首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular epidemiology of 142 isolates of Salmonella enterica serovar Typhimurium from avian wildlife, domestic animals, and the environment in Norway was investigated using pulsed-field gel electrophoresis (PFGE) and computerized numerical analysis of the data. The bacterial isolates comprised 79 isolates from wild-living birds, including 46 small passerines and 26 gulls, and 63 isolates of nonavian origin, including 50 domestic animals and 13 environmental samples. Thirteen main clusters were discernible at the 90% similarity level. Most of the isolates (83%) were grouped into three main clusters. These were further divided into 20 subclusters at the 95% similarity level. Isolates from passerines, gulls, and pigeons dominated within five subclusters, whereas isolates from domestic animals and the environment belonged to many different subclusters with no predominance. The results support earlier results that passerines constitute an important source of infection to humans in Norway, whereas it is suggested that gulls and pigeons, based on PFGE analysis, represent only a minor source of human serovar Typhimurium infections. Passerines, gulls, and pigeons may also constitute a source of infection of domestic animals and feed plants or vice versa. Three isolates from cattle and a grain source, of which two were multiresistant, were confirmed as serovar Typhimurium phage type DT 104. These represent the first reported phage type DT 104 isolates from other sources than humans in Norway.  相似文献   

2.
Salmonella enterica serovar Typhimurium is frequently isolated from humans and animals. Phage typing is historically the first-line reference typing technique in Europe. It is rapid and convenient for laboratories with appropriate training and experience, and costs of consumables are low. Phage typing and pulsed-field gel electrophoresis (PFGE) were performed on 503 isolates of serovar Typhimurium. Twenty-nine phage types and 53 PFGE patterns were observed. Most isolates of phage types DT104, DT104b, and U310 are not distinguishable from other members of their phage type by PFGE. By contrast, PFGE of isolates of phage types DT193 and U302 shows great heterogeneity. Analysis of experience with PFGE and phage typing can facilitate the selective application of PFGE to maximize the yield of epidemiologically relevant additional information while controlling costs.  相似文献   

3.
Salmonella enterica serovar Typhimurium is frequently isolated from humans and animals. Phage typing is historically the first-line reference typing technique in Europe. It is rapid and convenient for laboratories with appropriate training and experience, and costs of consumables are low. Phage typing and pulsed-field gel electrophoresis (PFGE) were performed on 503 isolates of serovar Typhimurium. Twenty-nine phage types and 53 PFGE patterns were observed. Most isolates of phage types DT104, DT104b, and U310 are not distinguishable from other members of their phage type by PFGE. By contrast, PFGE of isolates of phage types DT193 and U302 shows great heterogeneity. Analysis of experience with PFGE and phage typing can facilitate the selective application of PFGE to maximize the yield of epidemiologically relevant additional information while controlling costs.  相似文献   

4.
Salmonella enterica serovar Typhimurium DT104 (Salmonella Typhimurium DT104 or DT104) has been emerging as a common pathogen for human in Korea since 1997. In order to compare the genomic relationship and to search for the dominant strains in Korea, we conducted pulsed-field gel electrophoresis (PFGE) and IS200 fingerprinting of 25 epidemiological unrelated isolates from human and animals from Korea and cattle from America. Two Salmonella Typhimurium DT104 isolates from human in Korea and all 8 isolates from American cattle had indistinguishable patterns from the PFGE and IS200 fingerprinting but multidrug-resistant Salmonella Typhimurium isolates, including DT104, from Korean animals had diverse genetic patterns. The data suggest that a dominant DT104 strain might have circulated between Korean and American cattle and that it had a high level of clonality.  相似文献   

