首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incorporation of plant residues strongly enhances the methane production and emission from flooded rice fields. Temperature and residue type are important factors that regulate residue decomposition and CH(4) production. However, the response of the methanogenic archaeal community to these factors in rice field soil is not well understood. In the present experiment, the structure of the archaeal community was determined during the decomposition of rice root and straw residues in anoxic rice field soil incubated at three temperatures (15 degrees C, 30 degrees C, and 45 degrees C). More CH(4) was produced in the straw treatment than root treatment. Increasing the temperature from 15 degrees C to 45 degrees C enhanced CH(4) production. Terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of 16S rRNA genes showed that Methanosarcinaceae developed early in the incubations, whereas Methanosaetaceae became more abundant in the later stages. Methanosarcinaceae and Methanosaetaceae seemed to be better adapted at 15 degrees C and 30 degrees C, respectively, while the thermophilic Methanobacteriales and rice cluster I methanogens were significantly enhanced at 45 degrees C. Straw residues promoted the growth of Methanosarcinaceae, whereas the root residues favored Methanosaetaceae. In conclusion, our study revealed a highly dynamic structure of the methanogenic archaeal community during plant residue decomposition. The in situ concentration of acetate (and possibly of H(2)) seems to be the key factor that regulates the shift of methanogenic community.  相似文献   

2.
The anaerobic degradation of different fractions of rice straw in anoxic paddy soil was investigated. Rice straw was divided up into stem, leaf sheath and leaf blade. The different straw fractions were mixed with paddy soil and incubated under anoxic conditions. Fermentation of straw components started immediately and resulted in transient accumulation of acetate, propionate, butyrate, isobutyrate, valerate, isovalerate and caproate with much higher concentrations in the presence than in the absence of straw. Also some unidentified compounds with UV absorption could be detected. The maximum concentrations of these compounds were different when using different straw fractions, suggesting differences in the degradation pathway of these straw fractions during the early phase of incubation, i.e. with Fe(III) and sulfate serving as oxidants. When concentrations of the intermediates decreased to background values, CH(4) production started. Rates of CH(4)unamended soil. During the methanogenic phase, the percentage contribution of fermentation products to CH(4) production was determined by inhibition with 2-bromoethanesulfonate (BES). Acetate (48-83%) and propionate (18-28%) were found to be the main intermediates of the carbon flow to CH(4), irrespective of the fraction of the rice straw or its absence. Mass balance calculations showed that 84-89% of CH(4) was formed via acetate in the various incubations. Radiotracer experiments showed that 11-27% of CH(4) was formed from H(2)/CO(2), thus confirming that acetate contributed 73-89% to methanogenesis. Our results show that the addition of rice straw and the fraction of the straw affected the fermentation pattern only in the early phase of degradation, but had no effect on the degradation pathway during the later methanogenic phase.  相似文献   

3.
The bacterial and archaeal communities in rice field soils subjected to different fertilization regimes for 57 years were investigated in two different seasons, a non-planted, drained season (April) and a rice-growing, flooded season (August), by performing soil dehydrogenase assay, real-time PCR assay and pyrosequencing analysis. All fertilization regimes increased the soil dehydrogenase activity while the abundances of bacteria and archaea increased in the plots receiving inorganic fertilizers plus compost and not in those receiving inorganic fertilizers only. Rice-growing and flooding decreased the soil dehydrogenase activity while they increased the bacterial diversity in rice field soils. The bacterial communities were dominated by Chloroflexi, Proteobacteria, and Actinobacteria and the archaeal communities by Crenarchaeota at the phylum level. In principal coordinates analysis based on the weighted Fast UniFrac metric, the bacterial and archaeal communities were separated primarily by season, and generally distributed along with soil pH, the variation of which had been caused by long-term fertilization. Variations in the relative abundance according to the season or soil pH were observed for many bacterial and archaeal groups. In conclusion, the microbial activity, prokaryotic abundance and diversity, and prokaryotic community structure in the rice field soils were changed by season and long-term fertilization.  相似文献   

