首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Background: Mitochondrial ND gene, which encodes NADH dehydrogenase, is the first enzyme of the mitochondrial electron transport chain. Leigh syndrome, a neurodegenerative disease caused by mutation in the ND2 gene (T4681C), is associated with bilateral symmetric lesions in basal ganglia and subcortical brain regions. Therefore, it is of interest to analyze mitochondrial DNA to glean information for evolutionary relationship. This study highlights on the analysis of compositional dynamics and selection pressure in shaping the codon usage patterns in the coding sequence of MT-ND2 gene across pisces, aves and mammals by using bioinformatics tools like effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU) etc. Results: We observed a low codon usage bias as reflected by high ENC values in MT-ND2 gene among pisces, aves and mammals. The most frequently used codons were ending with A/C at the 3rd position of codon and the gene was AT rich in all the three classes. The codons TCA, CTA, CGA and TGA were over represented in all three classes. The F1 correspondence showed significant positive correlation with G, T3 and CAI while the F2 axis showed significant negative correlation with A and T but significant positive correlation with G, C, G3, C3, ENC, GC, GC1, GC2 and GC3. Conclusions: The codon usage bias in MTND2 gene is not associated with expression level. Mutation pressure and natural selection affect the codon usage pattern in MT-ND 2 gene.  相似文献   

2.
Codon usage in mitochondrial genome of the six different plants was analyzed to find general patterns of codon usage in plant mitochondrial genomes. The neutrality analysis indicated that the codon usage patterns of mitochondrial genes were more conserved in GC content and no correlation between GC12 and GC3. T and A ending codons were detected as the preferred codons in plant mitochondrial genomes. The Parity Rule 2 plot analysis showed that T was used more frequently than A. The ENC-plot showed that although a majority of the points with low ENC values were lying below the expected curve, a few genes lied on the expected curve. Correspondence analysis of relative synonymous codon usage yielded a first axis that explained only a partial amount of variation of codon usage. These findings suggest that natural selection is likely to be playing a large role in codon usage bias in plant mitochondrial genomes, but not only natural selection but also other several factors are likely to be involved in determining the selective constraints on codon bias in plant mitochondrial genomes. Meantime, 1 codon (P. patens), 6 codons (Z. mays), 9 codons (T. aestivum), 15 codons (A. thaliana), 15 codons (M. polymorpha) and 15 codons (N. tabacum) were defined as the preferred codons of the six plant mitochondrial genomes.  相似文献   

3.
Two species of the DNA virus Torque teno sus virus (TTSuV), TTSuV1 and TTSuV2, have become widely distributed in pig-farming countries in recent years. In this study, we performed a comprehensive analysis of synonymous codon usage bias in 41 available TTSuV2 coding sequences (CDS), and compared the codon usage patterns of TTSuV2 and TTSuV1. TTSuV codon usage patterns were found to be phylogenetically conserved. Values for the effective number of codons (ENC) indicated that the overall extent of codon usage bias in both TTSuV2 and TTSuV1 was not significant, the most frequently occurring codons had an A or C at the third codon position. Correspondence analysis (COA) was performed and TTSuV2 and TTSuV1 sequences were located in different quadrants of the first two major axes. A plot of the ENC revealed that compositional constraint was the major factor determining the codon usage bias for TTSuV2. In addition, hierarchical cluster analysis of 41 TTSuV2 isolates based on relative synonymous codon usage (RSCU) values suggested that there was no association between geographic distribution and codon bias of TTSuV2 sequences. Finally, the comparison of RSCU for TTSuV2, TTSuV1 and the corresponding host sequence indicated that the codon usage pattern of TTSuV2 was similar to that of TTSuV1. However the similarity was low for each virus and its host. These conclusions provide important insight into the synonymous codon usage pattern of TTSuV2, as well as better understangding of the molecular evolution of TTSuV2 genomes.  相似文献   

