首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
陆面蒸散发在气候调节和维持区域水量平衡中起关键作用.量化蒸散发及其各组分项,对深刻揭示干旱半干旱地区的生态水文过程具有重要意义.本研究基于科尔沁沙地流动半流动沙丘2017年生长季气象监测系统的原位监测数据,利用Shuttleworth-Wallace(S-W)模型对沙丘蒸散发进行模拟,在此基础上,对蒸散各组分进行拆分,并利用涡度相关对模拟蒸散发值进行验证.结果表明: 整个生长季模型模拟蒸散发值为308 mm,涡度相关实测值为296 mm,偏差较小,证明S-W模型适用于该地区的蒸散发模拟.蒸散发整体呈生长旺盛期>生长后期>生长初期,分别为192、71和45 mm,分别占总量的62.3%、23.1%和14.6%.日尺度上模型模拟值与实测蒸散发值一致性较高,模型模拟精度大体表现为: 晴天>阴天>雨天,且阴雨天模型模拟值较涡度相关实测值偏低.经拆分,土壤蒸发和植被蒸腾分别为176和132 mm,分别占总量的57.1%和42.9%,表明沙地水分利用效率较低.持续干旱和降水后,蒸散发规律明显不同,且土壤蒸发对降水的敏感性强于植被蒸腾.  相似文献   

2.
基于改进的双源模型模拟荒漠河岸胡杨林蒸散发   总被引:1,自引:0,他引:1  
高冠龙  冯起  刘贤德 《生态学报》2020,40(10):3462-3472
蒸散发是水循环和能量平衡过程中的重要组成部分,其准确量化对于深刻揭示干旱半干旱地区的生态水文过程具有重要意义。以黑河下游荒漠河岸胡杨林为研究对象,在2014和2015年胡杨主要生长季内,基于涡度相关技术实测数据,分析了蒸散发日及各物候期变化规律,结合改进的双源Penman-Monteith-Priestley-Taylor(PM-PT)模型,模拟了黑河下游荒漠河岸胡杨林蒸散发,并分析了模型的参数敏感性,得到的主要结论如下:(1)胡杨林蒸散发日变化大致呈先升高后降低的趋势。上午随着太阳辐射的逐渐增强,气温逐渐升高,蒸散速率逐渐增大,在中午12:00左右达到峰值。随后,太阳辐射减弱,气温逐渐降低,空气中相对湿度增加,胡杨叶片内外水汽压差减小,蒸散速率随之降低。(2)胡杨生长季内蒸散发整体上呈先升高后降低的趋势。2014和2015年生长季蒸散发总量分别为612 mm和658 mm,果期和种子散播期累积蒸散发为生长季内蒸散发总量的主体部分,果期内累积蒸散发分别为316 mm和348 mm,分别占各年生长季蒸散发总量的51.65%和52.87%;种子散播期内平均蒸散发略低于果期,2014和2015年胡杨林种子散播期内累积蒸散发分别为261 mm和271 mm,分别占各年生长季蒸散发总量的42.71%和41.12%,展叶期和叶变色期内平均蒸散发最低,原因在于展叶期胡杨叶片尚未完全成形,而叶变色期叶片活性逐渐降低。(3)改进的双源PM-PT模型与传统的双源Shuttleworth-Wallace(SW)模型相比,在模型结构与参数数量方面均得到了优化,其模拟精度也更高。(4)改进的双源PM-PT模型对净辐射最为敏感。  相似文献   

3.
西南喀斯特地区地形起伏大、土壤保水持水性差、生态环境脆弱.准确估算区域尺度蒸散发对研究喀斯特地区植被恢复、水资源管理等具有重要意义.本文以桂西北喀斯特植被恢复区为例,基于野外实测气象和蒸散发数据,采用最小二乘法对Penman-Monteith-Leuning(PML)模型中气孔导度土壤湿度指数进行参数优化,并结合MOD15A2叶面积指数进行空间外推,实现了区域尺度上长时序蒸散发的估算.结果表明: 研究区蒸散发模拟值与实测值有较好的一致性,模型确定系数、纳什系数和均方根误差分别为0.85、0.75和1.56 mm·d-1.蒸散发表现出季节变化特征,并与植被生长季物候特征一致,夏季蒸散量达到峰值.研究区年蒸散量在534~1035 mm,陆面蒸散发的空间分布呈现差异性,受降水的空间分布影响较大.年蒸散发可能不仅受到降水因素的影响,还与人类活动和土地利用类型有关.  相似文献   

