首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional traits of plants in regions of the world with a Mediterranean climate have been shaped to tolerate periods of water deficit. These species are adapted to summer droughts but may not be able to cope with future increases in drought intensity, duration, and/or frequency. Here, we review the mechanisms and traits of drought resistance and recovery of the well-studied holm oak (Quercus ilex), which we propose as a model species for Mediterranean-type ecosystems. Our aim was to understand the differences and links between the responses of Q. ilex to summer droughts, extreme droughts, and long-term drought experiments. A main goal was to provide an integral picture of drought responses across organisational and temporal scales for identifying the most relevant processes that are likely to contribute to determining the future of Mediterranean vegetation. Evidence from long-term drought experiments showed that acclimation processes from the molecular (e.g. epigenetic changes) to the ecosystem level (e.g. reductions in stand density) mitigate the effects of drought. Changes in leaf morphology and hydraulics, leaf-to-shoot allometry, and root functioning are among the key mechanisms for overcoming increasing drought. The duration of drought determines its severity in terms of canopy loss and stem mortality. Although Q. ilex can vigorously resprout after such episodes, its resilience may be subsequently reduced. In the future, higher frequency of return of extreme droughts will challenge thus the capacity of these forests to recover. The insights provided by this review of the complex interplay of processes that determine the response of trees to droughts of different duration, intensity, and frequency will also help us to understand the likely responses of other resprouting angiosperms in seasonally dry ecosystems that share similar functional traits with Q. ilex.  相似文献   

2.
Abstract. Germination and developmental behaviour during juvenile stages are of importance in relation to succession mechanisms acting on plant communities. This is particularly so in the Mediterranean region, where the climatic summer drought causes stress. We investigated and compared germination and development of four tree species in two parts of the French Mediterranean region where the original dominant tree species (Quercus pubescens) has been largely replaced by Quercus ilex in the southern part, and Castanea sativa in the northern part. Observed differences in germination rates and developmental behaviour, especially shootroot ratio and the role of water supply, suggest that other species may eventually replace the current dominant species.  相似文献   

3.
Drought control over conductance and assimilation was assessed using eddy flux and meteorological data monitored during four summer periods from 1998 to 2001 above a closed canopy of the Mediterranean evergreen oak tree Quercus ilex. Additional discrete measurements of soil water content and predawn leaf water potential were used to characterize the severity of the drought. Canopy conductance was estimated through the big‐leaf approach of Penman–Monteith by inverting latent heat fluxes. The gross primary production ( GPP ) was estimated by adding ecosystem respiration to net ecosystem exchange. Ecosystem respiration was deduced from night flux when friction velocity ( u *) was greater than 0.35 m s?1. Empirical equations were identified that related maximal canopy conductance and daily ecosystem GPP to relative soil water content ( RWC) , the ratio of current soil water content to the field capacity, and to the predawn leaf water potential. Both variables showed a strong decline with soil RWC for values lower than 0.7. The sharpest decline was observed for GPP . The curves reached zero for RWC =0.41 and 0.45 for conductance and GPP , respectively. When the predawn leaf water potential was used as a surrogate for soil water potential, both variables showed a hyperbolic decline with decreasing water potential. These results were compared with already published literature values obtained at leaf level from the same tree species. Scaling up from the leaf to ecosystem highlighted the limitation of two big‐leaf representations: Penman–Monteith and Sellers' Π factor. Neither held completely for comparing leaf and canopy fluxes. Tower measurements integrate fluxes from foliage elements clumped at several levels of organization: branch, tree, and ecosystem. The Q. ilex canopy exhibited non‐random distribution of foliage, emphasizing the need to take into account a clumping index, the factor necessary to apply the Lambert–Beer law to natural forests. Our results showed that drought is an important determinant in water losses and CO2 fluxes in water‐limited ecosystems. In spite of the limitations inherent to the big‐leaf representation of the canopy, the equations are useful for predicting the influence of environmental factors in Mediterranean woodlands and for interpreting ecosystem exchange measurements.  相似文献   