4.
Analysis of codon usage pattern is important to understand the genetic and evolutionary characteristics of genomes. We have used bioinformatic approaches to analyze the codon usage bias (CUB) of the genes located in human Y chromosome. Codon bias index (CBI) indicated that the overall extent of codon usage bias was low. The relative synonymous codon usage (RSCU) analysis suggested that approximately half of the codons out of 59 synonymous codons were most frequently used, and possessed a T or G at the third codon position. The codon usage pattern was different in different genes as revealed from correspondence analysis (COA). A significant correlation between effective number of codons (ENC) and various GC contents suggests that both mutation pressure and natural selection affect the codon usage pattern of genes located in human Y chromosome. In addition, Y-linked genes have significant difference in GC contents at the second and third codon positions, expression level, and codon usage pattern of some codons like the SPANX genes in X chromosome.  相似文献   

5.
Synonymous codon usage of 53 protein coding genes in chloroplast genome of Coffea arabica was analyzed for the first time to find out the possible factors contributing codon bias. All preferred synonymous codons were found to use A/T ending codons as chloroplast genomes are rich in AT. No difference in preference for preferred codons was observed in any of the two strands, viz., leading and lagging strands. Complex correlations between total base compositions (A, T, G, C, GC) and silent base contents (A3, T3, G3, C3, GC3) revealed that compositional constraints played crucial role in shaping the codon usage pattern of C. arabica chloroplast genome. ENC Vs GC3 plot grouped majority of the analyzed genes on or just below the left side of the expected GC3 curve indicating the influence of base compositional constraints in regulating codon usage. But some of the genes lie distantly below the continuous curve confirmed the influence of some other factors on the codon usage across those genes. Influence of compositional constraints was further confirmed by correspondence analysis as axis 1 and 3 had significant correlations with silent base contents. Correlation of ENC with axis 1, 4 and CAI with 1, 2 prognosticated the minor influence of selection in nature but exact separation of highly and lowly expressed genes could not be seen. From the present study, we concluded that mutational pressure combined with weak selection influenced the pattern of synonymous codon usage across the genes in the chloroplast genomes of C. arabica.  相似文献   

6.
Codon usage bias (CUB) is an important evolutionary feature in a genome and has been widely documented from prokaryotes to eukaryotes. However, the significance of CUB in the Asteraceae family has not been well understood, with no Asteraceae species having been analyzed for this characteristic. Here, we use bioinformatics approaches to comparatively analyze the general patterns and influencing factors of CUB in five Asteraceae chloroplast (cp) genomes. The results indicated that the five genomes had similar codon usage patterns, showing a strong bias towards a high representation of NNA and NNT codons. Neutrality analysis showed that these cp genomes had a narrow GC distribution and no significant correlation was observed between GC12 and GC3. Parity Rule 2 (PR2) plot analysis revealed that purines were used more frequently than pyrimidines. Effective number of codons (ENc)-plot analysis showed that most genes followed the parabolic line of trajectory, but several genes with low ENc values lying below the expected curve were also observed. Furthermore, correspondence analysis of relative synonymous codon usage (RSCU) yielded a first axis that explained only a partial amount of variation of codon usage. These findings suggested that both natural selection and mutational bias contributed to codon bias, while selection was the major force to shape the codon usage in these Asteraceae cp genomes. Our study, which is the first to investigate codon usage patterns in Asteraceae plastomes, will provide helpful information about codon distribution and variation in these species, and also shed light on the genetic and evolutionary mechanisms of codon biology within this family.  相似文献   

7.
糜子叶绿体基因组密码子使用偏性的分析   总被引:2,自引:0,他引:2       下载免费PDF全文
密码子使用偏性(CUB)是生物体重要的进化特征,对研究物种进化、基因功能以及外源基因表达等具有重要科学意义。本研究利用糜子(Panicum miliaceum L.)叶绿体基因组中筛选出的53条蛋白编码序列,对其密码子使用模式及偏性进行了分析。结果表明,糜子叶绿体基因的有效密码子数(ENC)在37.14~61之间,多数密码子的偏性较弱。相对同义密码子使用度(RSCU)分析发现,RSCU > 1的密码子有32个,其中28个以A、U结尾,表明第3位密码子偏好使用A和U碱基。中性分析发现,GC3与GC12的相关性不显著,回归曲线斜率为0.2129,表明密码子偏性主要受到自然选择的影响;而ENC-plot分析发现大部分基因落在曲线的上方及周围,表明突变也影响了密码子偏性的形成。进一步的对应性分析发现,第1轴为主要影响因素,解释了17.92%的差异,其与ENC、GC3S值的相关性均达到显著水平,但与CBI、GCall不相关。最后,9个密码子被鉴定为糜子叶绿体基因组的最优密码子,糜子叶绿体基因组的密码子使用偏性可能受选择和突变共同作用。  相似文献   