4.
蒸散发是土壤-植被-大气系统中水循环和能量交换的主要组成部分,准确估算区域蒸散发对农业用水调度与水资源的管理至关重要。利用MODIS数据产品结合地面气象站的观测资料,基于能量平衡原理建立的SEBAL(Surface Energy Balance Algorithms for Land)模型对西北农牧交错带2015年生长季(4—10月)的地表蒸散发量进行反演研究,并用Penman-Monteith(P-M)公式结合作物系数对模型的估算结果进行对比,结果表明:SEBAL模型估算结果与P-M公式之间的平均绝对误差为0.79mm/d,均方根误差为0.94mm/d,R~2=0.76,整体反演值偏高,但基本能满足本地区的研究需求。生长季区域日均蒸散发的变化范围为0.12—10.66mm/d,日蒸散量均值为4.31mm/d,呈东北、西南部较高,西部偏低的空间分布特征。将蒸散发估算值与地表特征参数统计分析发现蒸散发与NDVI和地表净辐射之间呈正相关,与地表温度和地表反照率之间呈负相关;不同土地利用/覆被类型的日蒸散发量由大到小依次为:耕地、林地、未利用地与草地。  相似文献   

5.
三江平原典型下垫面FAO Penman-Monteith模型适用性分析   总被引:1,自引:0,他引:1  
提高蒸散量估算精度对于研究地表能量和水分平衡具有重要意义.基于涡度相关系统测量值和小气候观测资料,比较分析了FAO Penman-Monteith模型对三江平原典型下垫面沼泽湿地、水稻和大豆田蒸散量的模拟效果,以探讨模型在该区的适用性.结果表明:作物系数采用FAO推荐值时,FAO Penman-Monteith模型对沼泽湿地蒸散量的模拟值明显高于测量值,平均高估81.8%,模拟效率(ME)为负值,说明该模型不适用于沼泽湿地;该模型能够模拟水稻和大豆田蒸散量季节变化,且对稻田的模拟效果明显优于大豆田.沼泽湿地、水稻和大豆田3种类型下垫面的作物系数(Kc)值与叶面积指数(LAI)均呈极显著正相关关系,大豆田的Kc值还与饱和水汽压差(VPD)呈极显著负相关关系.依据线性回归方程校正Kc值后,FAO Penman-Monteith模型对沼泽湿地、水稻和大豆田估算精度均显著提高,平均偏差(MBE)为-0.1~0.3 mm·d-1,均方根误差(RMSE)为0.50~0.67 mm·d-1,ME为0.69~0.85,对水稻田蒸散量的模拟效果最好.无论是否校正作物系数,FAO Penman-Monteith模型都适用于模拟三江平原稻田蒸散量,如果用于模拟沼泽湿地和大豆田蒸散量,则必须要校正作物系数.  相似文献   

6.
童雅琴  王佩  李小雁  张赐成  白岩 《生态学报》2018,38(20):7400-7411
水分收支是对水循环要素降水、蒸发蒸腾、径流以及土壤贮储水量变化等的定量刻画,对水资源的可持续开发及利用至关重要。基于黑河流域阿柔观测站2014和2015年水文气象观测数据,运用水量平衡理论,定量的评估了高寒草甸生态系统的水分收支动态,并结合双源模型对高寒草甸生态系统蒸散发(植被蒸腾和土壤蒸发)进行拆分及评价。研究结果表明(1)在生长季(5—9月)植被蒸腾是高寒草甸生态系统主要的耗水形式,2014和2015年生长季平均蒸散比(T/ET)分别为0.74和0.79;(2)土壤水分的剧烈变化主要发生在0—40 cm处,且受冻融过程影响显著;(3)在降水较多的年份(2014)高寒草甸生态系统水分收支基本平衡,且不受冻融影响的月份(6—9)有地表径流产生约42 mm;在正常年份(2015),生态系统呈现水分亏缺,亏缺量约为134 mm,6—9月约亏缺26 mm;(4)模型估算蒸散发(ET)与实测蒸散发具有很好的一致性,相关系数可达0.90,敏感性分析表明模型输入变量对蒸散发(ET)及蒸散比(T/ET)产生的误差较小,双源模型可以很好地实现对高寒草甸生态系统蒸散发(ET)的拆分。  相似文献   

