首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis   总被引:6,自引:0,他引:6  
Bone morphogenetic protein 4 (BMP4) and growth/differentiation factor 5 (GDF5) are closely related protein family members and regulate early cartilage patterning and differentiation. In this study, we compared the functional outcome of their actions systematically at various stages of chondrogenesis in mouse embryonic limb bud mesenchyme grown in micromass cultures. Overall, both growth factors enhanced cartilage growth and differentiation in these cultures. Uniquely, BMP4 not only accelerated the formation and maturation of cartilaginous nodules, but also induced internodular mesenchymal cells to express cartilage differentiation markers. On the other hand, GDF5 increased the number of prechondrogenic mesenchymal cell condensation and cartilaginous nodules, without altering the overall pattern of differentiation. In addition, GDF5 caused a more sustained elevated expression level of Sox9 relative to that associated with BMP4. BMP4 accelerated chondrocyte maturation throughout the cultures and sustained an elevated level of Col10 expression, whereas GDF5 caused a transient increase in Col10 expression. Taken together, we conclude that BMP4 is instructive to chondrogenesis and induces mesenchymal cells toward the chondrogenic lineage. Furthermore, BMP4 accelerates the progression of cartilage differentiation to maturation. GDF5 enhances cartilage formation by promoting chondroprogenitor cell aggregation, and amplifying the responses of cartilage differentiation markers. These differences may serve to fine-tune the normal cartilage differentiation program, and can be exploited for the molecular manipulation in biomimetics.  相似文献   

2.
3.
4.
Transcriptional mechanisms of chondrocyte differentiation.   总被引:21,自引:0,他引:21  
  相似文献   

5.
6.
7.
8.
The homeobox protein Barx2 is expressed in both smooth and skeletal muscle and is up-regulated during differentiation of skeletal myotubes. Here we use antisense-oligonucleotide inhibition of Barx2 expression in limb bud cell culture to show that Barx2 is required for myotube formation. Moreover, overexpression of Barx2 accelerates the fusion of MyoD-positive limb bud cells and C2C12 myoblasts. However, overexpression of Barx2 does not induce ectopic MyoD expression in either limb bud cultures or in multipotent C3H10T1/2 mesenchymal cells, and does not induce fusion of C3H10T1/2 cells. These results suggest that Barx2 acts downstream of MyoD. To test this hypothesis, we isolated the Barx2 gene promoter and identified DNA regulatory elements that might control Barx2 expression during myogenesis. The proximal promoter of the Barx2 gene contained binding sites for several factors involved in myoblast differentiation including MyoD, myogenin, serum response factor, and myocyte enhancer factor 2. Co-transfection experiments showed that binding sites for both MyoD and serum response factor are necessary for activation of the promoter by MyoD and myogenin. Taken together, these studies indicate that Barx2 is a key regulator of myogenic differentiation that acts downstream of muscle regulatory factors.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
In developing limb bud, mesenchymal cells form cellular aggregates called "mesenchymal condensations". These condensations show the prepattern of skeletal elements of the limb prior to cartilage differentiation. Roles of various signaling molecules in chondrogenesis in the limb bud have been reported. One group of signaling factors includes the Wnt proteins, which have been shown to have an inhibitory effect on chondrogenesis in the limb bud. Therefore, regulation of Wnt activity may be important in regulating cartilage differentiation. Here we show that Frzb-1, which encodes a secreted frizzled-related protein that can bind to Wnt proteins and can antagonize the activity of some Wnts, is expressed in the developing limb bud. At early stages of limb development, Frzb-1 is expressed in the ventral core mesenchyme of the limb bud, and later Frzb-1 expression becomes restricted to the central core region where mesenchymal condensations occur. At these stages, a chondrogenic marker gene, aggrecan, is not yet expressed. As limb development proceeds, expression of Frzb-1 is detected in cartilage primordial cells, although ultimately Frzb-1 expression is down-regulated. Similar results were obtained in the recombinant limb bud, which was constructed from dissociated and re-aggregated mesenchymal cells and an ectodermal jacket with the apical ectodermal ridge. In addition, Frzb-1 expression preceded aggrecan expression in micromass cultures. These results suggest that Frzb-1 has a role in condensation formation and cartilage differentiation by regulating Wnt activity in the limb bud.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号