen bonds obtained from a long-range HNCO experiment.  相似文献   

7.
Backbone mimicry by the formation of closed-loop C7, C10 and C13 (mimics of gamma-, beta- and alpha-turns) conformations through side chain-main chain hydrogen bonds by polar groups is a frequent observation in protein structures. A data set of 250 non-homologous and high-resolution protein crystal structures was used to analyze these conformations for their characteristic features. Seven out of the nine polar residues (Ser, Thr, Asn, Asp, Gln, Glu and His) have hydrogen bonding groups in their side chains which can participate in such mimicry and as many as 15% of all these polar residues engage in such conformations. The distributions of dihedral angles of these mimics indicate that only certain combinations of the dihedral angles involved aid the formation of these mimics. The observed examples were categorized into various classes based on these combinations, resulting in well defined motifs. Asn and Asp residues show a very high capability to perform such backbone secondary structural mimicry. The most highly mimicked backbone structure is of the C10 conformation by the Asx residues. The mimics formed by His, Ser, Thr and Glx residues are also discussed. The role of such conformations in initiating the formation of regular secondary structures during the course of protein folding seems significant.  相似文献   

8.
Tertiary structure prediction of a protein from its amino acid sequence is one of the major challenges in the field of bioinformatics. Hierarchical approach is one of the persuasive techniques used for predicting protein tertiary structure, especially in the absence of homologous protein structures. In hierarchical approach, intermediate states are predicted like secondary structure, dihedral angles, Cα-Cα distance bounds, etc. These intermediate states are used to restraint the protein backbone and assist its correct folding. In the recent years, several methods have been developed for predicting dihedral angles of a protein, but it is difficult to conclude which method is better than others. In this study, we benchmarked the performance of dihedral prediction methods ANGLOR and SPINE X on various datasets, including independent datasets. TANGLE dihedral prediction method was not benchmarked (due to unavailability of its standalone) and was compared with SPINE X and ANGLOR on only ANGLOR dataset on which TANGLE has reported its results. It was observed that SPINE X performed better than ANGLOR and TANGLE, especially in case of prediction of dihedral angles of glycine and proline residues. The analysis suggested that angle shifting was the foremost reason of better performance of SPINE X. We further evaluated the performance of the methods on independent ccPDB30 dataset and observed that SPINE X performed better than ANGLOR.  相似文献   

9.
Dihedral angles of amino acids are of considerable importance in protein tertiary structure prediction as they define the backbone of a protein and hence almost define the protein's entire conformation. Most ab initio protein structure prediction methods predict the secondary structure of a protein before predicting the tertiary structure because three-dimensional fold consists of repeating units of secondary structures. Hence, both dihedral angles and secondary structures are important in tertiary structure prediction of proteins. Here we describe a database called DASSD (Dihedral Angle and Secondary Structure Database of Short Amino acid Fragments) that contains dihedral angle values and secondary structure details of short amino acid fragments of lengths 1, 3 and 5. Information stored in this database was extracted from a set of 5,227 non-redundant high resolution (less than 2-angstroms) protein structures. In total, DASSD stores details for about 733,000 fragments. This database finds application in the development of ab initio protein structure prediction methods using fragment libraries and fragment assembly techniques. It is also useful in protein secondary structure prediction.

Availability  相似文献   


10.
A molecular dynamics simulation of a simple model membrane system composed of a single amphiphilic helical peptide (ace-K2GL16K2A-amide) in a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer was performed for a total of 1060 ps. The secondary structure of the peptide and its stability were described in terms of average dihedral angles, phi and psi, and the C alpha torsion angles formed by backbone atoms; by the average translation per residue along the helix axis; and by the intramolecular peptide hydrogen bonds. The results indicated that residues 6 through 15 remain in a stable right-handed alpha-helical conformation, whereas both termini exhibit substantial fluctuations. A change in the backbone dihedral angles for residues 16 and 17 is accompanied by the loss of two intramolecular hydrogen bonds, leading to a local but long-lived disruption of the helix. The dynamics of the peptide was characterized in terms of local and global helix motions. The local motions of the N-H bond angles were described in terms of the autocorrelation functions of P2[cos thetaNH(t, t + tau)] and reflected the different degrees of local peptide order as well as a variation in time scale for local motions. The chi1 and chi2 dihedral angles of the leucine side chains underwent frequent transitions between potential minima. No connection between the side-chain positions and their mobility was observed, however. In contrast, the lysine side chains displayed little mobility during the simulation. The global peptide motions were characterized by the tilting and bending motions of the helix. Although the peptide was initially aligned parallel to the bilayer normal, during the simulation it was observed to tilt away from the normal, reaching an angle of approximately 25 degrees by the end of the simulation. In addition, a slight bend of the helix was detected. Finally, the solvation of the peptide backbone and side-chain atoms was also investigated.  相似文献   

11.