7.
为评价生态模型在农田蒸散及土壤水分运动模拟中的适用性,利用2013—2015年南京农业气象测站观测数据,评估了BEPS(Boreal Ecosystem Productivity Simulator)模拟冬小麦农田生态系统逐日蒸散及与土壤水分动态的可靠性,并进一步开展了植被冠层蒸腾和农田土壤蒸发分离。模拟结果表明:BEPS适用于研究冬小麦农田蒸散量及土壤水分运动规律;由于考虑了叶片聚集指数和冬小麦根系垂直分布递减系数随生育期变动的参数化改进,BEPS分别可以解释2013—2014年和2014—2015年两个生长季农田生态系统蒸渗仪实测蒸散量变化的83%和74%,参数化改进前后模型效率ME相当(前:0.8,后0.74),标准差RMSE(前:1.50,后1.05),平均偏差MBE(前:0.5,后0.35),误差减小;两个生长季中,土壤蒸发占冠层上方总蒸散的比例随生育进程而变化,全生育期发散比平均值分别为34%和29%;BEPS模拟的0~40 cm土层深度土壤水分随时间变化趋势与实测值基本一致,可以解释78%以上的土壤水分实测值变化,并能快速地响应降水变化。本研究表明,生态模型可以用于模拟冬小麦农田蒸散和土壤水分变化,并有助于厘定农田冠层中难以区分的植被蒸腾和土壤蒸发的比例关系,可为进一步开展气候变化背景下的区域蒸散发评估及与之相联系的农田节水管理奠定基础。  相似文献   

8.
赵丽雯  赵文智  吉喜斌 《生态学报》2015,35(4):1114-1123
利用中国生态系统研究网络临泽内陆河流域研究站绿洲农田2009年小气候、湍流交换、土壤蒸发和叶片气孔导度等综合观测试验数据,应用Shuttleworth-Wallace(S-W)双源模型以半小时为步长估算了绿洲农田玉米生长季实际蒸散量,并利用涡动相关与微型蒸渗仪实测数据对田间蒸散发量和棵间土壤蒸发量计算结果进行了检验。结果表明:S-W模型较好地估算研究区的蒸散量,并能有效区分农田作物蒸腾和土壤蒸发;全生育期玉米共耗水640 mm,其中作物蒸腾累积量为467 mm,土壤蒸发累积量为173 mm,分别占总量的72.9%和27.1%;日时间尺度上,作物蒸腾和土壤蒸发分别在0—6.3 mm/d和0—4.3 mm/d之间变化,其日平均分别为2.9和1.0 mm/d;田间供水充足,作物蒸腾与土壤蒸发比值明显受作物生长过程影响,播种—出苗期、出苗—拔节期、拔节—抽雄期、抽雄—灌浆期、灌浆—成熟期,其比值分别为0.04、0.8、7.0、5.2和1.4,不同阶段的比值差异主要受叶面积指数影响。  相似文献   

