首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A novel Gram-positive, halotolerant, non-sporulating, non-motile, catalase-positive, oxidase-negative and aerobic bacterium, designated strain JSM 078085T, was isolated from sea water collected from the South China Sea. Strain JSM 078085T exhibited a rod-coccus growth cycle and produced a yellow pigment. The strain was able to grow in the presence of 0–12% (w/v) NaCl and at pH 6.0–9.5 and 4–35°C; optimum growth was observed at pH 7.0 and 25–30°C in the absence of NaCl. The peptidoglycan type was A4α (l-Lys–l-Ala–l-Glu). Cell-wall sugars contained galactose and glucose. Strain JSM 078085T contained menaquinone MK-9(H2) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the major polar lipids. The major cellular fatty acids were anteiso-C15:0, iso-C15:0 and anteiso-C17:0 and the DNA G + C content was 63.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 078085T should be assigned to the genus Arthrobacter, being most closely related to the type strain of Arthrobacter rhombi (sequence similarity 97.1%), and the two strains formed a distinct lineage in the phylogenetic tree. The level of DNA–DNA relatedness between strain JSM 078085T and the type strain of Arthrobacter rhombi was 10.6%. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 078085T represents a novel species of the genus Arthrobacter, for which the name Arthrobacter halodurans sp. nov. is proposed. The type strain is JSM 078085T (=DSM 21081T=KCTC 19430T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 078085T is EU583729.  相似文献   

2.
A novel Gram-stain-positive, slightly halophilic, facultatively alkaliphilic, non-motile, non-sporulating, catalase-positive, oxidase-negative, aerobic bacterium, designated strain JSM 070026T, was isolated from non-saline forest soil in China. Growth occurred with 0–20% (w/v) NaCl (optimum, 2–4%) and at pH 6.0–10.5 (optimum, pH 8.0) and 5–40°C (optimum, 30°C). Good growth also occurred in the presence of 0–28% (w/v) KCl (optimum, 2–5%) or 0–25% (w/v) MgCl2·6H2O (optimum, 1–4%). The peptidoglycan type was A4α (l-Lys–Gly–l-Glu). Cell-wall sugars contained mannose and xylose. The major cellular fatty acids were anteiso-C15:0 and iso-C15:0. Strain JSM 070026T contained menaquinone 8 as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the major polar lipids. The DNA G + C content of strain JSM 070026T was 56.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain JSM 070026T was a member of the suborder Micrococcineae and most closely related to Yaniella flava YIM 70178T (sequence similarity 99.4%) and Yaniella halotolerans YIM 70085T (97.9%). The three strains formed a distinct branch in the phylogenetic tree. The combination of phylogenetic analysis, DNA–DNA relatedness values, phenotypic characteristics and chemotaxonomic data supports the proposal that strain JSM 070026T represents a novel species of the genus Yaniella, for which the name Yaniella soli sp. nov. is proposed. The type strain is JSM 070026T (=DSM 22211T = KCTC 13527T).  相似文献   

3.
A Gram-positive, moderately halophilic, facultatively alkaliphilic, catalase- and oxidase-positive, obligately aerobic, filamentous actinomycete strain, designated YIM 90022T, was isolated from saline soil collected from the Qaidam Basin, north-west China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the new isolate was a member of the genus Nocardiopsis and the sequence similarities between the isolate and the type strains of members of the genus Nocardiopsis were in the range of 95.1–98.7%. Phenotypic and chemotaxonomic properties of this organism also indicated that strain YIM 90022T was a member of the genus Nocardiopsis. The strain grew well on most of the media tested, producing yellow-white to deep brown substrate mycelium and white aerial mycelium. Light gray to deep brown diffusible pigments were produced. The substrate mycelium was well developed and fragmented with age; the aerial mycelium produced long, straight to flexuous spore chains with non-motile, smooth-surfaced, rod-shaped spores on them. The strain grew in the presence of 1–15% (w/v) total salts (optimum, 3–5%) and at pH 6.0–10.5 (optimum, pH 8.5) and 10–45°C (optimum, 30°C). Whole-cell hydrolysates of strain YIM 90022T contained meso-diaminopimelic acid and no diagnostic sugars. The predominant menaquinones were MK-10(H4), MK-9(H8), MK-10(H6) and MK-10(H8). Polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol and phosphatidylmethylethanolamine. The major cellular fatty acids were iso-C16:0, anteiso-C17:0, 10-methyl-C18:0 and 10-methyl-C17:0. The DNA G + C content of strain YIM 90022T was 71.5 mol%. The combination of phylogenetic analysis, DNA–DNA relatedness data, phenotypic characteristics and chemotaxonomic data supported the suggestion that strain YIM 90022T represents a new species of the genus Nocardiopsis, for which the name Nocardiopsis terrae sp. nov. is proposed. The type strain is YIM 90022T (=CCTCC AA 208011T =KCTC 19431T).  相似文献   