5.
Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) has caused significant morbidity and mortality in humans and animals for almost three decades. We completed the full DNA sequence of one DT104 strain, NCTC13348, and showed that significant differences between the genome of this isolate and the genome of the previously sequenced strain Salmonella serovar Typhimurium LT2 are due to integrated prophage elements and Salmonella genomic island 1 encoding antibiotic resistance genes. Thirteen isolates of Salmonella serovar Typhimurium DT104 with different pulsed-field gel electrophoresis (PFGE) profiles were analyzed by using multilocus sequence typing (MLST), plasmid profiling, hybridization to a pan-Salmonella DNA microarray, and prophage-based multiplex PCR. All the isolates belonged to a single MLST type, sequence type ST19. Microarray data demonstrated that the gene contents of the 13 DT104 isolates were remarkably conserved. The PFGE DNA fragment size differences in these isolates could be explained to a great extent by differences in the prophage and plasmid contents. Thus, here the nature of variation in different Salmonella serovar Typhimurium DT104 isolates is further defined at the gene and whole-genome levels, illustrating how this phage type evolves over time.  相似文献   

6.
Postmortem records of wild-living birds in Norway with laboratory-confirmed findings of salmonella infection were summarized for the period from 1969 to 2000. Salmonella spp. were isolated from 470 birds belonging to 26 species. The salmonella-positive birds included 441 small passerines, 15 gulls, 5 waterfowl, 4 birds of prey, 3 doves, and 2 crows. The bullfinch (Pyrrhula pyrrhula) was by far the most frequently recorded species (54% of the cases). Salmonella enterica serover Typhimurium was recovered from all cases except from one hooded crow (Corvus corone), which yielded serovar Paratyphi-B var. Java. Variant O:4,12 comprised 96% (451 cases) of all serovar Typhimurium isolates, including all the passerines, while variant O:4,5,12 accounted for the remaining 4% (18 cases). The occurrence of salmonellae in small passerines showed a distinct seasonality, with a peak in February and March. Plasmid profile analysis of 346 isolates of serovar Typhimurium O:4,12 detected six profiles, of which two comprised 66 and 28% of the isolates, respectively. Phage typing of 52 randomly selected isolates of serovar Typhimurium O:4,12 from passerines detected four types: DT 40 (54%), U277 (35%), DT 99 (6%), and DT 110 (4%).  相似文献   

7.
Genomic subtractive hybridization was performed between Salmonella enterica serovar Typhimurium LT2 and DT104 to search for novel Salmonella serovar Typhimurium DT104-specific sequences. The subtraction resulted mainly in the isolation of DNA fragments with sequence similarity to phages. Two fragments identified were associated with possible virulence factors. One fragment was identical to irsA of Salmonella serovar Typhimurium ATCC 14028, which is suggested to be involved in macrophage survival. The other fragment was homologous to HldD, an Escherichia coli O157:H7 lipopolysaccharide assembly-related protein. Five selected DNA fragments-irsA, the HldD homologue, and three fragments with sequence similarity to prophages-were tested for their presence in 17 Salmonella serovar Typhimurium DT104 isolates and 27 non-DT104 isolates by PCR. All five selected DNA fragments were Salmonella serovar Typhimurium DT104 specific among the serovar Typhimurium isolates tested. These DNA fragments can be useful for better detection and typing of Salmonella serovar Typhimurium DT104.  相似文献   

8.
Salmonellae in Avian Wildlife in Norway from 1969 to 2000   总被引:1,自引:0,他引:1       下载免费PDF全文
Postmortem records of wild-living birds in Norway with laboratory-confirmed findings of salmonella infection were summarized for the period from 1969 to 2000. Salmonella spp. were isolated from 470 birds belonging to 26 species. The salmonella-positive birds included 441 small passerines, 15 gulls, 5 waterfowl, 4 birds of prey, 3 doves, and 2 crows. The bullfinch (Pyrrhula pyrrhula) was by far the most frequently recorded species (54% of the cases). Salmonella enterica serover Typhimurium was recovered from all cases except from one hooded crow (Corvus corone), which yielded serovar Paratyphi-B var. Java. Variant O:4,12 comprised 96% (451 cases) of all serovar Typhimurium isolates, including all the passerines, while variant O:4,5,12 accounted for the remaining 4% (18 cases). The occurrence of salmonellae in small passerines showed a distinct seasonality, with a peak in February and March. Plasmid profile analysis of 346 isolates of serovar Typhimurium O:4,12 detected six profiles, of which two comprised 66 and 28% of the isolates, respectively. Phage typing of 52 randomly selected isolates of serovar Typhimurium O:4,12 from passerines detected four types: DT 40 (54%), U277 (35%), DT 99 (6%), and DT 110 (4%).  相似文献   