9.
白岩  朱高峰  张琨  马婷 《生态学报》2015,35(23):7821-7831
针对西北干旱区绿洲经济作物葡萄树冠层蒸腾及蒸散发特征的相关问题,在甘肃省敦煌市南湖绿洲开展无核白葡萄树液流速率及蒸散发观测试验,采用基于热平衡原理的包裹式茎流计,详细分析了典型生长季7—9月份葡萄树蒸腾耗水规律,使用"单位叶面积上的平均液流速率SF×叶面积指数LAI"的方法,实现了从单株到林分冠层蒸腾的尺度扩展,并通过与涡动相关技术所测蒸散发数据对比,详细研究了葡萄地冠层蒸腾及蒸散发规律。结果表明:典型生长季中葡萄树液流速率日变化为单峰型曲线,日均耗水量从2.76 kg到10 kg不等,胸径越大的葡萄树日均耗水量越大;冠层蒸腾及蒸散发日变化曲线亦为单峰型,白天8:00—12:00与17:00—20:00期间,葡萄冠层蒸腾与蒸散发曲线均比较吻合,该时间段葡萄地蒸散发绝大部分来源于葡萄冠层蒸腾,而12:00—17:00之间由于午后太阳辐射强烈土壤蒸发量增加,葡萄蒸散发大于冠层蒸腾;典型生长季3个月中,葡萄冠层蒸腾量的变化范围在1.88—8.12 mm/d之间,日均冠层蒸腾量为6.12 mm/d,蒸散发在1.74 mm/d至10.78 mm/d之间,日均蒸散发量为7.13 mm/d;日均土壤蒸发量约为1.01 mm/d,只占总蒸散发量的14.2%,日均冠层蒸腾占日均蒸散发的比重达到85.8%,说明该生长阶段冠层蒸散发以作物蒸腾为主。  相似文献   

10.
塔河森林生态系统蒸散发的定量估算   总被引:3,自引:0,他引:3  
蒸散发是农业、气象、水文科学研究的重要参数,是全球水文循环过程的重要组成部分.本文应用改进的DHSVM分布式水文模型,利用光学遥感TM数据反演得到叶面积指数等地表数据,由数字高程模型求得坡度、坡向等地形指数因子,定量估算塔河地区2007年逐日蒸散发.应用BP神经网络建立逐日蒸散发量与逐日径流出口流量的关系,并建立研究区水量平衡方程,共同检验研究结果的准确性.结果表明:该模型可以较好地应用于本研究区.塔河流域年总蒸散量234.01 mm,蒸散发与季节有明显的相关性,夏季蒸散发值最高,日均蒸散发值1.56 mm,秋季、春季日均蒸散发值分别为0.30、0.29 mm,冬季蒸散发值最低.地表覆盖类型对蒸散发值影响明显,阔叶林的蒸散发能力强于针阔混交林,其次为针叶林.  相似文献   

11.
海北高寒灌丛草甸蒸散量特征   总被引:1,自引:0,他引:1  
郑涵  王秋凤  李英年  朱先进 《生态学杂志》2013,24(11):3221-3228
蒸散是陆地生态系统水分循环的重要分量,研究典型生态系统的蒸散规律有助于认识水分循环过程,进而为水资源合理利用提供依据.本研究基于涡度相关法研究了2003-2011年海北高寒灌丛草甸生态系统的蒸散量变化特征及水分收支状况.结果表明: 2003-2011年,研究区蒸散量的季节变化明显,最大值一般出现在生长旺季的7-8月,达4.4~5.7 mm·d-1;最小值多出现在1月或12月(0.09±0.04 mm·d-1).蒸散量的年际动态明显,为451.3~681.3 mm,其中,生长季占70%以上.年蒸散量与年降水量之比的平均值为1.06±0.17,表明该生态系统的年水分收支状况基本平衡,几乎所有的降水都以蒸散的形式消耗.  相似文献   