4.
A Gram-positive, endospore-forming, catalase- and oxidase-positive, motile, rod-shaped, aerobic bacterium, designated strain JSM 079157T, was isolated from surface seawater off the coastline of Naozhou Island in South China Sea. The organism was able to grow with 1–15% (w/v) total salts (optimum, 4–7%), and at pH 6.0–10.0 (optimum, pH 7.5) and 10–45°C (optimum, 30°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant menaquinone was MK-7, and the polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The major cellular fatty acids were anteiso-C15:0 (45.1%) and anteiso-C17:0 (16.2%), and the DNA G + C content was 39.5 mol%. A phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 079157T should be assigned to the genus Virgibacillus, being related most closely to the type strains of Virgibacillus litoralis (97.4% sequence similarity), Virgibacillus necropolis (97.3%) and Virgibacillus carmonensis (97.1%). These four strains formed a distinct subcluster in the phylogenetic tree. The levels of DNA–DNA relatedness between the new isolate and the type strains of V. litoralis, V. necropolis and V. carmonensis were 30.4, 19.3 and 12.6%, respectively. The results of the phylogenetic analysis, combined with DNA–DNA relatedness data, phenotypic characteristics and chemotaxonomic information, support the suggestion that strain JSM 079157T represents a new species of the genus Virgibacillus, for which the name Virgibacillus zhanjiangensis sp. nov. is proposed. The type strain is JSM 079157T (=DSM 21084T = KCTC 13227T).  相似文献   

5.
A moderately halophilic, Gram-positive, catalase- and oxidase-positive, rod-shaped, aerobic bacterium, designated strain JSM 071077T, was isolated from a subterranean brine sample collected from a salt mine in Hunan Province, China. Cells were motile by means of peritrichous flagella and formed ellipsoidal endospores lying in subterminal swollen sporangia. Strain JSM 071077T was able to grow with 2–25% (w/v) total salts (optimum, 5–10%), at pH 6.0–10.0 (optimum, pH 7.5) and 10–40°C (optimum, 25–30°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant menaquinone was MK-7, and the major cellular fatty acids were anteiso-C15:0, anteiso-C17:0 and iso-C15:0. The genomic DNA G+C content was 41.8 mol%. Phylogenetic analyses based on 16S rRNA gene sequence comparisons revealed that strain JSM 071077T should be assigned to the genus Halobacillus, being related most closely to the type strain of Halobacillus naozhouensis (98.8% sequence similarity), and the two strains formed a distinct subline in the neighbor-joining, minimum-evolution and maximum-parsimony phylogenetic trees. The sequence similarities between the novel isolate and the type strains of other recognized Halobacillus species ranged from 97.6% (with Halobacillus alkaliphilus) to 95.2% (with Halobacillus kuroshimensis). The results of the phylogenetic analyses, combined with DNA–DNA relatedness data, phenotypic characteristics and chemotaxonomic information, support that strain JSM 071077T represents a new species of the genus Halobacillus, for which the name Halobacillus hunanensis sp. nov. is proposed. The type strain is JSM 071077T (=DSM 21184T = KCTC 13235T).  相似文献   

6.
A Gram-positive, moderately halophilic, endospore-forming, catalase- and oxidase-positive, motile, rod-shaped, aerobic bacterium, designated strain JSM 089168T, was isolated from saline soil collected from Naozhou Island, Leizhou Bay, South China Sea. The organism was able to grow with 2–25% (w/v) total salts (optimum, 5–10%), at pH 6.0–10.0 (optimum, pH 8.0) and 10–45°C (optimum, 30°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The strain contained MK-7 as the predominant menaquinone, and diphosphatidylglycerol and phosphatidylglycerol as the major polar lipids. The major cellular fatty acids were anteiso-C15:0, iso-C15:0 and anteiso-C17:0, and the DNA G + C content was 40.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 089168T should be assigned to the genus Virgibacillus, being related most closely to the type strains of Virgibacillus carmonensis (sequence similarity 97.6%), Virgibacillus necropolis (97.3%) and Virgibacillus halodenitrificans (97.1%). Levels of DNA–DNA relatedness between strain JSM 089168T and the type strains of V. carmonensis, V. necropolis and V. halodenitrificans were 20.4, 14.3 and 12.0%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 089168T represents a novel species of the genus Virgibacillus, for which the name Virgibacillus litoralis sp. nov. is proposed. The type strain is JSM 089168T (=DSM 21085T =KCTC 13228T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 089168T is FJ425909.  相似文献   