9.
Twenty-three Salmonella enterica serovar Typhimurium isolates from marine environments were characterized by phage typing, pulsed-field gel electrophoresis (PFGE) analysis, plasmid analysis, and antibiotic resistance, and the distribution of the different types in the coastal waters were subsequently analyzed. Five phage types were identified among the isolates (PT41, PT135, PT99, DT104, and DT193). PT135 isolates were exclusively detected during the winter months from 1998 to 2000, whereas DT104 and PT41 isolates were detected exclusively in the summer months from 2000 to 2002. XbaI PFGE analysis revealed 9 PFGE types, and plasmid profiling identified 8 plasmid types (with 1 to 6 plasmids) among the isolates. Only three isolates presented multidrug resistance to antibiotics. Two DT104 isolates were resistant to 8 and 7 antibiotics (profiles ACCeFNaSSuT and ACeFNeSSuT), whereas a PT193 isolate presented resistance to 6 antibiotics (profile ACFSSu). In addition, four PT41 isolates were resistant to a single antibiotic. The detection of multidrug-resistant phage types DT104 and DT193 in shellfish emphasizes the importance of monitoring the presence of Salmonella in routine surveillance of live bivalve molluscs.  相似文献   

10.
The molecular epidemiology of 545 Salmonella enterica serovar Typhimurium isolates collected between 1977 and 2009 from cattle in Hokkaido, Japan, was investigated using pulsed-field gel electrophoresis (PFGE). Nine main clusters were identified from 116 PFGE patterns. Cluster I comprised 248 isolates, 243 of which possessed a sequence specific to definitive phage type 104 (DT104) or U302. The cluster I isolates were dominant in 1993 to 2003, but their numbers declined beginning in 2004. Beginning in 2002, an increase was observed in the number of cluster VII isolates, consisting of 21 PFGE patterns comprising 165 isolates. A total of 116 isolates representative of the 116 PFGE profiles were analyzed by multilocus variable-number tandem-repeat analysis (MLVA). Other than two drug-sensitive isolates, 19 isolates within cluster VII were classified in the same cluster by MLVA. Among the cluster VII isolates, an antibiotic resistance type showing resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, tetracycline, kanamycin, cefazolin, and sulfamethoxazole-trimethoprim and a resistance type showing resistance to ampicillin, streptomycin, sulfonamides, tetracycline, and kanamycin were found in 23 and 125 isolates, respectively. In the 19 isolates representative of cluster VII, the bla(TEM-1) gene was found on a Salmonella serotype Typhimurium virulence plasmid, which was transferred to Escherichia coli by electroporation along with resistance to two to four other antimicrobials. Genomic analysis by subtractive hybridization and plasmid analysis suggested that the bla(TEM-1)-carrying virulence plasmid has a mosaic structure composed of elements of different origin. These results indicate an emerging multidrug-resistant S. Typhimurium clone carrying a virulence-resistance plasmid among cattle in Hokkaido, Japan.  相似文献   