12.
基于2005年玉米(Zea mays)生长季土壤呼吸作用及其影响因子的动态观测资料,分析了玉米地土壤呼吸作用的日和季动态及其对土壤温度和生物因子协同作用的响应。结果表明,玉米地土壤呼吸作用的日变化为不对称的单峰型,其最小值和最大值分别出现在6∶00~7∶00和13∶00左右;玉米生长季中,土壤呼吸速率波动较大,其均值为3.16 μmol CO2·m-2·s-1,最大值为4.87 μmol CO2·m-2·s-1,出现在7月28日,最小值为1.32 μmol CO2·m-2·s-1,出现在5月4日。在土壤呼吸作用日变化中,土壤呼吸速率(SR)与10 cm深度土壤温度(T)呈显著的线性关系:SR=αT+β。在整个生长季节,玉米净初级生产力(NPP)与直线斜率(α)呈显著正相关,生物量(B)也明显影响直线的截距(β)。基于此,建立了玉米地土壤呼吸作用动态模型SR=(aNPP+b)T+cB2+dB+e。土壤呼吸作用季节变化的大部分(97%)可以由土壤温度、NPP和生物量的季节变化来解释。当仅考虑土壤温度对土壤呼吸作用的影响时,指数方程会过大或过小地估计了土壤呼吸强度。该文的结果强调了生物因子在土壤呼吸作用季节变化中的重要作用,同时指出土壤呼吸作用模型不仅要考虑土壤温度的影响,在生物因子影响土壤呼吸作用的温度敏感性时,还应该把生物因子纳入模型。  相似文献   

13.
湿地生态系统土壤温度对气温的响应特征及对CO2排放的影响   总被引:11,自引:1,他引:10  
通过2年的野外定位观测,研究了沼泽湿地土壤温度对气温变化的响应特征,以及土壤温度对沼泽湿地植物 土壤系统CO2排放的影响,并对CO2排放的季节性变化进行模拟计算.结果表明,随融冻作用开始,沼泽湿地土壤温度对气温变化的响应强度不断增大,根层土壤温度与气温间呈显著指数关系(R2=0.94,P<0.01),但不同深度土壤温度对气温变化的响应强度存在一定的差异,表现为随土壤深度的增加,二者之间的相关系数变小,土壤温度对气温的响应强度减弱.沼泽湿地植物 土壤系统CO2排放与根层土壤温度有关,二者呈显著指数相关关系(R2=0.84,P<0.01),利用模型模拟计算出沼泽湿地2003年生长季植物 土壤系统CO2排放通量平均值为664.5±213.9 mg·m-2·h-1,野外定位观测值为634.0±227.7 mg·m-2·h-1,二者之间差值不大,表明利用此方法可以对沼泽湿地生长季CO2排放进行估算.  相似文献   

14.
Several plant-herbivore hypotheses are based on the assumption that plants cannot simultaneously allocate resources to growth and defence. We studied seasonal patterns in allocation to growth and putatively defensive compounds by monitoring several chemical and physical traits in the leaves of mountain birch from early June (budburst) to late September (leaf senescence). We found significant seasonal changes in all measured characteristics, both in terms of concentrations (mg g-1) and amounts (mg leaf-1). Changes were very rapid in the spring, slow in the middle of the season, and there was another period of fast changes in the senescing leaves. Co-occurring changes in physical leaf traits and concentrations of several compounds indicated a seasonal decline in foliage suitability for herbivores. Concentrations of protein and free amino acids declined through the growing season whereas individual sugars showed variable seasonal patterns. The seasonal trends of phenolic groups differed drastically: concentrations of soluble proanthocyanidins increased through the season, whereas cell wall-bound proanthocyanidins, gallotannins and flavonoid glycosides declined after an initial increase in young leaves. We failed to find proof that the seasonal accumulation of phenolics would have been seriously compromised by leaf or shoot growth, as assumed by the growth/differentiation balance hypothesis and the protein competition model hypothesis. On the contrary, there was a steady increase in the total amount of phenolics per leaf even during the most active leaf growth.  相似文献   