4.
Despite the huge biodiversity characterizing the Mediterranean environment, environmental constraints, such as high sunlight and high temperatures alongside with dry periods, make plant survival hard. In addition, high irradiance leads to increasing ozone (O3) concentrations in ambient air. In this era of global warming, it is necessary to understand the mechanisms that allow native species to tolerate these environmental constraints and how such mechanisms interact. Three Mediterranean oak species (Quercus ilex, Quercus pubescens and Quercus cerris) with different features (drought tolerant, evergreen or deciduous species) were selected to assess their biometrical, physiological and biochemical responses under drought and/or O3 stress (80–100 nl l?1 of O3 for 5 h day?1 for 77 consecutive days). Leaf visible injury appeared only under drought stress (alone or combined with O3) in all three species. Drought × O3 induced strong reductions in leaf dry weight in Q. pubescens and Q. cerris (?70 and ?75%, respectively). Alterations in physiological (i.e. decrease in maximum carboxylation rate) and biochemical parameters (i.e. increase in proline content and build‐up of malondialdehyde by‐products) occurred in all the three species, although drought represented the major determinant. Quercus ilex and Q. pubescens, which co‐occur in dry environments, were more tolerant to drought and drought × O3. Quercus ilex was the species in which oxidative stress occurred only when drought was applied with O3. High plasticity at a biochemical level (i.e. proline content) and evergreen habitus are likely on the basis of the higher tolerance of Q. ilex.  相似文献   

5.
A controlled experiment was conducted in order to understand how functional and structural traits of species with different leaf habits (Fraxinus ornus and Quercus ilex) shift as a consequence of nitrogen (N) addition (30 kg ha yr?1) and to explore the effect that N has on the water stress response. The experiment was divided in two stages: stage I, N addition under well-watered condition; stage II, N addition under drought. Functionality of the photosynthetic machinery, growth and biomass partitioning were assessed. The N content at leaf level increases in F. ornus only, which invests resources on photosynthetic machinery, whereas Q. ilex tends to store N in non-photosynthetic biomass, increasing relative growth rate and biomass, resulting in different allometric ratio. This effect may play a role in water stress response. Stomatal conductance of Q. ilex treated with N and subjected to water stress is lower relative to drought treatment. On the contrary, F. ornus takes advantage of N addition that has ameliorative effects on its functionality when drought was imposed. The obtained results, highlighting response mechanisms to multiple stress factors, should help to better understand and assess the performance of forest ecosystems under the foreseen environmental changes.  相似文献   

6.
Climate change is likely to produce more frequent and longer droughts in the Mediterranean region, like that of 1994, which produced important changes in the Quercus ilex forests, with up to 76% of the trees showing complete canopy dieback. At the landscape level, a mosaic of responses to the drought was observed, linked to the distribution of lithological substrates. Damage to the dominant tree species (Q. ilex) and the most common understorey shrub (Erica arborea) was more noticeable on the compact substrates (breccia) than on the fissured ones (schist). This result was consistent with observations documenting deeper root penetration in schist than in breccia materials, allowing the plants growing on fissured substrates to use water from deeper soil levels. Smaller plants were more vulnerable to drought than larger plants in the trees, but not in the shrubs. Overall, Q. ilex was more affected than E. arborea. The resilience of the system was evaluated from the canopy recovery 1 year after the episode. Stump and crown resprouting was fairly extensive, but the damage pattern in relation to substrate, plant size, and species remained similar. The effect of recurrent drought episodes was studied on vegetation patches of Q. ilex located on mountain slopes and surrounded by bare rock. We observed that plants that resprouted weakly after a previous drought in 1985 were more likely to die or to produce poor regeneration in 1995 than plants that had resprouted vigorously. Vegetation patches located on the lower part of the slope were also less damaged than patches situated uphill. The study provides evidence of relevant changes in forest canopy as a consequence of extreme climate events. The distribution of this effect across the landscape is mediated by lithological substrate, causing patchy patterns. The results also support the hypothesis that recurrent droughts can produce a progressive loss of resilience, by depleting the ability of surviving plants to regenerate.  相似文献   