4.
Options for mitigating methane emission from a permanently flooded rice field   总被引:19,自引:0,他引:19  
Permanently flooded rice fields, widely distributed in south and south‐west China, emit more CH4 than those drained in the winter crop season. For understanding CH4 emissions from permanently flooded rice fields and developing mitigation options, CH4 emission was measured year‐round for 6 years from 1995 to 2000, in a permanently flooded rice field in Chongqing, China, where two cultivations with four treatments were prepared as follows: plain‐cultivation, summer rice crop and winter fallow with floodwater layer annually (convention, Ch‐FF), and winter upland crop under drained conditions (Ch‐Wheat); ridge‐cultivation without tillage, summer rice and winter fallow with floodwater layer annually (Ch‐FFR), and winter upland crop under drained conditions (Ch‐RW), respectively. On a 6‐year average, compared to the treatments with floodwater in the winter crop season, the CH4 flux during rice‐growing period from the treatments draining floodwater and planting winter crop was reduced by 42% in plain‐cultivation and by 13% in ridge‐cultivation (P < 0.05), respectively. The reduction of annual CH4 emission reached 68 and 48%, respectively. Compared to plain‐cultivation (Ch‐FF), ridge‐cultivation (Ch‐FFR) reduced annual CH4 emission by 33%, and which was mainly occurred in the winter crop season. These results indicate that draining floodwater layer for winter upland crop growth was not only able to prevent CH4 emission from permanently flooded paddy soils directly in the winter crop season, but also to reduce CH4 emission substantially during the following rice‐growing period. As an alternative to the completely drainage of floodwater layer in the winter crop season, ridge‐cultivation could also significantly mitigate CH4 emissions from permanently flooded rice fields.  相似文献   

5.
Temperate rice field soil from Vercelli (Italy) contains moderately thermophilic methanogens of the yet uncultivated rice cluster I (RC-I), which become prevalent upon incubation at temperatures of 45-50 degrees C. We studied whether such thermophilic methanogens were ubiquitously present in anoxic soils. Incubation of different rice field soils (from Italy, China and the Philippines) and flooded riparian soils (from the Netherlands) at 45 degrees C resulted in vigorous CH(4) production after a lag phase of about 10 days. The archaeal community structure in the soils was analysed by terminal restriction fragment length polymorphism (T-RFLP) targeting the SSU rRNA genes retrieved from the soil, and by cloning and sequencing. Clones of RC-I methanogens mostly exhibited T-RF of 393 bp, but also terminal restriction fragment (T-RF) of 158 and 258 bp length, indicating a larger diversity than previously assumed. No RC-I methanogens were initially found in flooded riparian soils. However, these archaea became abundant upon incubation of the soil at 45 degrees C. Thermophilic RC-I methanogens were also found in the rice field soils from Pavia, Pila and Gapan. However, the archaeal communities in these soils also contained other methanogenic archaea at high temperature. Rice field soil from Buggalon, on the other hand, only contained thermophilic Methanomicrobiales rather than RC-I methanogens, and rice field soil from Jurong mostly Methanomicrobiales and only a few RC-I methanogens. The archaeal community of rice field soil from Zhenjiang almost exclusively consisted of Methanosarcinaceae when incubated at high temperature. Our results show that moderately thermophilic methanogens are common in temperate soils. However, RC-I methanogens are not always dominating or ubiquitous.  相似文献   