8.
Yu  Xianglong  Liu  Jianxin  Li  Huizi  Liu  Boyang  Zhao  Bingqian  Ning  Zhangyong 《Biochemical genetics》2021,59(3):799-812

Atypical porcine pestivirus (APPV) is an emerging novel pestivirus causing the congenital tremor (CT) in piglets. The worldwide distribution characteristic of APPV make it a threat to global swine health. E2 is the major envelope glycoprotein of APPV and the crucial target for vaccine development. Considering the genetic variability of APPV complete genomes and its E2 gene as well as gaps for codon analysis, a comprehensive analysis of codon usage patterns was performed. Relative synonymous codon usage (RSCU) and effective number of codon (ENC) analyses showed that a relatively instable change existed and a slight low codon usage bias (CUB) were displayed in APPV genomes. ENC-plot analysis and correlation analyses of nucleotide compositions and ENC showed that mutation pressure and natural selection both affected the codon usage bias of the APPV and natural selection had a more obvious influence for E2 gene compared with complete genomes. Principal component analysis (PCA) and correlation analyses confirmed the above results. Correlation analyses between Gravy and Aromaticity values and the codon bias showed that natural selection played an important role in shaping the synonymous codon bias. Furthermore, neutrality plot analysis showed that natural selection was the main force while mutation pressure was a minor force influencing the codon usage pattern of the APPV E2 gene and complete genomes. The results could illustrate the codon usage patterns of APPV genomes and provided valuable basic data for further fundamental research of evolution of APPV.

  相似文献   

9.
Enterogenic Escherichia coli (ETEC) F18 strains are the main pathogenic bacteria causing severe diarrhea in humans and domestic animals. However, the information about synonymous codon usage pattern of ETEC F18 genome remains unclear. We conducted a genome-wide analysis of synonymous codon usage patterns in the ETEC F18 strain SRA: SAMN02471895. After filtering of the complete genome sequence, 4327 coding sequences were analyzed using multivariate statistical methods to calculate synonymous codon usage patterns and to evaluate the influence of various factors in shaping the codon usage. The mean GC content was 51.38%, with a slight preference for G/C-ending codons. Twenty-two codons were determined as ‘‘optimal codons”. ENC plots showed some of the genes were on or close to the expected curve, while only points with low-ENC values were below the curve. PR2 analysis showed that GC and AT were not used proportionally, suggesting major roles for mutational pressure and natural selection in shaping usage. Neutrality plots showed a significant correlation between GC12 and GC3, suggesting that mutational pressure is responsible for nucleotide composition in shaping the strength of codon usage. Translational selection was the main factor shaping the codon usage pattern of ETEC F18 genome, while other factors such as protein length, GRAVY and ARO values also influenced codon usage to some extent. We analyzed the codon usage pattern systematically and identified the factors shaping codon usage bias in the ETEC F18 genome. Such information further elucidates the mechanisms of synonymous codon usage bias and provides the basis of molecular genetic engineering and evolutionary studies.  相似文献   

