首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic subtractive hybridization was performed between Salmonella enterica serovar Typhimurium LT2 and DT104 to search for novel Salmonella serovar Typhimurium DT104-specific sequences. The subtraction resulted mainly in the isolation of DNA fragments with sequence similarity to phages. Two fragments identified were associated with possible virulence factors. One fragment was identical to irsA of Salmonella serovar Typhimurium ATCC 14028, which is suggested to be involved in macrophage survival. The other fragment was homologous to HldD, an Escherichia coli O157:H7 lipopolysaccharide assembly-related protein. Five selected DNA fragments—irsA, the HldD homologue, and three fragments with sequence similarity to prophages—were tested for their presence in 17 Salmonella serovar Typhimurium DT104 isolates and 27 non-DT104 isolates by PCR. All five selected DNA fragments were Salmonella serovar Typhimurium DT104 specific among the serovar Typhimurium isolates tested. These DNA fragments can be useful for better detection and typing of Salmonella serovar Typhimurium DT104.  相似文献   

2.
Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) has caused significant morbidity and mortality in humans and animals for almost three decades. We completed the full DNA sequence of one DT104 strain, NCTC13348, and showed that significant differences between the genome of this isolate and the genome of the previously sequenced strain Salmonella serovar Typhimurium LT2 are due to integrated prophage elements and Salmonella genomic island 1 encoding antibiotic resistance genes. Thirteen isolates of Salmonella serovar Typhimurium DT104 with different pulsed-field gel electrophoresis (PFGE) profiles were analyzed by using multilocus sequence typing (MLST), plasmid profiling, hybridization to a pan-Salmonella DNA microarray, and prophage-based multiplex PCR. All the isolates belonged to a single MLST type, sequence type ST19. Microarray data demonstrated that the gene contents of the 13 DT104 isolates were remarkably conserved. The PFGE DNA fragment size differences in these isolates could be explained to a great extent by differences in the prophage and plasmid contents. Thus, here the nature of variation in different Salmonella serovar Typhimurium DT104 isolates is further defined at the gene and whole-genome levels, illustrating how this phage type evolves over time.  相似文献   

3.
AIMS: Acid resistance could be an indicator of virulence since acid resistant strains are able to better survive the human stomach passage and in macrophages. We studied the acid resistance of several Salmonella Typhimurium DT104 strains isolated from food and humans and identified cellular parameters contributing to the enhanced acid resistance of these isolates. METHODS AND RESULTS: Acid resistance was tested in 37 Salmonella enterica Typhimurium serovar DT104 (S. Typhimurium DT104) strains. Acid adaptation at pH 5 followed by exposure for 2 h at pH 2.5 in the 27 human, nine nonhuman, and in two reference strains, revealed strong variation of acid survival. After 2 h at pH 2.5 six strains of S. Typhimurium DT104 were considered high acid resistant as they displayed a level of survival >10%, 14 strains were considered intermediate acid resistant (level of survival was <10% and >0.01%) and 19 strains were considered low acid resistant (level of survival <0.01%). Six strains were selected for further studies and proteomics revealed a relatively high amount of phase 2 flagellin in an acid-sensitive strain and a relatively high amount of the beta component of the H(+)/ATPase in an acid-resistant strain. Two strains were slightly more heat resistant possibly as the result of increased levels of DnaK or GroEL. CONCLUSIONS: A significant difference could be detected between human and food isolates regarding their acid resistance; all high acid-resistant strains were human isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: S. Typhimurium DT104 is known for two decades and has a great impact on human health causing serious food-borne diseases. Our results suggest the existence of a positive correlation between acid resistance and pathogenicity in S. Typhimurium DT104 as all high acid-resistant strains were isolated from humans.  相似文献   