7.
A holm oak forest was exposed to an experimental drought during 5 years to elucidate the growth responses of the dominant species Quercus ilex, Arbutus unedo and Phillyrea latifolia. Soil water availability was partially reduced, about 15% as predicted for this area for the next decades by GCM and ecophysiological models, by plastic strips intercepting rainfall and by ditch exclusion of water runoff. The stem diameter increment was highly correlated with annual rainfall in all species, and drought treatment strongly reduced the diameter increment of Q. ilex (41%) and specially of A. unedo (63%), the species showing higher growth rates. Stem mortality rates were highly correlated with previous stem density, but drought treatment increased mortality rates in all species. Q. ilex showed the highest mortality rates (9% and 18% in control and drought plots, respectively), and P. latifolia experienced the lowest mortality rates (1% and 3% in control and drought plots, respectively). Drought strongly reduced the increment of live aboveground biomass during these 5 years (83%). A. unedo and Q. ilex experienced a high reduction in biomass increment by drought, whereas P. latifolia biomass increment was insensitive to drought. The different sensitivity to drought of the dominant species of the holm oak forest may be very important determining their future development and distribution in a drier environment as expected in Mediterranean areas for the next decades. These drier conditions could thus have strong effects on structure (species composition) and functioning (carbon uptake and biomass accumulation) of these Mediterranean forests.  相似文献   

8.
We investigated the responses of two co‐existing Mediterranean trees with different regeneration strategies (Phillyrea latifolia seedlings and Quercus ilex sprouts) to experimental drought below the forest canopy. We considered different recruitment stages and used leaf isotopic discrimination to estimate water use efficiency (WUE) and nitrogen availability and use. Drought decreased the emergence and survival of seedlings and sprouts. Survival and growth of older saplings were not influenced by drought. Seedling emergence of P. latifolia was higher than Q. ilex sprout production, but Q. ilex sprouts had higher survival and growth rates. These differences disappeared in the sapling stage. Carbon isotopic discrimination suggested that Q. ilex sprouts had higher WUE than P. latifolia seedlings. Drought increased WUE of recruits, particularly in Q. ilex. Water use regulation increased with ageing, particularly in P. latifolia. Q. ilex had higher δ15N values than P. latifolia; these were also higher under drier soil conditions. Current year seedlings had higher δ15N than saplings, particularly in P. latifolia, suggesting they exploit superficial soil layers. These results suggest that sprouts obtain benefit from resources stored in parent plants. At earlier stages, they perform better than seedlings. This response is not coupled to adult vulnerability to drought for these species, revealing the difficulty of predicting species dynamics during climate change.  相似文献   

9.
Nitrogen (N) withdrawn from leaves before abscission can help to supply N requirements in plants of nutrient poor habitats. Besides N shortage, Mediterranean Quercus seedlings must face water and light stresses. However, there is little information on the influence of these stresses in the nitrogen resorption efficiency (NRE) at leaf level, and none at canopy level. We tested in two separated experiments how changes in water and light availability affect NRE and its components at both levels in seedlings of two evergreen oaks [Quercus coccifera L. and Quercus ilex subsp. ballota (Desf.) Samp] and in a semi-deciduous one (Quercus faginea Lam.). In the summer drought experiment seedlings were left to dehydrate to ?2.5 and to ?0.5 MPa (water stress and control, respectively) before watering. In the light experiment seedlings were grown at 100, 20 and 5% of full sunlight. The leaf abscission pattern was monitored and N content, N loss and NRE were calculated in the two peaks of leaf abscission (spring and late summer). After one year of treatments summer drought had little effect on N resorption and its components at both leaf and canopy levels. Moderate shade increased NRE at leaf level in Q. faginea but this response vanished at canopy level. N loss at the leaf level was unaffected. Deep shade decreased N lost at the canopy level in spring but increased it in late summer. N resorption and N losses at the canopy level were lower at late summer than in spring, due to fewer leaves falling. This study highlights the importance of the scale on the study of nitrogen dynamics (leaf vs. whole canopy), as the scaling factor (amount of leaf shedding) also responds to environmental factors, either enhancing or reversing the effects found at leaf level.  相似文献   