15.
Changes in climatic characteristics such as seasonal and inter-annual variability may affect ecosystem structure and function, hence alter carbon and water budgets of ecosystems. Studies of modelling combined with field experiments can provide essential information to investigate interactions between carbon and water cycles and climate. Here we present a first attempt to investigate the long-term climate controls on seasonal patterns and inter-annual variations in water and carbon exchanges in an arid-zone savanna-woodland ecosystem using a detailed mechanistic soil–plant–atmosphere model (SPA), driven by leaf area index (LAI) simulated by an ecohydrological model (WAVES) and observed climate data during 1981–2012. The SPA was tested against almost 3 years of eddy covariance flux measurements in terms of gross primary productivity (GPP) and evapotranspiration (ET). The model was able to explain 80 and 71% of the variability of observed daily GPP and ET, respectively. Long-term simulations showed that carbon accumulation rates and ET ranged from 20.6 g C m?2 mon?1 in the late dry season to 45.8 g C m?2 mon?1 in the late wet season, respectively, primarily driven by seasonal variations in LAI and soil moisture. Large climate variations resulted in large seasonal variation in ecosystem water-use efficiency (eWUE). Simulated annual GPP varied between 146.4 and 604.7 g C m?2 y?1. Variations in annual ET coincided with that of GPP, ranging from 110.2 to 625.8 mm y?1. Annual variations in GPP and ET were driven by the annual variations in precipitation and vapour pressure deficit (VPD) but not temperature. The linear coupling of simulated annual GPP and ET resulted in eWUE having relatively small year-to-year variation.  相似文献   

16.
The bacterial community composition and diversity in rock varnish of Turpan Basin were investigated by restriction fragment length polymorphism (RFLP) and clone library of the 16S rRNA gene. 114 positive clones were screened, which could be grouped into 28 phylotypes and then further divided into 23 different operational taxonomic units (OTUs). These were affiliated into 5 phyla (Acidobacteria, Proteobacteria, Chloroflexi, Firmicutes and Cyanobacteria). Clones from actinobacteria were the dominant, accounting for 67.5% of total clones in the library, followed by Proteobacteria (15.8%), Chloroflexi (13.2%), Firmicutes (2.6%) and Cyanobacteria (0.9%). Rubrobacter (accounts for 35%) in the phylum Actinobacteria was the dominant genus and contained many species which might be resistant to gamma radiation. A 70% of the library clone sequences showed less 97% similarity to 16S rRNA gene sequences of standard strains obtained by pure culture. Shannon–Wiener index value of this study is 2.52 and is lower than deep-sea sediments, soils, lakes and other environments. Results of this study showed that bacterial diversity in rock varnishes of Turpan Basin was low, but maybe exist a large number of new unknown taxons, especially species that could well adapted to drought and resist radiation.  相似文献   

17.
A soil–plant–atmosphere model was used to estimate gross primary productivity (GPP) and evapotranspiration (ET) of a tropical savanna in Australia. This paper describes model modifications required to simulate the substantial C4 grass understory together with C3 trees. The model was further improved to include a seasonal distribution of leaf area and foliar nitrogen through 10 canopy layers. Model outputs were compared with a 5‐year eddy covariance dataset. Adding the C4 photosynthesis component improved the model efficiency and root‐mean‐squared error (RMSE) for total ecosystem GPP by better emulating annual peaks and troughs in GPP across wet and dry seasons. The C4 photosynthesis component had minimal impact on modelled values of ET. Outputs of GPP from the modified model agreed well with measured values, explaining between 79% and 90% of the variance and having a low RMSE (0.003–0.281 g C m?2 day?1). Approximately, 40% of total annual GPP was contributed by C4 grasses. Total (trees and grasses) wet season GPP was approximately 75–80% of total annual GPP. Light‐use efficiency (LUE) was largest for the wet season and smallest in the dry season and C4 LUE was larger than that of the trees. A sensitivity analysis of GPP revealed that daily GPP was most sensitive to changes in leaf area index (LAI) and foliar nitrogen (Nf) and relatively insensitive to changes in maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax) and minimum leaf water potential (ψmin). The modified model was also able to represent daily and seasonal patterns in ET, (explaining 68–81% of variance) with a low RMSE (0.038–0.19 mm day?1). Current values of Nf, LAI and other parameters appear to be colimiting for maximizing GPP. By manipulating LAI and soil moisture content inputs, we show that modelled GPP is limited by light interception rather than water availability at this site.  相似文献   