4.
Salmonella enterica serovar Typhimurium DT104 (Salmonella Typhimurium DT104 or DT104) has been emerging as a common pathogen for human in Korea since 1997. In order to compare the genomic relationship and to search for the dominant strains in Korea, we conducted pulsed-field gel electrophoresis (PFGE) and IS200 fingerprinting of 25 epidemiological unrelated isolates from human and animals from Korea and cattle from America. Two Salmonella Typhimurium DT104 isolates from human in Korea and all 8 isolates from American cattle had indistinguishable patterns from the PFGE and IS200 fingerprinting but multidrug-resistant Salmonella Typhimurium isolates, including DT104, from Korean animals had diverse genetic patterns. The data suggest that a dominant DT104 strain might have circulated between Korean and American cattle and that it had a high level of clonality.  相似文献   

5.
Fifty-six human and 24 adult dairy cattle isolates of Salmonella enterica serovar Typhimurium from a single county in California were compared using ribotyping, insertion sequence typing (IS200), pulsed-field gel electrophoresis, plasmid typing, phage typing, and antimicrobial resistance testing. The majority of the isolates fell into one of two groups which were phage types DT104 and DT193. Combining the information from all typing methods, a total of 45 different "clusters" were defined, with 35 of those including only a single isolate. The library of isolates had a high degree of variability, but antibiotic resistance and plasmid typing each defined single clusters in which human or bovine isolates predominated (chi2, P < 0.05).  相似文献   

6.
Amplified fragment length polymorphism (AFLP) was applied to 35 and 34 isolates, respectively, of Salmonella enterica serovar Typhimurium phage types DT 9 and DT 135, using eight primer pair combinations. Eight and 17 AFLP types were observed in DT 9 and DT 135, respectively. DT 9 is rare in the UK and common in Australia, but one AFLP form dominated with 28 isolates, comprising 22 of 25 UK isolates, four of five Australian isolates, one Jamaican and one Spanish isolate. Of the others, two UK isolates are closely related to the major form, two from elsewhere are in the major cluster and three isolates from different countries are in a separate cluster. For DT 135, two closely related AFLP types of seven and 11 isolates form the major cluster, which also includes 11 isolates, mostly in single-isolate AFLP types, while five isolates from different countries form a well-separated minor cluster. For both DTs all isolates are grouped together if only the phage type specific bands identified earlier are used, confirming their value for molecular-based 'phage typing'. Polymorphic markers identified in this study could also be used for subtyping within both phage types. The value of AFLP is in locating DNA fragments useful for typing, but implementation of a replacement typing scheme would probably involve multiplex PCR or microarray technologies.  相似文献   

7.
An increase in the prevalence of Salmonella enterica serotype Typhimurium DT104 has been reported worldwide. This study examined the prevalence of this microorganism in poultry environmental samples from commercial layer flocks and pullet environments as well as the sensitivity and specificity of a PCR-based method, and multiple antibiotic resistance profile of Salmonella serogroup B isolates in relation to the serotype and phagetype reference method for the identification of Salmonella Typhimurium DT104. A total of 435 Salmonella isolates were obtained from poultry house environmental samples tested during a 20-month period representing a prevalence of 5.5%. Of these, 313 (72%) isolates were identified as Salmonella serogroup B isolates. These isolates were tested by a PCR-based assay, and for resistance to five antibiotics: ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline (ACSSuT) for the rapid identification of Salmonella Typhimurium DT104. Upon comparing the antibiotic resistance and PCR results with serotype and phage type data, the sensitivity and specificity for the identification of Salmonella Typhimurium DT104 of both methods were found to be 100%, and 99.6%, respectively. Both methods can be completed within 24 h after obtaining an isolate, while serotyping and phagetyping required more than 5 days to complete.  相似文献   

8.
Salmonella enterica subsp. enterica serovar Typhimurium ( Salm. Typhimurium) live vaccine strain Zoosaloral H was characterized by pulsed-field gel electrophoresis (PFGE). Each of the two suitable restriction enzymes, Xba I and Spe I, produced a unique restriction fragment pattern for this live vaccine strain which was not shared by field isolates of the same serovar. The characteristic fragment pattern proved to be stable during a 22 month observation period and was also not altered after animal passage of the vaccine strains. Thus PFGE analysis proved to be a helpful tool in the identification of Salm. Typhimurium live vaccine strain Zoosaloral H and its differentiation from wild-type isolates of the same serovar.  相似文献   