Background  

The prediction of the secondary structure of a protein is a critical step in the prediction of its tertiary structure and, potentially, its function. Moreover, the backbone dihedral angles, highly correlated with secondary structures, provide crucial information about the local three-dimensional structure.  相似文献   

12.
In theory, a polypeptide chain can adopt a vast number of conformations, each corresponding to a set of backbone rotation angles. Many of these conformations are excluded due to steric overlaps. Ramachandran and coworkers were the first to look into this problem by plotting backbone dihedral angles in a two-dimensional plot. The conformational space in the Ramachandran map is further refined by considering the energetic contributions of various non-bonded interactions. Alternatively, the conformation adopted by a polypeptide chain may also be examined by investigating interactions between the residues. Since the Ramachandran map essentially focuses on local interactions (residues closer in sequence), out of interest, we have analyzed the dihedral angle preferences of residues that make non-local interactions (residues far away in sequence and closer in space) in the folded structures of proteins. The non-local interactions have been grouped into different types such as hydrogen bond, van der Waals interactions between hydrophobic groups, ion pairs (salt bridges), and ππ-stacking interactions. The results show the propensity of amino acid residues in proteins forming local and non-local interactions. Our results point to the vital role of different types of non-local interactions and their effect on dihedral angles in forming secondary and tertiary structural elements to adopt their native fold.  相似文献   

13.
The conformation of the polypeptide thymosin beta 4 in solutions of 60% (v/v) trifluoroethanol-d3 and 50% (v/v) hexafluoroisopropyl-d2 alcohol in water is investigated by nuclear magnetic resonance (NMR) spectroscopy. Under these conditions thymosin beta 4 adopts an ordered structure. By use of a combination of two-dimensional NMR techniques, the 1H NMR spectrum of thymosin beta 4 is assigned. A set of 180 approximate interproton distance constraints is derived from nuclear Overhauser enhancement (NOE) measurements. These, together with 33 phi constraints obtained for JNH alpha coupling data and the 23 psi dihedral angles identified on the basis of the pattern of short-range NOEs, form the basis of a three-dimensional structure determination by dynamical simulated annealing. The calculations are carried out starting from three initial structures, an alpha-helix, an extended beta-strand, and a mixed alpha/beta structure. Ten independent structures are computed from each starting structure by using different random number seeds for the assignments of the initial velocities. All 30 calculated structures satisfy the experimental constraints, display very small deviations from idealized covalent geometry, and possess good nonbonded contacts. Analysis of the 30 converged structures indicates that there are two helical regions extending from residues 4-16 and from residues 30-40, which are well defined both in terms of atomic root mean square differences and backbone torsion angles. For the two helical regions individually the average backbone rms difference between all pairs of structures is approximately 2 A. The two helices exhibit typical amino acid preferences for specific locations at the ends of helices.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
X-ray analysis has been carried out on a crystal of the collagen model peptide (Hyp(R)-Hyp(R)-Gly)10 [where Hyp(R) is 4(R)-hydroxyproline] with 1.5 A resolution. The triple-helical structure of (Hyp(R)-Hyp(R)-Gly)10 has the same helical parameters and Rich and Crick II hydrogen bond patterns as those of other collagen model peptides. However, our full-length crystal structure revealed that almost all consecutive Hyp(R) residues take the up-up pucker in contrast to putative down-up puckering propensities of other collagen model peptides. The unique feature of thermodynamic parameters associated with the conformational transition of this peptide from triple helix to single coil is that both enthalpy and entropy changes of the transition are much smaller than those of other model peptides such as (Pro-Pro-Gly)10 and (Pro-Hyp(R)-Gly)10. To corroborate the precise structural information including main- and side-chain dihedral angles and intra- and interwater bridge networks, we estimated the degrees of hydration by comparing molecular volumes observed experimentally in solution to those calculated ones from the crystal structure. The results showed that the degree of hydration of (Hyp(R)-Hyp(R)-Gly)10 is comparable to that of (Pro-Hyp(R)-Gly)10 in the triple-helical state, but the former was more highly hydrated than (Pro-Hyp(R)-Gly)10 in the single-coil state. Because hydration reduces the enthalpy due to the formation of a hydrogen bond with a water molecule and diminishes the entropy due to the restriction of water molecules surrounding a peptide molecule, we concluded that the high thermal stability of (Hyp(R)-Hyp(R)-Gly)10 is able to be described by its high hydration in the single-coil state.  相似文献   