6.
Effects of water regime on archaeal communities in Arctic soils from Spitsbergen were studied using denaturing gradient gel electrophoresis (DGGE) of amplified 16S rRNA genes, with subsequent sequencing of amplicons and ordination analysis of binary DGGE data. Samples with major differences in soil water regime showed significant differences in their archaeal community profiles. Methanomicrobiales, Methanobacteriaceae and Methanosaeta were detectable only in environments that were wet during most of the growth season, while a novel euryarchaeotal cluster was detected only in less reduced solifluction material. Group 1.3b of Crenarchaeota had a high relative abundance within the archaeal community in a wide range of wet soils. Along a natural soil moisture gradient, changes in archaeal community composition were observed only in upper soil layers. The results indicated that members of Methanomicrobiales were relatively tolerant to soil aeration. Differences in archaeal community composition associated with soil water regime were predominant over regional and seasonal variation, and over differences between individual wetlands. The results suggest that the observed 'on-off switch' mechanism of soil hydrology for large-scale variations in methane emissions from northern wetlands is at least partly caused by differences in the community structure of organisms involved in methane production.  相似文献   

7.
Most of the methane (CH4) emission from rice fields is derived from plant photosynthates, which are converted to CH4. Rice cluster I (RC-1) archaea colonizing the rhizosphere were found to be the methanogens responsible for this process. Hence, RC-1 methanogens seem to play a crucial role in emission of the greenhouse gas CH4. We determined the community composition and activity of methanogens colonizing the roots of eight different rice cultivars after growth on both Italian rice soil and river bank soil, which contained different communities of methanogenic archaea. The community composition was analyzed by terminal restriction fragment length polymorphism and cloning/sequencing of the archaeal 16S rRNA gene and the mcrA gene coding for a subunit of the methyl coenzyme M reductase. When grown on rice field soil, the methanogenic community of the different rice cultivars was always dominated by RC-1 methanogens. In contrast, roots were colonized by Methanomicrobiales when grown on river bank soil, in which RC-1 methanogens were initially not detectable. Roots colonized with Methanomicrobiales compared with RC-1 exhibited lower CH4 production and CH4 emission rates. The results show that the type of methanogens colonizing rice roots has a potentially important impact on the global CH4 cycle.  相似文献   

8.
Characterization of microbial communities using single-strand conformation polymorphism (SSCP) was compared with that using denaturing gradient gel electrophoresis (DGGE). This comparison was based on the V3-4 region (Escherichia coli positions: 341-806) of 16S rRNA gene of bacterial or archaeal communities obtained from a methanogenic bioreactor. Significant differences in the bacterial banding profiles were observed while attempting to detect the diversity of the community and its succession during the reactor operation. The SSCP produced a number of sharp bands and differentiated the bacterial community structures to which the DGGE gave an identical pattern. On the other hand, the SSCP and DGGE provided similar succession patterns for archaeal community.  相似文献   

9.

The aim of this study was to develop an effective bioaugmentation concept for anaerobic digesters treating lignocellulosic biomass such as straw. For that purpose, lignocellulose-degrading methanogenic communities were enriched on wheat straw from cow and goat rumen fluid as well as from a biogas reactor acclimated to lignocellulosic biomass (sorghum as mono-substrate). The bacterial communities of the enriched cultures and the different inocula were examined by 454 amplicon sequencing of 16S rRNA genes while the methanogenic archaeal communities were analyzed by terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of the mcrA gene. Bacteroidetes was the most abundant phylum in all samples. Within the Bacteroidetes phylum, Bacteroidaceae was the most abundant family in the rumen-derived enrichment cultures, whereas Porphyromonadaceae was the predominant one in the reactor-derived culture. Additionally, the enrichment procedure increased the relative abundance of Ruminococcaceae (phylum: Firmicutes) in all cultures. T-RFLP profiles of the mcrA gene amplicons highlighted that the ruminal methanogenic communities were composed of hydrogenotrophic methanogens dominated by the order Methanobacteriales regardless of the host species. The methanogenic communities changed significantly during the enrichment procedure, but still the strict hydrogenotrophic Methanobacteriales and Methanomicrobiales were the predominant orders in the enrichment cultures. The bioaugmentation potential of the enriched methanogenic cultures will be evaluated in further studies.

