首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
特异性microRNAs在心血管系统中的功能研究进展   总被引:1,自引:1,他引:0  
MicroRNAs(miRNAs)是经核糖核酸酶(Dicer)加工后的一类非编码小RNA分子。在真核生物中,miRNA具有组织特异性和时序性,只在特定的组织和特定的发育阶段表达,在细胞生长和发育过程中起多种作用。miRNAs在心脏发育、形态生成、血管生成、心肌凋亡等多个生理病理过程中发挥重要作用。最近有大量研究发现某些特异性的miRNA对心血管的发育和心血管疾病有一定的影响。如miRNA-126调控血管生成;miRNA-143和miRNA-145决定血管平滑肌(VSMC)的分化和增殖;miRNA-208对心肌肥厚的调节;miRNA-1和miRNA-133影响心肌的发育、形态发生、心肌凋亡、心肌肥厚等。  相似文献   

2.
MicroRNA(miRNA)是新发现的基因表达调控因子,由长约21~25个核苷酸的单 链RNA分子构成,是非编码小RNA. 它可以通过与特定mRNA的3′非翻译区(3′- untranslated region,3′UTR)相结合,抑制mRNA编码蛋白质的翻译过程来调控基因表达. 动脉粥样硬化(atherosclerosis, AS)是一种慢性炎症性疾病,是多种心血 管疾病的病理基础.最近,研究发现多个miRNA与动脉粥样硬化的发生发展有关, 且其在血液和体液中稳定存在并高度保守. 本文主要综述了miRNA对动脉粥样硬化进程的调节作用及以其为靶点的相关临床研究,旨在阐明miRNA成为动脉粥样硬化诊断与治疗新靶点的重要意义.  相似文献   

3.
4.
microRNAs (miRNAs)是一类非编码的小分子RNA(~22 nt),可在转录后水平调控基因表达.miRNAs参与调控机体的多种生理和病理过程.近来研究表明,miRNAs可能与动脉粥样硬化疾病的发生和发展密切相关,在血管新生、炎症和脂蛋白代谢等方面发挥了关键作用.本文就miRNAs与动脉粥样硬化疾病相关的研究进展进行综述,为研究miRNAs在动脉粥样硬化的发病机制中的作用,以及为miRNAs能够作为诊断动脉粥样硬化疾病的生物标志物提供思路.  相似文献   

5.
Taking microRNAs to heart   总被引:2,自引:0,他引:2  
  相似文献   

6.
李青  荆清 《生命科学》2010,(7):661-667
心脏是哺乳动物在胚胎发育时期最早形成的器官,心血管系统的正常发育及功能维持受到精确的调控。近年来,心血管疾病已成为危害人类生命的首要杀手之一,因此,对心血管的发育及疾病发生的机制研究一直是生命科学研究的热点问题。microRNA(miRNA)是一类长约18~25nt的单链非编码小RNA,主要通过结合于靶基因的3'非翻译区抑制靶基因的翻译或导致mRNA降解,从而抑制靶基因的表达。miRNA在许多生物学过程中发挥重要的调控作用,如细胞增殖、分化、凋亡、癌症发生等。最近研究表明,miRNA也参与调控心血管系统的发育和疾病发生过程。在此,该文对miRNA在心血管系统发育和疾病中的作用做一综述。  相似文献   

7.
心肌纤维化以细胞外基质沉积为主要特征,是许多心血管疾病发展到一定阶段的共同病理变化。心肌纤维化过程中的一些微小RNA(microRNAs, miRNAs)表达异常,并通过对多种信号通路的调控,参与心肌成纤维细胞的活化和增殖过程,从而介导心肌纤维化的发生和发展。本文将综述这些miRNAs在心肌纤维化中的作用和机制,为心肌纤维化的诊断和治疗提供新的思路和方法。  相似文献   