15.
Collagen has a triple helical structure comprising strands with a repeating Xaa-Yaa-Gly sequence. L-Proline (Pro) and 4(R)-hydroxyl-L-proline (4(R)Hyp) residues are found most frequently in the Xaa and Yaa positions. However, in natural collagen, 3(S)-hydroxyl-L-proline (3(S)Hyp) occurs in the Xaa positions to varying extents and is most common in collagen types IV and V. Although 4(R)Hyp residues in the Yaa positions have been shown to be critical for the formation of a stable triple helix, the role of 3(S)Hyp residues in the Xaa position is not well understood. Indeed, recent studies have demonstrated that the presence of 3(S)Hyp in the Xaa positions of collagen-like peptides actually has a destabilizing effect relative to peptides with Pro in these locations. Whether this destabilization is reflected in a local unfolding or in other structural alterations of the collagen triple helix is unknown. Thus, to determine what effect the presence of 3(S)Hyp residues in the Xaa positions has on the overall conformation of the collagen triple helix, we determined the crystal structure of the polypeptide H-(Gly-Pro-4(R)Hyp)3-(Gly-3(S)Hyp-4(R)Hyp)2-(Gly-Pro-4(R)Hyp)4-OH to 1.80 A resolution. The structure shows that, despite the presence of the 3(S)Hyp residues, the peptide still adopts a typical 7/2 superhelical symmetry similar to that observed in other collagen structures. The puckering of the Xaa position 3(S)Hyp residues, which are all down (Cgamma-endo), and the varphi/psi dihedral angles of the Xaa 3(S)Hyp residues are also similar to those of typical collagen Pro Xaa residues. Thus, the presence of 3(S)Hyp in the Xaa positions does not lead to large structural alterations in the collagen triple helix.  相似文献   

16.
Beta-breakers: an aperiodic secondary structure   总被引:1,自引:0,他引:1  
We have studied the architecture of parallel beta-sheets in proteins and focused on the residues that initiate and terminate the beta-strands. These beta-breaker residues are at the origin of the kink between the beta-strand and the turn that precedes or follows it. beta-Breakers can be located automatically using a consensus approach based on algorithmic secondary structure assignment, solvent accessibility and backbone dihedral angles. These beta-breakers are conformationally homogeneous with respect to side-chain solvent accessibility and backbone dihedral angle profile. A sequence-structure correlation is noted: a restricted subset of amino acids is observed at these positions. Analysis of homologous protein sequences shows that these residues are more highly conserved than other residues in the loop. We conclude that beta-breakers are the structural analogs of the N and C-terminal caps of alpha-helices. The identification of this aperiodic substructure suggests a strategy for improving secondary structure prediction and may guide site-directed mutagenesis experiments.  相似文献   

17.
Interruptions in the repeating (Gly-X1-X2)n amino acid sequence pattern are found in the triple-helix domains of all non-fibrillar collagens, and perturbations to the triple-helix at such sites are likely to play a role in collagen higher-order structure and function. This study defines the sequence features and structural consequences of the most common interruption, where one residue is missing from the tripeptide pattern, Gly-X1-X2-Gly-AA1-Gly-X1-X2, designated G1G interruptions. Residues found within G1G interruptions are predominantly hydrophobic (70%), followed by a significant amount of charged residues (16%), and the Gly-X1-X2 triplets flanking the interruption are atypical. Studies on peptide models indicate the degree of destabilization is much greater when Pro is in the interruption, GP, than when hydrophobic residues (GF, GY) are present, and a rigid Gly-Pro-Hyp tripeptide adjacent to the interruption leads to greater destabilization than a flexible Gly-Ala-Ala sequence. Modeling based on NMR data indicates the Phe residue within a GF interruption is located on the outside of the triple helix. The G1G interruptions resemble a previously studied collagen interruption GPOGAAVMGPO, designated G4G-type, in that both are destabilizing, but allow continuation of rod-like triple helices and maintenance of the single residue stagger throughout the imperfection, with a loss of axial register of the superhelix on both sides. Both kinds of interruptions result in a highly localized perturbation in hydrogen bonding and dihedral angles, but the hydrophobic residue of a G4G interruption packs near the central axis of the superhelix, while the hydrophobic residue of a G1G interruption is located on the triple-helix surface. The different structural consequences of G1G and G4G interruptions in the repeating tripeptide sequence pattern suggest a physical basis for their differential susceptibility to matrix metalloproteinases in type X collagen.  相似文献   