  相似文献   

10.
A wilty mutant of rice has impaired hydraulic conductance   总被引:1,自引:0,他引:1  
The rice CM2088 mutant is the wilty phenotype and wilts markedly under well-watered sunny conditions. The leaf water potential and epidermal (mainly stomatal) conductance of CM2088 plants decreased significantly under conditions that induced intense transpiration, as compared with those of wild-type plants, revealing that the wilty phenotype was not the result of abnormal stomatal behavior but was due to an increase in resistance to water transport. The resistance to water transport was dramatically elevated in the node and the sheath and blade of a leaf of the mutant, but not in the root or stem. The diameter of xylem vessels in the large vascular bundles of the leaf sheath and the internode tended to be small, and the numbers of vessel elements with narrowed or scalariform perforation plates in the leaf blade and sheath were greater in the mutant than in the wild type. Most xylem vessels were occluded, with air bubbles in the leaf sheath of the mutant during the midday hours under intense transpiration conditions, while no bubbles were observed in plants that were barely transpiring, revealing that the significant increase in resistance to water transport was a result of the cavitation. The additive effects of cavitation in xylem vessels and the decreased diameter and deformed plates of vessel elements might be responsible for the wilty phenotype of CM2088.  相似文献   

11.
Rice straw is a major substrate for the production of methane, a greenhouse gas, in flooded rice fields. The bacterial community degrading rice straw under anoxic conditions was investigated with molecular methods. Rice straw was incubated in paddy soil anaerobically for 71 days. Denaturing gradient gel electrophoresis (DGGE) of the amplified bacterial 16S rRNA genes showed that the composition of the bacterial community changed during the first 15 days but then was stable until the end of incubation. Fifteen DGGE bands with different signal intensities were excised, cloned, and sequenced. In addition, DNA was extracted from straw incubated for 1 and 29 days and the bacterial 16S rRNA genes were amplified and cloned. From these clone libraries 16 clones with different electrophoretic mobilities on a DGGE gel were sequenced. From a total of 31 clones, 20 belonged to different phylogenetic clusters of the clostridia, i.e., clostridial clusters I (14 clones), III (1 clone), IV (1 clone), and XIVa (4 clones). One clone fell also within the clostridia but could not be affiliated to one of the clostridial clusters. Ten clones grouped closely with the genera Bacillus (3 clones), Nitrosospira (1 clone), Fluoribacter (1 clones), and Acidobacterium (2 clones) and with clone sequences previously obtained from rice field soil (3 clones). The relative abundances of various phylogenetic groups in the rice straw-colonizing community were determined by fluorescence in situ hybridization (FISH). Bacteria were detached from the incubated rice straw with an efficiency of about 80 to 90%, as determined by dot blot hybridization of 16S rRNA in extract and residue. The number of active (i.e., a sufficient number of ribosomes) Bacteria detected with a general eubacterial probe (Eub338) after 8 days of incubation was 61% of the total cell counts. This percentage decreased to 17% after 29 days of incubation. Most (55%) of the active cells on day 8 belonged to the genus Clostridium, mainly to clostridial clusters I (24%), III (6%), and XIVa (24%). An additional 5% belonged to the Cytophaga-Flavobacterium cluster of the Cytophaga-Flavobacterium-Bacteroides phylum, 4% belonged to the alpha, beta, and gamma Proteobacteria, and 1.3% belonged to the Bacillus subbranch of the gram-positive bacteria with a low G+C content. The results show that the bacterial community colonizing and decomposing rice straw developed during the first 15 days of incubation and was dominated by members of different clostridial clusters, especially clusters I, III, and XIVa.  相似文献   