8.
9.
miRNA,lncRNA与心血管疾病   总被引:1,自引:0,他引:1  
近年来,心血管疾病在我国的发病率和致死率呈逐年上升趋势,已成为威胁我国公众健康的重要疾病之一.尽管长期的研究使人们对心血管疾病有了一定的了解,但是其发病机制尚未完全清楚.非编码RNA(non-coding RNA,ncRNA)是指转录组中不编码蛋白的功能性RNA分子,包括微小RNA(microRNA,miRNA)和长链非编码RNA(long non-coding RNA,lncRNA)等.miRNA是一类在进化上高度保守,具有转录后调节活性的单链非编码小分子RNA.而lncRNA是一类转录本长度超过200个核苷酸的功能性非编码RNA分子.研究表明,这些功能性ncRNA不但在细胞增殖、分化和衰老过程中发挥着重要作用,还参与了癌症、神经退行性疾病和心血管疾病等疾病的病理进程.本文将着重概述miRNA和lncRNA在心血管疾病中的作用及其最新研究进展.  相似文献   

10.
11.
12.
Atrial fibrillation (AF) is one of the most frequent cardiac arrhythmias, and atrial remodeling is related to the progression of AF. Although several therapeutic approaches have been presented in recent years, the continuously increasing mortality rate suggests that more advanced strategies for treatment are urgently needed. Exosomes regulate pathological processes through intercellular communication mediated by microribonucleic acid (miRNA) in various cardiovascular diseases (CVDs). Exosomal miRNAs associated with signaling pathways have added more complexity to an already complex direct cell-to-cell interaction. Exosome delivery of miRNAs is involved in cardiac regeneration and cardiac protection. Recent studies have found that exosomes play a critical role in the diagnosis and treatment of cardiac fibrosis. By improving exosome stability and modifying surface epitopes, specific pharmaceutical agents can be supplied to improve tropism and targeting to cells and tissues in vivo. Exosomes harboring miRNAs may have clinical utility in cell-free therapeutic approaches and may serve as prognostic and diagnostic biomarkers for AF. Currently, limitations challenge pharmaceutic design, therapeutic utility and in vivo targeted delivery to patients. The aim of this article is to review the developmental features of AF associated with exosomal miRNAs and relate them to underlying mechanisms.  相似文献   

13.

Background  

MicroRNAs (miRNAs) are small noncoding RNAs (~22 nucleotides) that regulate gene expression by cleaving mRNAs or inhibiting translation. The baboon is a well-characterized cardiovascular disease model; however, no baboon miRNAs have been identified. Evidence indicates that the baboon and human genomes are highly conserved; based on this conservation, we hypothesized that comparative genomic methods could be used to identify baboon miRNAs.  相似文献   

14.
microRNAs(miRNAs)是一类长21~25 nt的非编码内源性蛋白质的RNAs,它们在转录后水平调控基因的表达,包括细胞增殖、分化和凋亡等一系列生理进程,影响生物体的生长发育,并与多种疾病相关。随着研究人员对microRNAs参与疾病的发病机制的研究,可能为人类某些疾病的治疗开辟一条新的途径。该文总结miRNAs在调控心血管疾病发生作用方面的研究成果,并对miRNA与心肌肥厚、心肌纤维化、心肌梗死、高血压、心率失常等的关系进行综述和展望。  相似文献   

15.
MicroRNAs as a therapeutic target for cardiovascular diseases   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are tiny, endogenous, conserved, non-coding RNAs that negatively modulate gene expression by either promoting the degradation of mRNA or down-regulating the protein production by translational repression. They maintain optimal dose of cellular proteins and thus play a crucial role in the regulation of biological functions. Recent discovery of miRNAs in the heart and their differential expressions in pathological conditions provide glimpses of undiscovered regulatory mechanisms underlying cardiovascular diseases. Nearly 50 miRNAs are overexpressed in mouse heart. The implication of several miRNAs in cardiovascular diseases has been well documented such as miRNA-1 in arrhythmia, miRNA-29 in cardiac fibrosis, miRNA-126 in angiogenesis and miRNA-133 in cardiac hypertrophy. Aberrant expression of Dicer (an enzyme required for maturation of all miRNAs) during heart failure indicates its direct involvement in the regulation of cardiac diseases. MiRNAs and Dicer provide a particular layer of network of precise gene regulation in heart and vascular tissues in a spatiotemporal manner suggesting their implications as a powerful intervention tool for therapy. The combined strategy of manipulating miRNAs in stem cells for their target directed differentiation and optimizing the mode of delivery of miRNAs to the desired cells would determine the future potential of miRNAs to treat a disease. This review embodies the recent progress made in microRNomics of cardiovascular diseases and the future of miRNAs as a potential therapeutic target - the putative challenges and the approaches to deal with it.  相似文献   