9.
Salmonella enterica serovar Typhimurium is frequently isolated from humans and animals. Phage typing is historically the first-line reference typing technique in Europe. It is rapid and convenient for laboratories with appropriate training and experience, and costs of consumables are low. Phage typing and pulsed-field gel electrophoresis (PFGE) were performed on 503 isolates of serovar Typhimurium. Twenty-nine phage types and 53 PFGE patterns were observed. Most isolates of phage types DT104, DT104b, and U310 are not distinguishable from other members of their phage type by PFGE. By contrast, PFGE of isolates of phage types DT193 and U302 shows great heterogeneity. Analysis of experience with PFGE and phage typing can facilitate the selective application of PFGE to maximize the yield of epidemiologically relevant additional information while controlling costs.  相似文献   

10.
The molecular epidemiology of 142 isolates of Salmonella enterica serovar Typhimurium from avian wildlife, domestic animals, and the environment in Norway was investigated using pulsed-field gel electrophoresis (PFGE) and computerized numerical analysis of the data. The bacterial isolates comprised 79 isolates from wild-living birds, including 46 small passerines and 26 gulls, and 63 isolates of nonavian origin, including 50 domestic animals and 13 environmental samples. Thirteen main clusters were discernible at the 90% similarity level. Most of the isolates (83%) were grouped into three main clusters. These were further divided into 20 subclusters at the 95% similarity level. Isolates from passerines, gulls, and pigeons dominated within five subclusters, whereas isolates from domestic animals and the environment belonged to many different subclusters with no predominance. The results support earlier results that passerines constitute an important source of infection to humans in Norway, whereas it is suggested that gulls and pigeons, based on PFGE analysis, represent only a minor source of human serovar Typhimurium infections. Passerines, gulls, and pigeons may also constitute a source of infection of domestic animals and feed plants or vice versa. Three isolates from cattle and a grain source, of which two were multiresistant, were confirmed as serovar Typhimurium phage type DT 104. These represent the first reported phage type DT 104 isolates from other sources than humans in Norway.  相似文献   

11.
Salmonella enterica serovar Typhimurium is frequently isolated from humans and animals. Phage typing is historically the first-line reference typing technique in Europe. It is rapid and convenient for laboratories with appropriate training and experience, and costs of consumables are low. Phage typing and pulsed-field gel electrophoresis (PFGE) were performed on 503 isolates of serovar Typhimurium. Twenty-nine phage types and 53 PFGE patterns were observed. Most isolates of phage types DT104, DT104b, and U310 are not distinguishable from other members of their phage type by PFGE. By contrast, PFGE of isolates of phage types DT193 and U302 shows great heterogeneity. Analysis of experience with PFGE and phage typing can facilitate the selective application of PFGE to maximize the yield of epidemiologically relevant additional information while controlling costs.  相似文献   

12.
Two hundred and twenty-six Salmonella enterica serotype Typhimurium isolates were examined for the presence of integron-associated gene cassettes. All but two of the non-DT104 isolates, together with DT104 isolates, contained gene cassettes. Amplicons of 1.5 kbp each were found in two non-DT104 isolates, encoding a dhfrI gene (trimethoprim resistance) linked to an aadA gene (streptomycin and spectinomycin resistance), by site-specific recombination. DT104 isolates of resistance (R) type ACSSuT possessed the recently described 1.0- and 1.2-kbp gene cassettes. Macrorestriction analysis with XbaI and DNA probing mapped ant(3")-1a, blaPSE-1, and dhfrI genes to large multiresistant gene clusters in a DT170a isolate and a DT193 isolate. In contrast, all DT104 isolates (R-type ACSSuT) possessed a conserved 10-kbp Xba1 DNA fragment. Our study highlights the occurrence of integrons (and antimicrobial resistance determinants) among serotype Typhimurium isolates other than DT104. Larger and previously unrecognized multiresistance gene clusters were identified in these isolates by DNA probing.  相似文献   