12.
【背景】随着转基因作物的大面积种植,其潜在的环境安全性问题备受关注。转基因作物收获后,大部分残留物会重返土壤,可能对土壤微生物造成影响。【方法】通过室内模拟田间秸秆降解试验,采用平板计数法、表面荧光显微镜直接计数法(FDC)以及变性梯度凝胶电泳(DGGE)技术,分析了抗真菌转基因水稻秸秆降解对土壤细菌数量及多样性的影响。【结果】平板计数表明,在整个降解过程中,转基因与非转基因处理土壤可培养细菌数量的变化趋势有所差别,但差异不显著。FDC结果表明,转基因与非转基因处理土壤细菌总数差异不显著。DGGE指纹图谱显示,转基因与非转基因处理土壤样品之间的多样性指数、均匀度和丰富度均无显著差异。【结论与意义】抗真菌转基因水稻秸秆降解并未对土壤细菌数量和多样性产生显著影响。本研究为抗真菌转基因水稻的环境安全性评估提供了依据。  相似文献   

13.
Rice cultivation is an important anthropogenic source of atmospheric methane (CH4), the emission of which is affected by management practices. Many field measurements have been conducted in major rice‐producing countries in Asia. We compiled a database of CH4 emissions from rice fields in Asia from peer‐reviewed journals. We developed a statistical model to relate CH4 flux in the rice‐growing season to soil properties, water regime in the rice‐growing season, water status in the previous season, organic amendment and climate. The statistical results showed that all these variables significantly affected CH4 flux, and explained 68% of the variability. Organic amendment and water regime in the rice‐growing season were the top two controlling variables; climate was the least critical variable. The average CH4 fluxes from rice fields with single and multiple drainages were 60% and 52% of that from continuously flooded rice fields. The flux from fields that were flooded in the previous season was 2.8 times that from fields previously drained for a long season and 1.9 times that from fields previously drained for a short season. In contrast to the previously reported optimum soil pH of around neutrality, soils with pH of 5.0–5.5 gave the maximum CH4 emission. The model results demonstrate that application of rice straw at 6 t ha?1 before rice transplanting can increase CH4 emission by 2.1 times; when applied in the previous season, however, it increases CH4 emission by only 0.8 times. Default emission factors and scaling factors for different water regimes and organic amendments derived from this work can be used to develop national or regional emission inventories.  相似文献   

14.
The methane emitted from rice fields originates to a large part (up to 60%) from plant photosynthesis and is formed on the rice roots by methanogenic archaea. To investigate to which extent root colonization controls methane (CH4) emission, we pulse‐labeled rice microcosms with 13CO2 to determine the rates of 13CH4 emission exclusively derived from photosynthates. We also measured emission of total CH4 (12+13CH4), which was largely produced in the soil. The total abundances of archaea and methanogens on the roots and in the soil were analysed by quantitative polymerase chain reaction of the archaeal 16S rRNA gene and the mcrA gene coding for a subunit of the methyl coenzyme M reductase respectively. The composition of archaeal and methanogenic communities was determined with terminal restriction fragment length polymorphism (T‐RFLP). During the vegetative growth stages, emission rates of 13CH4 linearly increased with the abundance of methanogenic archaea on the roots and then decreased during the last plant growth stage. Rates of 13CH4 emission and the abundance of methanogenic archaea were lower when the rice was grown in quartz‐vermiculite with only 10% rice soil. Rates of total CH4 emission were not systematically related to the abundance of methanogenic archaea in soil plus roots. The composition of the archaeal communities was similar under all conditions; however, the analysis of mcrA genes indicated that the methanogens differed between the soil and root. Our results support the hypothesis that rates of photosynthesis‐driven CH4 emission are limited by the abundance of methanogens on the roots.  相似文献   

15.
为了给表达广谱抗真菌蛋白转基因水稻的安全性评估提供基础数据,本文以表达广谱抗真菌蛋白转基因水稻转品1和转品8及非转基因七丝软粘(对照)为试材,对其秸秆化学成分进行分析,同时,采用傅立叶变换红外光谱(FTIR)和X-射线衍射(XRD)方法观察秸秆中不同部位纤维素结构的变化情况。研究结果显示:(1)转基因水稻转品1和转品8与对照在秸秆相同部位的化学成分含量不存在显著差异;(2)转基因水稻转品1和转品8及对照在秸秆相同部位纤维素的红外吸收峰形状基本一致,且品种间的吸收峰强度和结晶指数(O'KI和N·O'KI)也无显著差异;(3)转品1和转品8秸秆的X-射线衍射图与对照相似,且结晶度(CrI)与对照无显著差异。综上所述,广谱抗真菌基因的导入不会对水稻的化学成分、纤维素结构及晶体结构产生明显影响。  相似文献   