18.
alpha-sheet has been proposed as the main constituent of the prefibrillar intermediate during amyloid formation. Here the helical parameters of the alpha-sheet strand are calculated from average main-chain dihedral angles reported from molecular dynamics simulations. It is an almost linear polypeptide that forms a right-handed helix of about 100 A diameter, with 100 residues and a rise of 30 A per turn. The strands are curved but untwisted, which implies that neighboring strands need not coil to make interstrand hydrogen bonds. This suggests that compared to beta-sheets in native folded proteins, alpha-sheets can be larger and stack more easily to create extensive 3D blocks. It is shown that alpha-sheet is related to a category of structures termed "mirror" structures. Mirror structures have repetitive pairs of main-chain dihedral angles at residues i and i+1 that satisfy the condition phi(i) (+1) = -psi(i), psi(i) (+1) = -phi(i). They are uniquely identified by the two orientations of their peptide planes, specified by phi(i) and psi(i). Their side chains point alternately in opposite directions. Interestingly, their conformations are insensitive to phi(i) and psi(i) in that the pseudo dihedral angle formed by four consecutive C(alpha) atoms is always close to 180 degrees . There are two types: "beta-mirror" and "alpha-mirror" structure; beta-mirror structures relate to beta-sheet by small peptide plane rotations, of less than 90 degrees , while alpha-mirror structures are close to alpha-sheet and relate to beta-sheet by approximately 180 degrees peptide plane flips. Most mirror structures, and in particular the alpha-mirror, form wide helices with diameters 50-70 A. Their gentle curvature, and therefore that of the alpha-sheet, arises from the orientation of successive peptide units causing the difference in the bond angles at the C and N atoms of the peptide unit to gradually change the direction of the chain.  相似文献   

19.
The following three issues concerning the backbone dihedral angles of protein structures are presented. (1) How do the dihedral angles of the 20 amino acids depend on the identity and conformation of their nearest residues? (2) To what extent are the native dihedral angles determined by local (dihedral) potentials? (3) How to build a knowledge-based potential for a residue's dihedral angles, considering the identity and conformation of its nearest residues? We find that the dihedral angle distribution for a residue can significantly depend on the identity and conformation of its adjacent residues. These correlations are in sharp contrast to the Flory isolated-pair hypothesis. Statistical potentials are built for all combinations of residue triplets and depend on the dihedral angles between consecutive residues. First, a low-resolution potential is obtained, which only differentiates between the main populated basins in the dihedral angle density plots. Minimization of the dihedral potential for 125 test proteins reveals that most native alpha-helical residues (89%) and a large fraction of native beta-sheet residues (47%) adopt conformations close to their native one. For native loop residues, the percentage is 48%. It is also found that this fraction is higher for residues away from the ends of alpha or beta secondary structure elements. In addition, a higher resolution potential is built as a function of dihedral angles by a smoothing procedure and continuous functions interpolations. Monte Carlo energy minimization with this potential results in a lower fraction for native beta-sheet residues. Nevertheless, because of the higher flexibility and entropy of beta structures, they could be preferred under the influence of non-local interactions. In general, most alpha-helices and many beta-sheets are strongly determined by the local potential, while the conformations in loops and near the end of beta-sheets are more influenced by non-local interactions.  相似文献   

20.
We have characterized the conformational ensembles of polyglutamine peptides of various lengths (ranging from to ), both with and without the presence of a C-terminal polyproline hexapeptide. For this, we used state-of-the-art molecular dynamics simulations combined with a novel statistical analysis to characterize the various properties of the backbone dihedral angles and secondary structural motifs of the glutamine residues. For (i.e., just above the pathological length for Huntington''s disease), the equilibrium conformations of the monomer consist primarily of disordered, compact structures with non-negligible -helical and turn content. We also observed a relatively small population of extended structures suitable for forming aggregates including - and -strands, and - and -hairpins. Most importantly, for we find that there exists a long-range correlation (ranging for at least residues) among the backbone dihedral angles of the Q residues. For polyglutamine peptides below the pathological length, the population of the extended strands and hairpins is considerably smaller, and the correlations are short-range (at most residues apart). Adding a C-terminal hexaproline to suppresses both the population of these rare motifs and the long-range correlation of the dihedral angles. We argue that the long-range correlation of the polyglutamine homopeptide, along with the presence of these rare motifs, could be responsible for its aggregation phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号