10.
Abstract

Norovirus GII.4 variants, a genotype in genogroup II belonging to the genus Norovirus, is a single-strand positive sense RNA containing three open reading frames (ORF1, ORF2 and ORF3) and is the most important pathogen causing nonbacterial gastroenteritis outbreaks. By using bioinformatic softwares such as Codon W, SPSS and so on, a total of 292 strains of the viruses isolated from 1974 to 2016 were analyzed for nucleotide composition and synonymous codon usage in each ORF. The result shows that it is enriched for A over the other bases in nucleotide composition, G behind the other bases in the 3rd site of all synonymous codons in the three ORFs. The patterns of nucleotide composition and codon bias of ORF2 are similar to those of ORF3 and different from those of ORF1. There are generally UpA motif and CpG motif in the codons with the lowest proportion. Correspondence analysis indicates that the codon usage may be changing over a certain time period for ORF1 in 2006 and 2012, ORF2 in 2012, and ORF3 in 2013. ENC (effective number of codons) plot and other analyses indicate that both natural selection and mutational pressure play partly roles in the ORFs, but natural selection is more important for ORF2 and ORF3. Besides, we also found all optimal codons in the ORFs. The study provides a basic understanding of the mechanism for norovirus GII.4 codon usage bias. Abbreviations ORF Open Reading Frame

ENC Effective Number of Codons

COA correspondence analysis

RSCU Relative Synonymous Codon Usage

CAI Codon Adaptation Index

CBI Codon Bias Index

Fop frequency of optimal codons

L_sym number of synonymous codons

L_aa length amino acids

GRAVY grand average of hydropathicity

Aroma aromaticity

Communicated by Ramaswamy H. Sarma  相似文献   

11.
Insects, the most biodiverse taxonomic group, have high AT content in their mitochondrial genomes. Although codon usage tends to be AT-rich, base composition and codon usage of mitochondrial genomes may vary among taxa. Thus, we compare base composition and codon usage patterns of 49 insect mitochondrial genomes. For protein coding genes, AT content is as high as 80% in the Hymenoptera and Lepidoptera and as low as 72% in the Orthopotera. The AT content is high at positions 1 and 3, but A content is low at position 2. A close correlation occurs between codon usage and tRNA abundance in nuclear genomes. Optimal codons can pair well with the antr codons of the most abundant tRNAs. One tRNA gene translates a synonymous codon family in vertebrate mitochondrial genomes and these tRNA anticodons can pair with optimal codons. However, optimal codons cannot pair with anticodons in mtDNA ofCochiiomyia hominivorax (Dipteral: CaLliphoridae). Ten optimal codons cannot pair with tRNA anticodons in all 49 insect mitochondrial genomes; non-optimal codon-anticodon usage is common and codon usage is not influenced by tRNA abundance.  相似文献   

12.
Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonymous codons. Although alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse bacteriophages that infect E. coli, P. aeruginosa, and L. lactis as their primary host. We use the concept of a “genome landscape,” which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of randomization tests that allow us to interrogate the significance of one aspect of codon usage, such as GC content, while controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of bacteriophages.  相似文献   

13.
SK Behura  DW Severson 《PloS one》2012,7(8):e43111

Background

Codon bias is a phenomenon of non-uniform usage of codons whereas codon context generally refers to sequential pair of codons in a gene. Although genome sequencing of multiple species of dipteran and hymenopteran insects have been completed only a few of these species have been analyzed for codon usage bias.

Methods and Principal Findings

Here, we use bioinformatics approaches to analyze codon usage bias and codon context patterns in a genome-wide manner among 15 dipteran and 7 hymenopteran insect species. Results show that GAA is the most frequent codon in the dipteran species whereas GAG is the most frequent codon in the hymenopteran species. Data reveals that codons ending with C or G are frequently used in the dipteran genomes whereas codons ending with A or T are frequently used in the hymenopteran genomes. Synonymous codon usage orders (SCUO) vary within genomes in a pattern that seems to be distinct for each species. Based on comparison of 30 one-to-one orthologous genes among 17 species, the fruit fly Drosophila willistoni shows the least codon usage bias whereas the honey bee (Apis mellifera) shows the highest bias. Analysis of codon context patterns of these insects shows that specific codons are frequently used as the 3′- and 5′-context of start and stop codons, respectively.