10.
Understanding community dynamics during early life stages of trees is critical for the prediction of future species composition. In Mediterranean forests drought is a major constraint for regeneration, but likely not the only factor determining the observed spatial patterns. We carried out a sowing experiment aimed at identifying main filters during seed-seedling transition. Specifically, we studied seed fate (predation, fungi infection, emergence) and subsequent seedling performance (mortality during the first summer and overall recruitment after 2 years) of four co-occurring Mediterranean tree species (Quercus ilex, Quercus faginea, Juniperus thurifera, Pinus nigra). We related these processes to the dominant species composition, microhabitat heterogeneity, herb cover and seed mass. The identity of the dominant species in the forest canopy was more important for recruitment than the forest canopy being dominated by conspecific vs. heterospecific species. The patterns we found suggest that biotic interactions such as facilitation (lower mortality under the canopies) and herb competition (during emergence of J. thurifera) are relevant during recruitment. Moreover, our results pointed to ontogenetic conflicts regarding the seed mass of Q. faginea and to density-dependent seed mortality for Q. ilex, rarely described in Mediterranean ecosystems. We propose that our study species experience population growth in forests dominated by heterospecifics where the recruitment success depends on habitat heterogeneity and on moderated biotic and abiotic stresses created by each species. Our results reveal patterns and mechanisms involved in recruitment constraints that add complexity to the well-known drought-related processes in Mediterranean ecosystems.  相似文献   

11.
Eddy covariance and sapflow data from three Mediterranean ecosystems were analysed via top‐down approaches in conjunction with a mechanistic ecosystem gas‐exchange model to test current assumptions about drought effects on ecosystem respiration and canopy CO2/H2O exchange. The three sites include two nearly monospecific Quercus ilex L. forests – one on karstic limestone (Puéchabon), the other on fluvial sand with access to ground water (Castelporziano) – and a typical mixed macchia on limestone (Arca di Noè). Estimates of ecosystem respiration were derived from light response curves of net ecosystem CO2 exchange. Subsequently, values of ecosystem gross carbon uptake were computed from eddy covariance CO2 fluxes and estimates of ecosystem respiration as a function of soil temperature and moisture. Bulk canopy conductance was calculated by inversion of the Penman‐Monteith equation. In a top‐down analysis, it was shown that all three sites exhibit similar behaviour in terms of their overall response to drought. In contrast to common assumptions, at all sites ecosystem respiration revealed a decreasing temperature sensitivity ( Q 10) in response to drought. Soil temperature and soil water content explained 70–80% of the seasonal variability of ecosystem respiration. During the drought, light‐saturated ecosystem gross carbon uptake and day‐time averaged canopy conductance declined by up to 90%. These changes were closely related to soil water content. Ecosystem water‐use efficiency of gross carbon uptake decreased during the drought, regardless whether evapotranspiration from eddy covariance or transpiration from sapflow had been used for the calculation. We evidence that this clearly contrasts current models of canopy function which predict increasing ecosystem water‐use efficiency (WUE) during the drought. Four potential explanations to those results were identified (patchy stomatal closure, changes in physiological capacities of photosynthesis, decreases in mesophyll conductance for CO2, and photoinhibition), which will be tested in a forthcoming paper. It is suggested to incorporate the new findings into current biogeochemical models after further testing as this will improve estimates of climate change effects on (semi)arid ecosystems' carbon balances.  相似文献   

12.
Seasonal drought can severely impact leaf photosynthetic capacity. This is particularly important for Mediterranean forests, where precipitation is expected to decrease as a consequence of climate change. Impacts of increased drought on the photosynthetic capacity of the evergreen Quercus ilex were studied for two years in a mature forest submitted to long‐term throughfall exclusion. Gas exchange and chlorophyll fluorescence were measured on two successive leaf cohorts in a control and a dry plot. Exclusion significantly reduced leaf water potential in the dry treatment. In both treatments, light‐saturated net assimilation rate (Amax), stomatal conductance (gs), maximum carboxylation rate (Vcmax), maximum rate of electron transport (Jmax), mesophyll conductance to CO2 (gm) and nitrogen investment in photosynthesis decreased markedly with soil water limitation during summer. The relationships between leaf photosynthetic parameters and leaf water potential remained identical in the two treatments. Leaf and canopy acclimation to progressive, long‐term drought occurred through changes in leaf area index, leaf mass per area and leaf chemical composition, but not through modifications of physiological parameters.  相似文献   