18.
青海省三江源区人工草地生态系统CO2通量   总被引:13,自引:2,他引:11       下载免费PDF全文
 了解三江源人工草地净生态系统CO2交换(Net ecosystem CO2 exchange, NEE)的季节变化规律和主要生物因子及环境因子对这些过程的影响将有助于认识青藏高原人工草地生态系统碳循环、生态价值、功能,以及对三江源区的生态安全的重要意义。该研究利用涡度相关技术,于2005年9月1日至2006年8月31日对位于青海腹地的垂穗披碱草(Elymus nutans)人工草地的NEE及生物和环境因子进行观测, 阐明NEE及其组分的动态变化特征和影响因子。三江源区人工草地生态系统的日最大吸收量为2.38 g C·m-2·d-1,出 现在7月30日。日间最大吸收率和最大排放率都出现在8月,分别为-6.82和2.95μmol CO2·m-2·s-1。在生长季, 白天的NEE主要受光合有效辐射(Photosynthe tically active rad iation, PAR)变化控制,同时又与叶面积指数和群落多样性交互作用,共同调节光合速率和光合效率的强度。最大光合同化速率为2.46~10.39μmol CO2·m-2·s-1,表观初始光能利用率为0.013~0.070μmol CO2·μmol-1 PAR。 在碳交换日过程中,NEE并不完全随着 PAR的增加而增大,当PAR超过某一值(>1 200μmol ·m-2·s-1)时,NEE随PAR的增加而降低。受温度的影响,生长季的生态系统的呼吸商Q10(1.8)小于非生长季节的 2.6)。 生态系统呼吸主要受温度的控制,同时也受到叶面积指数的显著影响。生长季昼夜温差大并不利于生态系统的碳获取。 三江源区人工草地生态系统是一个较强的碳汇,为-49.35 g C·m-2·a-1。  相似文献   

19.
利用涡度相关系统和小气象系统对2013—2015年夏玉米生长季的蒸散量和气象数据进行实时观测,基于观测数据对以Penman-Monteith模型为基础的FAO-PM模型和KP-PM模型进行分析:首先利用2013和2014年数据对两个模型中的关键参数进行校正,其次利用两个模型对2015年夏玉米农田的日蒸散量进行计算,并与测量值对比,说明两个模型在夏玉米农田的适用性;最后采用分阶段法对KP-PM模型中的经验系数进行修正.结果表明: FAO-PM模型对2015年夏玉米农田日蒸散量的计算值更加接近测量值;利用分阶段法对KP-PM模型进行修正后,模型对日蒸散量的计算效果有了很大提高,且计算值比FAO-PM模型更接近测量值.模型中关键系数与气象条件之间有很大关系,因此利用模型进行蒸散预测时,必须先对模型进行参数校正.该研究可为其他研究人员利用模型估算蒸散量提供方法上的参考.  相似文献   

20.
 利用内蒙古羊草草原(Leymus chinensis)生态系统通量观测站的气象数据、野外实测和MODIS叶面积指数(Leaf area index, LAI), 应用基于生态系统过程的VIP(Vegetation interface process)模型, 以半小时为步长, 模拟分析了羊草草原生态系统2003~2005年(分别为平水年、平水年和干旱年)蒸散及其分量的变化过程。通过与通量数据对比, VIP模型能够很好地模拟羊草草原生态系统的蒸散过程(R2 = 0.80), 在峰值大小和变化趋势上, 模拟值与实测值有较好的一致性。模拟结果显示: 3年蒸散量分别为337、338和223 mm; 在降水相对充沛的2003和2004年, 蒸腾量为192和171 mm, 而降水相对较少的2005年, 蒸腾量仅为96 mm; 年平均蒸腾和蒸发对蒸散的贡献基本持平; 生长季蒸散占全年的83%, 6月开始, 蒸腾大于蒸发, 蒸散和蒸腾的月总值均在7、8月达到最大值,两月蒸散占全年的43%。LAI是影响蒸散的主要因素, 其次是降水, 而净辐射对蒸散的影响较小。在生长季, 蒸发的季节变化平缓, 蒸散的差异主要体现在蒸腾的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号