7.
A novel pale-yellow-pigmented, moderately halophilic, facultatively alkaliphilic, non-motile, non-spore-forming, catalase- and oxidase-positive, obligately aerobic Gram-positive coccus, strain YIM-C678T was isolated from a saline soil sample collected from a hypersaline habitat in the Qaidam basin, northwest China. The organism grew at 4–37°C and pH 6.0–11.0, with optimum growth at 25°C and pH 8.0. Strain YIM-C678T grew optimally in the presence of 10–12% (w/v) NaCl and growth was observed in 1–25% (w/v) NaCl. The cell wall murein type was l-Lys-Gly5. Major cellular fatty acids were anteiso-C15:0, iso-C15:0, iso-C16:0 and C16:0. Menaquinone 6 (MK-6) was the major respiratory quinone. The DNA G + C content was 46.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain YIM-C678T belonged to the family Staphylococcaceae and was most closely related to the eight described species of the genus Salinicoccus with sequence similarities from 92.2 (S. luteus YIM 70202T) to 97.5% (S. kunmingensis YIM Y15T). The DNA–DNA relatedness between strain YIM-C678T and S. kunmingensis YIM Y15T was 35.4%. Chemotaxonomic data and 16S rRNA gene sequence analysis supported the affiliation of strain YIM-C678T with the genus Salinicoccus. The combination of phylogenetic analysis, phenotypic characteristics, chemotaxonomic differences and DNA–DNA hybridization data supported the view that the bacterium represents a novel species of the genus Salinicoccus, for which the name Salinicoccus salitudinis sp. nov. is proposed, with YIM-C678T (=DSM 17846 = CGMCC 1.6299) as the type strain.  相似文献   

8.
A moderately halophilic, Gram-positive, catalase- and oxidase-positive, rod-shaped, aerobic bacterium, designated strain JSM 071068T, was isolated from a sea anemone (Anthopleura xanthogrammica) collected from the Naozhou Island on the Leizhou Bay in the South China Sea. Cells were motile by means of peritrichous flagella and formed ellipsoidal endospores lying in subterminal swollen sporangia. Strain JSM 071068T was able to grow with 1–20% (w/v) total salts (optimum, 6–9%), at pH values of 6.0–10.0 (optimum, pH 7.5) and a temperature range of 10–35°C (optimum, 25°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant menaquinone was MK-7 and the major cellular fatty acids were anteiso-C15:0, anteiso-C17:0 and iso-C15:0. The genomic DNA G + C content was 42.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 071068T belonged to the genus Halobacillus. The 16S rRNA gene sequence similarities between strain JSM 071068T and the type strains of the recognized Halobacillus species ranged from 97.9% (with Halobacillus alkaliphilus) to 95.3% (with Halobacillus kuroshimensis). The levels of DNA–DNA relatedness between the new isolate and the type strains of H. alkaliphilus, Halobacillus campisalis, Halobacillus halophilus and Halobacillus seohaensis were 25.6, 22.1, 10.8 and 13.2%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 071068T represents a new species of the genus Halobacillus, for which the name Halobacillus naozhouensis sp. nov. is proposed, with JSM 071068T (=DSM 21183T =KCTC 13234T) as the type strain. The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 071068T is EU925615.  相似文献   