Conclusions

Codon bias pattern is distinct between dipteran and hymenopteran insects. While codon bias is favored by high GC content of dipteran genomes, high AT content of genes favors biased usage of synonymous codons in the hymenopteran insects. Also, codon context patterns vary among these species largely according to their phylogeny.  相似文献   

14.
杨树同义密码子用法的初步分析   总被引:1,自引:0,他引:1  
杨树是世界上广泛栽培的重要造林树种之一,已经成为林木基因工程研究的模式植物。用杨树的314个蛋白编码基因,通过对应分析和ENC-plot分析探讨了若干重要因子对杨树密码子用法的效应。从分析结果中可以看出,在影响最大的第一条向量轴上,基因的坐标位置与该基因的表达水平(CAI)极显著负相关(r=-0.94**),其次是与GC3S和基因长度极显著相关(r=0.86**和r=-0.57**),说明基因表达水平高低是影响密码子发挥作用的主要因素,基因编码区碱基组成和基因长度次之。ENC-plot分析结果也证明了这一点。相对密码子使用值(RSCU)的计算结果表明,高表达基因强烈偏好以A或T结尾的密码子,并确定了TTA和ATA等10个密码子为杨树的主要偏爱密码子。将杨树的密码子使用频率与拟南芥、水稻、大肠杆菌和人等不同模式生物种比较后发现,杨树密码子的偏爱性与同为双子叶植物的拟南芥最为相似,与人和大肠杆菌之间的差异较大。  相似文献   

15.
Codon usage bias refers to the differences in the occurrence frequency of synonymous codons. To understand the patterns of codon usage in mitochondrial genes we used bioinformatic approaches to analyze the protein coding sequences of W. bancrofti and S. haematobium as no work was reported earlier. It was found that the ENC value ranged from 43 to 60 with a mean of 46.91 in W. bancrofti but varied from 49 to 60 with a mean of 45.17 in S. haematobium, respectively. In W. bancrofti a significant positive correlation was found between ENC and GC3% (r = 0.826**, p < 0.01), but in S. haematobium significant correlation was found between ENC and GC3% (r = 0.983**, p < 0.01). Principal component analysis suggests that the pattern of codon usage significantly differed between W. bancrofti and S. haematobium. Neutrality plot reveals that natural selection played a major role while mutation pressure played a minor role in codon usage pattern in the mitochondrial protein coding genes of W. bancrofti and S. haematobium. Various factors namely nucleotide composition, natural selection and mutation pressure affected the codon usage pattern.  相似文献   

16.
为确定澳洲坚果光壳种(Macadamia integrifolia Maiden&Betche)叶绿体基因组密码子偏好性形成的主要影响因素,本研究通过其叶绿体基因组的51条蛋白编码序列,系统分析其密码子的使用模式及其特征.密码子偏好性参数分析结果显示,叶绿体基因密码子3位碱基的GC含量次序为GC1>GC2>GC3;有效...  相似文献   

17.
Human cytomegalovirus (HCMV) infection, a worldwide contagion, causes a serious disorder in infected individuals. Analysis of codon usage can reveal much molecular information about this virus. The effective number of codon (ENC) values, relative synonymous codon usage (RSCU) values, codon adaptation index (CAI), and nucleotide contents was investigated in approximately 160 coding sequences (CDS) among 17 human cytomegalovirus genomes using the software CodonW. Linear regression analysis and logistic regression were performed to explore the preliminary data. The results showed that, overall, HCMV genomes had low codon usage bias (mean ENC = 47.619). However, the ENC of individual CDS varied widely and was distributed unevenly between host-related genes and viral-self-function genes (P = 0.002, odds ratio (OR) = 3.194), as did the GC content (P = 0.016, OR = 2.178). The ENC values correlated with CAI, GC content, and the nucleotide composing at the 3rd codon position (GC3s) (P < 0.001). There was a significant variation in the codon preference that depended on the RSCU data. The predicted ENC curve suggested that mutational pressure, rather than natural selection, was one of the main factors that determined the codon usage bias in HCMV. Among 123 genes with known function, the genes related to viral self-replication and viral–host interaction showed different ENC and CAI values, and GC and GC3s contents. In conclusion, the detailed codon usage bias theoretically revealed information concerning HCMV evolution and could be a valuable additional parameter for HCMV gene function research.  相似文献   