13.
The molecular epidemiology of 142 isolates of Salmonella enterica serovar Typhimurium from avian wildlife, domestic animals, and the environment in Norway was investigated using pulsed-field gel electrophoresis (PFGE) and computerized numerical analysis of the data. The bacterial isolates comprised 79 isolates from wild-living birds, including 46 small passerines and 26 gulls, and 63 isolates of nonavian origin, including 50 domestic animals and 13 environmental samples. Thirteen main clusters were discernible at the 90% similarity level. Most of the isolates (83%) were grouped into three main clusters. These were further divided into 20 subclusters at the 95% similarity level. Isolates from passerines, gulls, and pigeons dominated within five subclusters, whereas isolates from domestic animals and the environment belonged to many different subclusters with no predominance. The results support earlier results that passerines constitute an important source of infection to humans in Norway, whereas it is suggested that gulls and pigeons, based on PFGE analysis, represent only a minor source of human serovar Typhimurium infections. Passerines, gulls, and pigeons may also constitute a source of infection of domestic animals and feed plants or vice versa. Three isolates from cattle and a grain source, of which two were multiresistant, were confirmed as serovar Typhimurium phage type DT 104. These represent the first reported phage type DT 104 isolates from other sources than humans in Norway.  相似文献   

14.
Aims: In this study, we examined the biofilm formation of 75 Salmonella enterica serovar Typhimurium (Salm. Typhimurium) human clinical isolates and the effect of subinhibitory concentrations (sub-MICs) of gentamicin, ciprofloxacin and cefotaxime on biofilm formation and exopolysaccharides (EPS) production. Methods and Results: Quantification of biofilm formation and EPS production were carried out using a modified microtitre plate assay and spectrophotometric method, respectively. The results indicate that 38 isolates (50·7%), which are predominantly of DT104 phage type, presented as the strong biofilm producers in vitro on plastic surface. When strains with the highest biofilm-forming capacity were grown in the presence of sub-MICs of gentamicin and ciprofloxacin, the inhibition of biofilm formation and EPS production was observed. In contrast, cefotaxime at 1/2 MIC (0·039 μg ml−1) was able to significantly induce the production of biofilm as well as EPS in three isolates with nontypable and DT104 phage type, respectively. Conclusions: These results clearly indicate that all the three antibiotics tested are able to interfere with biofilm formation and EPS production by Salm. Typhimurium isolates. Significance and Impact of the Study: The current study demonstrated that cefotaxime at sub-MIC can be beneficial for the behaviour of pathogen Salm. Typhimurium in vitro.  相似文献   

15.
16.
Salmonella enterica serotype Enteritidis PT4 and Typhimurium DT104 isolates were characterized using a random amplification of polymorphic DNA (RAPD) protocol found previously to be highly discriminatory for isolates of Salmonella . Profiles generated with a single primer 1254, and independently 1283, successfully characterized an outbreak strain of Enteritidis PT4 but could not differentiate epidemiologically unrelated strains of Enteritidis PT4 from the outbreak strains. Primer 1254 differentiated one strain, and 1283 two strains of Typhimurium DT104 previously undifferentiated on the basis of biochemical and physical properties. Subsequent analysis using a combination of RAPD and restriction enzyme analysis could not provide additional differentiation of Enteritidis PT4 and Typhimurium DT104 isolates but did, however, exhibit the potential to be a useful combination of molecular techniques.  相似文献   

17.
An increase in the number of multidrug-resistant Salmonella enterica serovar Typhimurium strains (definitive phage type DT20a and DT120) as well as the occurrence of DT104 strains during 2003-2005 in Slovakia was documented. Based on the results of the molecular analysis we suggest that multidrug-resistant DT20a and DT120 phage types are more closely related to multidrug-resistant phage type, and that the occurrence is probably due to changes in the phage susceptibility of DT104. Continued surveillance and molecular analysis should be maintained to follow the spread of these new multidrug-resistant DT104 variants in animals and humans.  相似文献   