9.
A novel cold-resistant bacterium, designated YIM 016T, was isolated from a peat bog sample collected from Mohe County, Heilongjiang Province, Northern China and its taxonomic position was investigated using a polyphasic approach. The strain was Gram-positive, aerobic, endospore-forming, motile and rod-shaped. Phylogenetic analyses based on the 16S rRNA gene sequence clearly revealed that strain YIM 016T is a member of the genus Paenibacillus. The strain is closely related to Paenibacillus alginolyticus DSM 5050T, Paenibacillus chondroitinus DSM 5051T and Paenibacillus pocheonensis Gsoil 1138T with similarities of 99.0 %, 97.0 % and 96.3 %, respectively. Meanwhile, the low DNA–DNA relatedness levels between strain YIM 016T and its closely related phylogenetic neighbours demonstrated that this isolate represents a new genomic species in the genus Paenibacillus. Phenotypic and chemotaxonomic tests showed that growth of strain YIM 016T occurred at 4–37 °C, pH 6.0–8.0 and with a NaCl tolerance up to 0.5 % (w/v). The peptidoglycan contained meso-diaminopimelic acid, alanine and glutamic acid. The whole-cell hydrolysates mainly contained glucose, galactose and ribose. The predominant menaquinone was MK-7 and the major fatty acids were anteiso-C15:0 and iso-C16:0. The DNA G+C content of strain YIM 016T was 51.7 mol %. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain YIM 016T could be clearly distinguished from other species of the genus Paenibacillus. It is therefore concluded that strain YIM 016T represents a novel species in the genus Paenibacillus, for which the name Paenibacillus frigoriresistens sp. nov. is proposed. The type strain is YIM 016T (= CCTCC AB 2011150T = JCM 18141T).  相似文献   

10.
11.
A novel Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped, aerobic bacterium, designated strain JSM 078120T, was isolated from sea water collected from a tidal flat of Naozhou Island, South China Sea. Growth occurred with 1–15% (w/v) total salts (optimum, 2–4%), at pH 6.0–10.0 (optimum, pH 7.5) and at 4–35°C (optimum, 25–30°C). The major cellular fatty acids were C18:1 ω9c, C16:0, C12:0 3-OH and C16:1 ω7c. The predominant respiratory quinone was ubiquinone Q-9, and the genomic DNA G + C content was 60.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 078120T should be assigned to the genus Marinobacter, being related most closely to the type strains of Marinobacter segnicrescens (sequence similarity 98.2%), Marinobacter bryozoorum (97.9%) and Marinobacter gudaonensis (97.6%). The sequence similarities between the novel isolate and the type strains of other recognized Marinobacter species ranged from 96.7 (with Marinobacter salsuginis) to 93.3% (with Marinobacter litoralis). The levels of DNA–DNA relatedness between strain JSM 078120T and the type strains of M. segnicrescens, M. bryozoorum and M. gudaonensis were 25.3, 20.6 and 18.8%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 078120T represents a novel species of the genus Marinobacter, for which the name Marinobacter zhanjiangensis sp. nov. is proposed. The type strain is JSM 078120T (= CCTCC AB 208029T = DSM 21077T = KCTC 22280T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 078120T is FJ425903.  相似文献   

12.
An orange-coloured, non-spore-forming, motile and coccus-shaped actinobacterium, designated YIM 75677T, was isolated from a soil sample collected from a dry-hot river valley in Dongchuan county, Yunnan Province, south-west China and its taxonomic position was investigated. Growth of strain YIM 75677T occurred at 12–55 °C, pH 6.0–9.0 and NaCl tolerance up to 2 % (w/v). Cells adhered to agar media and were agglutinated tightly together. The peptidoglycan contained meso-diaminopimelic acid, alanine and glutamic acid. The whole-cell hydrolysates mainly contained glucose, galactose, mannose and ribose. The predominant menaquinone was MK-9 (H2) and the major fatty acids were anteiso-C15:0 and iso-C15:0. Mycolic acids were not present. The DNA G+C content of strain YIM 75677T was 74.8 mol%. Phylogenetic analyses based on 16S rRNA gene sequence comparisons clearly revealed that strain YIM 75677T represents a novel member of the genus Kineococcus and is closely related to Kineococcus xinjiangensis S2-20T (level of similarity, 98.6 %). Meanwhile, the result of DNA–DNA hybridization between strain YIM 75677T and K. xinjiangensis S2-20T demonstrated that this isolate represented a different genomic species in the genus Kineococcus. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain YIM 75677T represents a novel species of the genus Kineococcus, for which the name Kineococcus glutineturens sp. nov. is proposed. The type strain is YIM 75677T (=CCTCC AA 209075T = JCM 18126T).  相似文献   