16.
水稻物质生产与氮、磷、钾、硅素积累特点及其相互关系   总被引:34,自引:5,他引:29  
大田条件下研究了30个水稻基因型的干物质与N、P、K、Si积累特性及其相互关系.结果表明,水稻干物质积累总量随N、P、K和Si积累总量的增加呈直线增加,其相关系数早季和晚季均达极显著水平.同时,N、P、K、Si积累的平衡有利于干物质积累,干物质积累量随NBI(养分平衡指数)直线增加,随NDI(养分偏离指数)直线下降.30个水稻品种平均N、P、K、Si积累总量比值早季为3.76:1:4.55:7.10,晚季为2.88:1:4.54:8.09.干物质积累能力以中期最强,前期最弱,而N积累能力却以前期最强,后期最弱.水稻抽穗前积累的干物质主要分配在茎鞘中,当抽穗期茎鞘比率达到最大时,茎鞘重约为叶片重的2倍,而抽穗前积累的N主要分配在叶片中,叶片中N的分配比率全生育期均比干物质分配比率高.成熟期积累的干物质、N和P主要分配在穗部,早、晚季稻的平均分配比率分别为58.01%、66.42%和70.06%,而K主要分配在茎鞘中,早、晚季稻的平均分配比率为62.08%.早季Si在茎中的分配比率(43.11%)最大,而晚季却以穗中的分配比率(46.99%)最大.  相似文献   

17.
水稻物质生产与氮、磷、钾、硅素积累特点及其相互关系   总被引:1,自引:0,他引:1  
大田条件下研究了30个水稻基因型的干物质与N、P、K、Si积累特性及其相互关系.结果表明,水稻干物质积累总量随N、P、K和Si积累总量的增加呈直线增加,其相关系数早季和晚季均达极显著水平.同时,N、P、K、Si积累的平衡有利于干物质积累,干物质积累量随NBI(养分平衡指数)直线增加,随NDI(养分偏离指数)直线下降.30个水稻品种平均N、P、K、Si积累总量比值早季为3.76:1:4.55:7.10,晚季为2.88:1:4.54:8.09.干物质积累能力以中期最强,前期最弱,而N积累能力却以前期最强,后期最弱.水稻抽穗前积累的干物质主要分配在茎鞘中,当抽穗期茎鞘比率达到最大时,茎鞘重约为叶片重的2倍,而抽穗前积累的N主要分配在叶片中,叶片中N的分配比率全生育期均比干物质分配比率高.成熟期积累的干物质、N和P主要分配在穗部,早、晚季稻的平均分配比率分别为58.01%、66.42%和70.06%,而K主要分配在茎鞘中,早、晚季稻的平均分配比率为62.08%.早季Si在茎中的分配比率(43.11%)最大,而晚季却以穗中的分配比率(46.99%)最大.  相似文献   