18.
Salmonellosis is a frequently diagnosed infectious disease of passerine birds in garden habitats within Great Britain with potential implications for human and domestic animal health. Postmortem examinations were performed on 1,477 garden bird carcasses of circa 50 species from England and Wales, 1999 to 2007 inclusive. Salmonellosis was confirmed in 263 adult birds of 10 passerine species in this 11-year longitudinal study. A subset of 124 fully biotyped Salmonella enterica subsp. enterica serovar Typhimurium isolates was examined using pulsed-field gel electrophoresis to investigate the hypothesis that these strains are host adapted and to determine whether this molecular technique offers greater resolution in understanding the epidemiology of Salmonella Typhimurium infection than phage typing alone. For the two most common phage types, definitive type (DT) 40 and DT56v, which together accounted for 97% (120/124) of isolates, pulsed-field gel electrophoresis groupings closely correlated with phage type with remarkably few exceptions. A high degree of genetic similarity (>90%) was observed within and between the two most common pulsed-field gel electrophoresis groups. No clustering or variation was found in the pulsed-field gel electrophoresis groupings by bird species, year, or geographical region beyond that revealed by phage typing. These findings support the hypothesis that there are currently two host-adapted Salmonella phage types, S. Typhimurium DT40 and DT56v, circulating widely in British garden birds and that the reservoir of infection is maintained within wild bird populations. Large-scale multilocus sequence typing studies are required to further investigate the epidemiology of this infection.  相似文献   

19.
AIMS: Cattle are a known main reservoir for acid-resistant Escherichia coli O157 and Salmonella enterica serovar Typhimurium DT104. We studied the response of S. Typhimurium DT104 to extreme low pH environments and compared their response to that of acid-resistant E. coli O157 and other S. Typhimurium phage types. METHODS AND RESULTS: Bacteria were grown in nutrient-rich medium and subsequently acid challenged at pH 2.5. We found that stationary phase cultures of various S. Typhimurium strains were able to survive a challenge for 2 h at pH 2.5. As in E. coli, the ability of S. Typhimurium to survive at pH 2.5 was shown to be dependent on the presence of amino acids, specifically arginine. The amount of proton pumping H+/ATPase, both in E. coli O157 and S. Typhimurium strains, was lower when grown at pH values <6 than after growth at pH 7.5. Cyclo fatty acid content of membranes of bacteria grown at pH values <6 was higher than that of membranes of bacteria grown at pH 7.5. CONCLUSIONS: Various S. Typhimurium strains, both DT104 and non-DT104, are able to survive for a prolonged period of time at pH 2.5. Their response to such low pH environment is seemingly similar to that of E. coli O157. SIGNIFICANCE AND IMPACT OF THE STUDY: Food-borne pathogens like S. Typhimurium DT104 and E. coli O157 form a serious threat to public health since such strains are able to survive under extreme low pH conditions as present in the human stomach. The emergence these acid-resistant strains suggests the presence of a selection barrier. The intestinal tract of ruminants fed a carbohydrate-rich diet might be such a barrier.  相似文献   

20.
Twenty-three Salmonella enterica serovar Typhimurium isolates from marine environments were characterized by phage typing, pulsed-field gel electrophoresis (PFGE) analysis, plasmid analysis, and antibiotic resistance, and the distribution of the different types in the coastal waters were subsequently analyzed. Five phage types were identified among the isolates (PT41, PT135, PT99, DT104, and DT193). PT135 isolates were exclusively detected during the winter months from 1998 to 2000, whereas DT104 and PT41 isolates were detected exclusively in the summer months from 2000 to 2002. XbaI PFGE analysis revealed 9 PFGE types, and plasmid profiling identified 8 plasmid types (with 1 to 6 plasmids) among the isolates. Only three isolates presented multidrug resistance to antibiotics. Two DT104 isolates were resistant to 8 and 7 antibiotics (profiles ACCeFNaSSuT and ACeFNeSSuT), whereas a PT193 isolate presented resistance to 6 antibiotics (profile ACFSSu). In addition, four PT41 isolates were resistant to a single antibiotic. The detection of multidrug-resistant phage types DT104 and DT193 in shellfish emphasizes the importance of monitoring the presence of Salmonella in routine surveillance of live bivalve molluscs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号