13.
Zhao GZ  Zhu WY  Li J  Xie Q  Xu LH  Li WJ 《Antonie van Leeuwenhoek》2011,100(4):521-528
An aerobic, non-motile, catalase-positive, Gram-stain positive actinomycete designated YIM 63233T was isolated from the surface-sterilized leaves of Artemisia annua L. and characterized using a polyphasic taxonomic approach. Optimal growth occurred at 20–28°C, pH 6.0–7.0 and in the presence of 0–3% (w/v) NaCl. 16S rRNA gene sequence-based phylogenetic analysis showed that strain YIM 63233T clustered with species of the genus Pseudonocardia, displaying ≥1.2% sequence divergence with recognized species of this genus (from 98.8 to 94.0%). Relatively low levels of DNA–DNA relatedness were found between strain YIM 63233T and Pseudonocardia petroleophila IMSNU 22072T, which supported the classification of strain YIM 63233T within a novel species of the genus Pseudonocardia. The G + C content of genomic DNA was 72.0 mol%. Strain YIM 63233T possessed chemotaxonomic markers that were consistent with classification in the genus Pseudonocardia, i.e. the predominant fatty acids were iso-C16:0 (32.27%), C16:0 10-methyl (8.73%) and C17:1ω8c (8.30%), whilst the predominant menaquinone was MK-8(H4). The diagnostic diamino acid of the cell-wall peptidoglycan was meso-diaminopimelic acid. The major cell wall sugars were glucose, arabinose, galactose, mannose and rhamnose. The results of physiological and biochemical tests and DNA–DNA hybridization allowed the phenotypic and genotypic differentiation of strain YIM 63233T from its closest phylogenetic neighbours. Therefore, the new isolate YIM 63233T represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia serianimatus sp. nov. is proposed. The type strain is YIM 63233T (=DSM 45302T = CCTCC AA 208079T).  相似文献   

14.
A pale yellow-colored, moderately halophilic, Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped, motile, aerobic bacterium, designated strain JSM 073008T, was isolated from a sea anemone (Anthopleura xanthogrammica) collected from Naozhou Island, Leizhou Bay, South China Sea. The organism was able to grow with 1–20% (w/v) total salts (optimum, 5–10%), at pH 6.0–10.0 (optimum, pH 7.5) and 10–40°C (optimum, 25–30°C). The major cellular fatty acids were C16:0, C16:1 ω7c/iso-C15:0 2-OH and C18:1 ω7c. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid. The predominant respiratory quinone was Q-8 and the genomic DNA G + C content was 47.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 073008T should be assigned to the genus Alteromonas, being most closely related to Alteromonas hispanica F-32T (sequence similarity 96.9%), followed by Alteromonas genovensis LMG 24078T (96.6%) and Alteromonas litorea TF-22T (96.4%). The sequence similarities between the novel isolate and the type strains of other recognized Alteromonas species ranged from 95.9% (with Alteromonas stellipolaris ANT 69aT) to 94.5% (with Alteromonas simiduii BCRC 17572T). The combination of phylogenetic analysis, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 073008T represents a new species of the genus Alteromonas, for which the name Alteromonas halophila sp. nov. is proposed. The type strain is JSM 073008T (=CCTCC AA 207035T = KCTC 22164T). The authors Yi-Guang Chen and Huai-Dong Xiao have contributed equally to this work.  相似文献   

15.
16.
A novel alkaliphilic and moderate halophilic bacterium, designated strain K164T, was isolated from Keke Salt Lake in Qinghai, China. The strain grew with 2.0–20.0% (w/v) NaCl, at 4–50°C and pH 6.5–11.5, with an optimum of 8% (w/v) NaCl, 37°C and pH 10, respectively. The predominant respiratory quinone was menaquinone 6 (MK-6) and the major polar lipid was phosphatidylethanolamine. The major cellular fatty acids were anteiso-C15:0 and iso-C15:0. The genomic DNA G+C content was 50.16 mol. Phylogenetic analysis based on the full-length 16S rRNA gene sequence revealed that strain K164T was a member of the genus Salinicoccus. Strain K164T showed the highest similarity (98.4%) with Salinicoccus alkaliphilus AS 1.2691T and below 97% similarity with other recognized members of the genus in 16S rRNA gene sequence. Level of DNA–DNA relatedness between strain K164T and Salinicoccus alkaliphilus AS 1.2691T was 20.1%. On the basis of its phenotypic characteristics and the level of DNA–DNA hybridization, strain K164T is considered to represent a novel species of the genus Salinicoccus, for which the name Salinicoccus kekensis sp. nov. is proposed. The type strain is K164T (=CGMCC 1.10337T = DSM 23173T).  相似文献   