13.
Barbero  M.  Loisel  R.  Quézel  P. 《Plant Ecology》1992,(1):19-34
Quercus ilex sensu lato plays an important role in Western Mediterranean ecosystems, but is poorly developed in the Eastern Mediterranean where it is often replaced by Quercus calliprinos.The occurrence of Quercus ilex in the different bioclimates and their thermic subdivisions is presented on a small scale. Under certain geographical and ecological conditions, Quercus ilex participates in the organization of vegetation ecosystems from the meso-Mediterranean to the oro-Mediterranean altitudinal zones. Quercus ilex imposes microclimatic constraints on its associated species; it thus organizes and original understory vegetation structure (ethological groups) which will be defined in this study.One of the reasons for the success of Quercus ilex stems from its remarkable resistance to ecological constraints. A broad synthetic presentation of foliar area index variations in relation to different types of stress serve as a basis for an explanation of the sclerophyllous model in the Mediterranean region.Finally, historical factors are outlined as being critical characteristics in the determination of the present organization and spatial structure of Quercus ilex ecosystems. These considerations will be analyzed from a paleobioclimatical point of view, including data related to human pressure.  相似文献   

14.
Quercus ilex and Pinus halepensis are two of the most common tree species of the western Mediterranean basin. Both species regenerate reliably after fire: P. halepensis colonizes recently disturbed areas by effective seedling recruitment, while Q. ilex resprouts vigorously after disturbances. For this reason, the natural regeneration of these species after fire should ensure the re-establishment of a forest similar to that which existed before the fire. This study analyzes with a simple simulation model whether or not the relative abundance of monospecific and mixed forests of these species in the landscape is altered by fire. We also analyze the topographic factors and the forest structure before the fire that determine the changes in forest composition after fire. This study has been carried out in a large fire that occurred in NE Spain. Overall, 33% of plots changed to another community type, but this probability of change varied considerably among community types before the fire. Monospecific forests of P. halepensis or Q. ilex had a high probability of remaining in their original composition after the fire, whereas the resilience of mixed forests of these two species was quite low. Mixed forests changed for the most part to monospecific P. halepensis or Q. ilex forests. Analysis of several factors determining these changes indicated that only elevation as a significant topographical variable. The effect of fire was to increase the altitudinal differentiation between the two species. P. halepensis forests that changed to mixed or Q. ilex forests were those of highest elevation, while the mixed and Q. ilex plots that changed to P. halepensis forests were those located at the lowest elevations. Concerning structural variables before fire, density of Q. ilex trees before the fire showed a much greater effect than P. halepensis density in determining the post-fire community. Finally, burn severity also influenced the changes observed. For both P. halepensis and Q. ilex forests, plots that changed to another forest type were mainly those that burned more severely. In the case of mixed forests, even low fire severities involved high probabilities of change to monospecific forests.  相似文献   

15.
Long‐term effects of ozone (O3) exposure and drought stress were assessed on two subspecies of Quercus ilex: ssp. ilex and ssp. ballota. Two‐year‐old seedlings were continuously exposed for 26 months in open‐top chambers to three O3 treatments: charcoal filtered air, non‐filtered air and non‐filtered air supplemented with 40 nl·l?1 O3. Additionally, two irrigation regimes were adopted: half of the plants were well‐watered and the others received half of the water supplied to control plants. Growth, shoot water potential and gas exchange rates were assessed seasonally, and biomass accumulation was determined at the end of the experiment. Drought stress caused higher reductions of gas exchange, growth and biomass accumulation than O3 exposure in both subspecies. The combination of O3 and drought stress caused further decreases of accumulated aboveground biomass but no additive effects were observed on gas exchange rates or root biomass. Thus, drought stress did not protect Q. ilex from O3 effects on biomass when the response of the whole plant was considered. Q. ilex ssp. ballota was more sensitive to O3 and ssp. ilex was more affected by drought stress. The different O3 sensitivity was not only related to pollutant uptake but also to the ability of plants for resource acquisition and allocation. Based on biomass dose–response functions, Q. ilex is more resistant to O3 than other European evergreen tree species, however, O3 represents an additional stress factor that might be impairing plant ability to withstand current and future climate change.  相似文献   