16.
Blood-based micro RNA(mi RNA) signatures as biomarkers have been reported for various pathologies, including cancer, neurological disorders, cardiovascular diseases, and also infections. The regulatory mechanism behind respective mi RNA patterns is only partially understood. Moreover, ‘‘preserved' mi RNAs, i.e., mi RNAs that are not dysregulated in any disease,and their biological impact have been explored to a very limited extent. We set out to systematically determine their role in regulatory networks by defining groups of highly-dysregulated mi RNAs that contribute to a disease signature as opposed to preserved housekeeping mi RNAs. We further determined preferential targets and pathways of both dysregulated and preserved mi RNAs by computing multi-layer networks, which were compared between housekeeping and dysregulated mi RNAs. Of 848 mi RNAs examined across 1049 blood samples, 8 potential housekeepers showed very limited expression variations, while 20 mi RNAs showed highly-dysregulated expression throughout the investigated blood samples. Our approach provides important insights into mi RNAs and their role in regulatory networks. The methodology can be applied to systematically investigate the differences in target genes and pathways of arbitrary mi RNA sets.  相似文献   

17.
MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression by binding to target mRNAs, which leads to reduced protein synthesis and sometimes decreased steady-state mRNA levels. Although hundreds of miRNAs have been identified, much less is known about their biological function. Several studies have provided evidence that miRNAs affect pathways that are fundamental for metabolic control in higher organisms such as adipocyte and skeletal muscle differentiation. Furthermore, some miRNAs have been implicated in lipid, amino acid, and glucose homeostasis. These studies open the possibility that miRNAs may contribute to common metabolic diseases and point to novel therapeutic opportunities based on targeting of miRNAs.  相似文献   

18.
19.
Atherosclerotic cardiovascular disease (ASCVD) is one of the major leading global causes of death. Genetic and epidemiological studies strongly support the causal association between triacylglycerol-rich lipoproteins (TAGRL) and atherogenesis, even in statin-treated patients. Recent genetic evidence has clarified that variants in several key genes implicated in TAGRL metabolism are strongly linked to the increased ASCVD risk. There are several triacylglycerol-lowering agents; however, new therapeutic options are in development, among which are miRNA-based therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs (18–25 nucleotides) that negatively modulate gene expression through translational repression or degradation of target mRNAs, thereby reducing the levels of functional genes. MiRNAs play a crucial role in the development of hypertriglyceridemia as several miRNAs are dysregulated in both synthesis and clearance of TAGRL particles. MiRNA-based therapies in ASCVD have not yet been applied in human trials but are attractive. This review provides a concise overview of current interventions for hypertriglyceridemia and the development of novel miRNA and siRNA-based drugs. We summarize the miRNAs involved in the regulation of key genes in the TAGRLs synthesis pathway, which has gained attention as a novel target for therapeutic applications in CVD.  相似文献   

20.
There are emerging data to suggest that microRNAs (miRNAs) have significant roles in regulating the function of normal cells and cancer stem cells (CSCs). This review aims to analyse the roles of miRNAs in the regulation of colon CSCs through their interaction with various signalling pathways. Studies showed a large number of miRNAs that are reported to be deregulated in colon CSCs. However, few of the studies available were able to outline the function of miRNAs in colon CSCs and uncover their signalling pathways. From those miRNAs, which are better described, miR‐21 followed by miR‐34, miR‐200 and miR‐215 are the most reported miRNAs to have roles in colon CSC regulation. In particular, miRNAs have been reported to regulate the stemness features of colon CSCs mainly via Wnt/B‐catenin and Notch signalling pathways. Additionally, miRNAs have been reported to act on processes involving CSCs through cell cycle regulation genes and epithelial–mesenchymal transition. The relative paucity of data available on the significance of miRNAs in CSCs means that new studies will be of great importance to determine their roles and to identify the signalling pathways through which they operate. Such studies may in future guide further research to target these genes for more effective cancer treatment. miRNAs were shown to regulate the function of cancer stem cells in large bowel cancer by targeting a few key signalling pathways in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号