18.
Emissions of the greenhouse gas methane from Arctic wetlands have been studied extensively, though little is known about the ecology and community structure of methanogenic archaea that catalyze the methane production. As part of a project addressing microbial transformations of methane in Arctic wetlands, we studied archaeal communities in two wetlands (Solvatnet and Stuphallet) at Spitsbergen, Norway (78 degrees N) during two summer seasons. Directly extracted peat community DNA and enrichment cultures of methanogenic archaea were analyzed by nested PCR combined with denaturing gradient gel electrophoresis and subsequent sequencing of 16S rRNA gene fragments. Sequences affiliated with Methanomicrobiales, Methanobacteriaceae, Methanosaeta and Group I.3b of the uncultured crenarchaeota were detected at both sites. Sequences affiliated with Methanosarcina were recovered only from the site Solvatnet, while sequences affiliated with the euryarchaeotal clusters Rice Cluster II and Sediment 1 were detected only at the site Stuphallet. The phylogenetic affiliation of the recovered sequences suggested a potential of both hydrogenotrophic and acetoclastic methanogenesis at both sites. At Solvatnet, there were clear temporal trends in the archaeal community structure over the Arctic summer season. The archaeal community composition was significantly affected by factors influencing the activity of the overall bacterial community, as measured by in situ emissions of CO2. Methane emissions at both sites were influenced more by peat temperatures and thaw depth than by the archaeal community structure. Enrichment cultures for methanogenic archaea determined that most of the methanogens detected directly in peat could grow in culture at 10 degrees C. Culture based biases were indicated in later enrichment steps by the abundant growth of a Methanosarcina strain that was not detected directly in peat samples.  相似文献   

19.
Thermophilic methanogens in rice field soil   总被引:2,自引:0,他引:2  
The soil temperature in flooded Italian rice fields is generally lower than 30°C. However, two temperature optima at ≈ 41°C and 50°C were found when soil slurries were anoxically incubated at a temperature range of 10–80°C. The second temperature optimum indicates the presence of thermophilic methanogens in the rice field soil. Experiments with 14C-labelled bicarbonate showed that the thermophilic CH4 was exclusively produced from H2/CO2. Terminal restriction fragment length polymorphism (T-RFLP) of archaeal SSU rRNA gene fragments revealed a dramatic change in the archaeal community structure at temperatures > 37°C, with the euryarchaeotal rice cluster I becoming the dominant group (about 80%). A clone library of archaeal SSU rRNA gene fragments generated at 49°C was also dominated (10 out of 11 clones) by rice cluster I. Our results demonstrate that Italian rice field soil contains thermophilic methanogenic activity that was most probably a result of members of the as yet uncultivated euryarchaeotal rice cluster I.  相似文献   

20.
Methane production was studied in an Italian rice field over two consecutive years (1998, 1999) by measuring the rates of total and acetate-dependent methanogenesis in soil and root samples. Population dynamics of methanogens were followed by terminal restriction fragment length polymorphism and real-time PCR targeting archaeal SSU rRNA genes. Rates of total and acetate-dependent methanogenesis in soil increased during the season, reached a maximum at about 70-80 days after flooding and then decreased again. In contrast, the size of the archaeal community remained relatively constant. Therefore, the seasonal changes in the methanogenic processes were probably not caused by changes in the size of the methanogenic community but in its activity. During the 1998/1999 winter period, a slight decrease in archaeal cell numbers was found. In both years, the dominant groups were methanogens affiliated with Rice cluster I, Methanosaetaceae, Methanosarcinaceae and Methanobacteriaceae. Correspondence analysis showed, however, that the archaeal community structure was different in 1998 and 1999. Methanogens with potential acetoclastic activity made up a larger fraction of the total archaeal community in 1999 (32-53%) than in 1998 (20-32%). Furthermore, the frequency of Methanosaetaceae relative to Methanosarcinaceae was significantly higher in 1999 than in 1998. This difference could be explained by the much lower soil acetate concentrations in 1999, to which Methanosaetaceae are physiologically better adapted than Methanosarcinaceae. Over the season, however, the composition of the archaeal community remained relatively constant and thus did not reflect the observed seasonal change in CH(4) production activity. The analysis of rice root samples in 1999 showed that the archaeal community structure on the roots was similar to that in soil but with acetoclastic methanogens being relatively less common. This observation is in agreement with domination of CH(4) production by H(2)/CO(2)-dependent methanogenesis on roots. Our study provided a link between size, structure and function of the methanogenic community in an Italian rice field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号