16.
Barberis  G.  Peccenini  S.  Paola  G. 《Plant Ecology》1992,99(1):35-50
The climatic characteristics of the Liguria region have been outlined by means of raw data and derived indices (water balance related to potential evapotraspiration, Rivas-Martinez's index of mediterraneity and thermicity, De Martonne's index of dryness, and Emberger's pluviothermic quotient and index of summer dryness). Their interpretation suggests that Liguria is a boundary region between two different climatic areas: the Mediterranean and that of Central Europe.The distribution of Quercus ilex communities in Liguria have suffered the heavy consequences of human activity on the coastal belt of the region. There is, however, sufficient evidence to show that their presence is closely linked to climatic conditions. Quercus ilex communities are absent from the western coastal belt where the annual water balance is below –50 mm and high mean temperatures occur. They are also absent from marly limestone dominated areas where annual water balance is below 300 mm. Quercus ilex woods show a preference for water balance values between 0 and 600, with the better developed forests being found in central and eastern coastal Liguria.The Ligurian Quercus ilex woods are ascribed to Quercetum ilicis Br.-Bl. 1915. Given that the presence within their floristic composition of a group of species of Querco-Fagetea (more species in eastern stands, few in western ones) is an almost constant characteristic, the subass. fraxino-ostryetosum Mariotti 1984 can be retained for many of them. Quercus ilex is not present in the initial succession stages of Mediterranean Liguria vegetation. It can be found in later stages when the vegetation is more fully developed towards a maquis type structure. In this case it tends to become dominant and the community develops (if no fire or other human interference occurs) into a Quercus ilex forest. Frequently, this succession takes place under an old tree layer cover (generally Pinus sp.), a remanant of man's past management of the vegetation in the area.  相似文献   

17.
A better understanding of stem growth phenology and its climate drivers would improve projections of the impact of climate change on forest productivity. Under a Mediterranean climate, tree growth is primarily limited by soil water availability during summer, but cold temperatures in winter also prevent tree growth in evergreen forests. In the widespread Mediterranean evergreen tree species Quercus ilex, the duration of stem growth has been shown to predict annual stem increment, and to be limited by winter temperatures on the one hand, and by the summer drought onset on the other hand. We tested how these climatic controls of Q. ilex growth varied with recent climate change by correlating a 40‐year tree ring record and a 30‐year annual diameter inventory against winter temperature, spring precipitation, and simulated growth duration. Our results showed that growth duration was the best predictor of annual tree growth. We predicted that recent climate changes have resulted in earlier growth onset (?10 days) due to winter warming and earlier growth cessation (?26 days) due to earlier drought onset. These climatic trends partly offset one another, as we observed no significant trend of change in tree growth between 1968 and 2008. A moving‐window correlation analysis revealed that in the past, Q. ilex growth was only correlated with water availability, but that since the 2000s, growth suddenly became correlated with winter temperature in addition to spring drought. This change in the climate–growth correlations matches the start of the recent atmospheric warming pause also known as the ‘climate hiatus’. The duration of growth of Q. ilex is thus shortened because winter warming has stopped compensating for increasing drought in the last decade. Decoupled trends in precipitation and temperature, a neglected aspect of climate change, might reduce forest productivity through phenological constraints and have more consequences than climate warming alone.  相似文献   