18.
紫花苜蓿叶绿体基因组密码子偏好性分析   总被引:1,自引:0,他引:1  
喻凤  韩明 《广西植物》2021,41(12):2069-2076
为分析紫花苜蓿叶绿体基因组密码子偏好性的使用模式,该文以紫花苜蓿叶绿体基因组中筛选到的49条蛋白质编码序列为研究对象,利用CodonW、CUSP、CHIPS、SPSS等软件对其密码子的使用模式和偏好性进行研究。结果表明:(1)紫花苜蓿叶绿体基因的第3位密码子的平均GC含量为26.44%,有效密码子数(ENC)在40.6~51.41之间,多数密码子的偏好性较弱。(2)相对同义密码子使用度(RSCU)分析发现,RSCU>1 的密码子数目有30个,以A、U结尾的有29个,说明了紫花苜蓿叶绿体基因组A或U出现的频率较高。(3)中性分析发现,GC3与 GC12的相关性不显著,表明密码子偏性主要受自然选择的影响; ENC-plot 分析发现一部分基因落在曲线的下方及周围,表明突变也影响了部分密码子偏性的形成。此外,有17个密码子被鉴定为紫花苜蓿叶绿体基因组的最优密码子。紫花苜蓿叶绿体基因组的密码子偏好性可能受自然选择和突变的共同作用。该研究将为紫花苜蓿叶绿体基因工程的开展和目标性状的遗传改良奠定基础。  相似文献   

19.
樟树叶绿体基因组密码子偏好性分析   总被引:3,自引:0,他引:3  
秦政  郑永杰  桂丽静  谢谷艾  伍艳芳 《广西植物》2018,38(10):1346-1355
为分析樟树(Cinnamomum camphora)叶绿体基因组密码子偏好性使用模式,该研究利用CodonW、EMBOSS、R语言等软件和程序,对53条樟树叶绿体基因组密码子使用模式及偏好性进行了系统分析。结果表明:樟树叶绿体基因的有效密码子数(ENC)在36.82~59.30之间,表明密码子的偏好性较弱。相对同义密码子使用度(RSCU)分析发现RSCU>1的密码子有32个,其中28个以A、U结尾,表明第3位密码子偏好使用A和U碱基。中性绘图分析发现GC3与GC12的相关性不显著,回归曲线斜率为0.049,说明密码子偏好性主要受到自然选择的影响。ENC-plot分析发现大部分基因落在曲线的下方,同样表明选择是影响密码子偏好性的主要因素。该研究发现共有9个密码子(UUU、CUU、UCA、ACA、UAU、AAU、GAU、UGA、GGA)被鉴定为樟树叶绿体基因组的最优密码子。  相似文献   

20.
In the present study, major constraints for codon and amino acid usage of Sulfolobus acidocaldarius, Sulfolobus solfataricus, Sulfolobus tokodali, Sulfolobus islandis and 6 other isolates from islandicus species of genus Sulfolobus were investigated. Correspondence analysis revealed high significant correlation between the major trend of synonymous codon usage and gene expression level, as assessed by the “Codon Adaptation Index” (CAI). There is a significant negative correlation between Nc (Effective number of codons) and CAI demonstrating role of codon bias as an important determinant of codon usage. The significant correlation between major trend of synonymous codon usage and GC3s (G + C at third synonymous position) indicated dominant role of mutational bias in codon usage pattern. The result was further supported from SCUO (synonymous codon usage order) analysis. The amino acid usage was found to be significantly influenced by aromaticity and hydrophobicity of proteins. However, translational selection which causes a preference for codons that are most rapidly translated by current tRNA with multiple copy numbers was not found to be highly dominating for all studied isolates. Notably, 26 codons that were found to be optimally used by genes of S. acidocaldarius at higher expression level and its comparative analysis with 9 other isolates may provide some useful clues for further in vivo genetic studies on this genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号