17.
A novel filamentous bacterium, designated YIM 77831T, was isolated from a geothermal soil sample collected at Rehai National Park, Tengchong, Yunnan province, south-west China. Growth occurred from 28 to 65 °C (optimum 50 °C), pH 6.0–8.0 (optimum pH 7.0). The strain formed branched substrate mycelia, endospores were produced on the substrate mycelium and aerial mycelium was not produced on any of the growth media tested. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain YIM 77831T was affiliated with the family Thermoactinomycetaceae. The stain YIM 77831T contained meso-diaminopimelic acid in the cell wall. Whole-cell hydrolysates contained glucose, galactose, mannose, ribose and rhamnose. The polar lipids were phosphatidylmethylethanolamine, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminophospholipid and four unknown phospholipids. The only menaquinone was MK-7. Major fatty acids were iso-C15:0, anteiso-C15:0 and anteiso-C17:0. The G+C content was 55.6 mol%. On the basis of the morphological and chemotaxonomic characteristics as well as genotypic data, strain YIM 77831T represents a novel genus and species, Lihuaxuella thermophila gen. nov., sp. nov., in the family Thermoactinomycetaceae. The type strain is YIM 77831T (CCTCC AA 2011024T = JCM 18059T).  相似文献   

18.
An actinomycete strain, designated YIM 60475T, was isolated from the roots of Maytenus austroyunnanensis and was characterized by using a polyphasic approach. The strain was determined to belong to the genus Streptomyces, based on its phenotypic and phylogenetic characteristics. The strain produced spiral spore chains on aerial mycelium. The cell wall contained ll-diaminopimelic acid. Whole-cell hydrolysates contained galactose, glucose, and xylose. The phospholipid was type II. The DNA G+C content of the type strain was 73.3 mol%. DNA–DNA hybridization and comparison of physiological and chemical characteristics suggested that strain YIM 60475T is a new Streptomyces species, for which the name Streptomyces mayteni sp. nov. is proposed. The type strain is YIM 60475T (=CCTCC AA 207005T = KCTC 19383T). Hua-Hong Chen and Sheng Qin contributed equally to this work.  相似文献   

19.
A novel pink-coloured, non-spore-forming, non-motile, Gram-negative bacterium, designated YIM 48858T, is described by using a polyphasic approach. The strain can grow at pH 6.5–9 (optimum at pH 7) and 25–30°C (optimum at 28°C). NaCl is not required for its growth. Positive for oxidase and catalase. Urease activity, nitrate reduction, starch and Tween 80 tests are negative reaction. 16S rRNA gene sequence similarity studies showed that strain YIM 48858T is a member of the genus Rubellimicrobium, with similarities of 96.3, 95.7 and 95.5% to Rubellimicrobium mesophilum MSL-20T, Rubellimicrobium aerolatum 5715S-9T and Rubellimicrobium thermophilum DSM 16684T, respectively. Q-10 was the predominant respiratory ubiquinone as in the other members of the genus Rubellimicrobium. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphoglycolipid, glycolipid and the major fatty acids were C18:1 ω7c, C16:0 and C10:0 3-OH, which are very different from the valid published species. The DNA G + C content was 67.7 mol%. Both phylogenetic and chemotaxonomic evidence supports that YIM 48858T is a novel species of the genus Rubellimicrobium, for which the name Rubellimicrobium roseum sp. nov. is proposed. The type strain is YIM 48858T (=CCTCC AA 208029T =KCTC 23202T).  相似文献   

20.
A novel Gram-negative, catalase- and oxidase-positive, strictly aerobic, non spore-forming, rod-shaped bacterium, designated strain JSM 083058T, was isolated from non-saline forest soil in Hunan Province, China. Growth occurred with 0–8% (w/v) NaCl (optimum, 0.5–3%) at pH 6.0–10.0 (optimum, pH 7.0) and at 5–35°C (optimum, 25–30°C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 083058T fell within the cluster comprising species of the genus Sphingomonas, clustering with Sphingomonas aestuarii K4T, with which it shared highest 16S rRNA gene sequence similarity (99.2%). The chemotaxonomic properties of strain JSM 083058T were consistent with those of the genus Sphingomonas. The predominant respiratory quinone was ubiquinone Q-10, and the major cellular fatty acids were summed feature 8 (C18:1ω7c/C18:1ω6c), C16:0, summed feature 3 (C16:1ω7c/C16:1ω6c) and C17:1ω6c. The polar lipids consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid. The genomic DNA G+C content of strain JSM 083058T was 65.5 mol%. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 083058T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas hunanensis sp. nov. is proposed. The type strain is JSM 083058T (=CCTCC AA 209011T = DSM 22213T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号