18.
Oaks (Quercus spp.) represent the most important broadleaf genus with respect to forest-shaping tree species in the Mediterranean. Considering future climate scenarios (increased drought conditions), the identification of drought tolerant oak species is of great importance for future forest management in this region. The objective of the study was the comparison of physiological status of three economically and ecologically valuable oak species (Quercus ilex, Quercus frainetto and Quercus pubescens) co-existing in natural coppice stands in NE Greece, in response to seasonal drought stress. Measurements were conducted between June and September 2016, every 15–20 days until leaf falling. The parameters studied were predawn leaf water potential and fast chlorophyll fluorescence induction curves (OJIP test), chlorophyll content, and relative water content. Meteorological data from the area were also collected. Photosynthetic parameters such as performance indices (PIabs and PItot) reacted to summer drought conditions, with Q. frainetto showing the lowest values. The discrepancy between species increased with duration of drought period. Q. frainetto revealed the lowest predawn water potential values. The results indicate that Q. frainetto is less suitable for future forestry applications in the studied climate/elevation zone than Q. pubescens and Q. ilex.  相似文献   

19.
Cierjacks  A.  Hensen  I. 《Plant Ecology》2004,173(2):215-223
Mediterranean ecosystems are traditionally influenced by human disturbance. In the mountain chains of south-eastern Spain, holm oak forests representing the potential natural vegetation are currently highly fragmented and subjected to extensive grazing by goats and sheep. This grazing activity by large herbivores has important impacts on community structure and dynamics of the remaining remnants because several processes associated with reproduction are affected. The present research analyses the variation of stand structure and regeneration of six forests dominated by Quercus ilex along a gradient of increasing grazing intensity. Stands of higher grazing intensity are characterized by a lower trunk number. Particularly, trees > 1.3 m height and diameter classes < 20 cm are clearly less represented. In addition, more intensively grazed forests show a highly aggregated dispersion of trees, which might be explained by an increase of clonally produced ramets by silvipastoral use. On the other hand, no Quercus ilex seedlings were found in any of the stands examined, although acorn production was high and did not correlate with grazing intensity. However, grazing clearly influences the quality of acorn harvest. We found a significant negative correlation between acorn length, acorn mass and grazing intensity and a positive correlation between the percentage of aborted acorns, acorn predation and herbivore activity. Thus, management of grazing in holm oak forests must take the high influence that livestock exerts on the regeneration of Quercus ilex into account, and maximum sustainable grazing intensity should be significantly lower than 0.8 animals per ha.  相似文献   

20.
Question: Positive interactions are predicted to be common in communities developing under high physical stress or high herbivory pressure due to neighbour amelioration of limiting physical and consumer stresses, respectively. However, when both stress sources meet in the same community, the relative importance of the two facilitation mechanisms is poorly understood. We ask: What is the relative importance of abiotic vs. biotic mechanisms of facilitation of tree saplings by shrubs in Mediterranean mountain forests? Location: Sierra Nevada, SE Spain (1800–1850 m a.s.l.) Methods: Saplings of four tree taxa (Acer opalus ssp. grana‐tense, Quercus ilex, Pinus nigra ssp. salzmanii and P. sylvestris var. nevadensis) were planted following a 2 × 2 factorial design: two levels of herbivory (control and ungulate exclusion) and two microhabitats (under shrubs and in open areas). Sapling survival and growth were monitored for five years. Results: Shrubs had positive effects on sapling survival both in control and ungulate excluded plots. This effect was species‐specific, with shrubs increasing the survival of Acer opalus and Quercus ilex three and twofold, respectively, but having a minor effect on the Pinus species. Herbivory damage was also species‐specific, being much higher for Acer opalus than for any other species. Shrubs did not protect saplings of any species against ungulates. Thus, all Acer saplings (the most damaged species) suffered herbivory outside the exclosures, which largely reduced sapling height. Conclusions: Protection from abiotic stress (summer drought and winter frost) was much more relevant than protection from biotic stress (herbivory). However, we propose that the final balance between the two mechanisms can be expected to vary strongly between sites, depending on the relative magnitude of the different sources of stress and the intrinsic traits (e.g. palatability) of the species interacting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号