11.
Twenty-three Salmonella enterica serovar Typhimurium isolates from marine environments were characterized by phage typing, pulsed-field gel electrophoresis (PFGE) analysis, plasmid analysis, and antibiotic resistance, and the distribution of the different types in the coastal waters were subsequently analyzed. Five phage types were identified among the isolates (PT41, PT135, PT99, DT104, and DT193). PT135 isolates were exclusively detected during the winter months from 1998 to 2000, whereas DT104 and PT41 isolates were detected exclusively in the summer months from 2000 to 2002. XbaI PFGE analysis revealed 9 PFGE types, and plasmid profiling identified 8 plasmid types (with 1 to 6 plasmids) among the isolates. Only three isolates presented multidrug resistance to antibiotics. Two DT104 isolates were resistant to 8 and 7 antibiotics (profiles ACCeFNaSSuT and ACeFNeSSuT), whereas a PT193 isolate presented resistance to 6 antibiotics (profile ACFSSu). In addition, four PT41 isolates were resistant to a single antibiotic. The detection of multidrug-resistant phage types DT104 and DT193 in shellfish emphasizes the importance of monitoring the presence of Salmonella in routine surveillance of live bivalve molluscs.  相似文献   

12.
Fifty-six human and 24 adult dairy cattle isolates of Salmonella enterica serovar Typhimurium from a single county in California were compared using ribotyping, insertion sequence typing (IS200), pulsed-field gel electrophoresis, plasmid typing, phage typing, and antimicrobial resistance testing. The majority of the isolates fell into one of two groups which were phage types DT104 and DT193. Combining the information from all typing methods, a total of 45 different "clusters" were defined, with 35 of those including only a single isolate. The library of isolates had a high degree of variability, but antibiotic resistance and plasmid typing each defined single clusters in which human or bovine isolates predominated (chi2, P < 0.05).  相似文献   

13.
The definitive phage types (DT) 2 and 99 of Salmonella enterica serotype Typhimurium are epidemiologically correlated with a host range restricted to pigeons, in contrast to phage types with broader host ranges such as epidemic cattle isolates (DT104 and DT204). To determine whether phage types with broad host range possess genetic islands absent from host-restricted phage types, we compared the genomes of four pigeon isolates to serotype Typhimurium strain LT2 using a DNA microarray. Three of the four isolates tested caused fluid accumulation in bovine ligated ileal loops, but they had reduced colonization of liver and spleen in susceptible BALB/c mice and were defective for intestinal persistence in Salmonella-resistant CBA mice. The genomes of the DT99 and DT2 isolates were extremely similar to the LT2 genome, with few notable differences on the level of complete individual genes. Two large groups of genes representing the Fels-1 and Fels-2 prophages were missing from the DT2 and DT99 phage types we analyzed. One of the DT99 isolates examined was lacking a third cluster of five chromosomal genes (STM1555 to -1559). Results of the microarray analysis were extended using Southern analysis to a collection of 75 serotype Typhimurium clinical isolates of 24 different phage types. This analysis revealed no correlation between the presence of Fels-1, Fels-2, or STM1555 to -1559 and the association of phage types with different host reservoirs. We conclude that serotype Typhimurium phage types with broad host range do not possess genetic islands influencing host restriction, which are absent from the host-restricted pigeon isolates.  相似文献   

14.
Genomic subtractive hybridization was performed between Salmonella enterica serovar Typhimurium LT2 and DT104 to search for novel Salmonella serovar Typhimurium DT104-specific sequences. The subtraction resulted mainly in the isolation of DNA fragments with sequence similarity to phages. Two fragments identified were associated with possible virulence factors. One fragment was identical to irsA of Salmonella serovar Typhimurium ATCC 14028, which is suggested to be involved in macrophage survival. The other fragment was homologous to HldD, an Escherichia coli O157:H7 lipopolysaccharide assembly-related protein. Five selected DNA fragments—irsA, the HldD homologue, and three fragments with sequence similarity to prophages—were tested for their presence in 17 Salmonella serovar Typhimurium DT104 isolates and 27 non-DT104 isolates by PCR. All five selected DNA fragments were Salmonella serovar Typhimurium DT104 specific among the serovar Typhimurium isolates tested. These DNA fragments can be useful for better detection and typing of Salmonella serovar Typhimurium DT104.  相似文献   

15.
AIMS: Pulsed-field gel electrophoresis (PFGE) and variable number tandem repeat (VNTR) profiles of 195 epidemiologically unrelated Salmonella Typhimurium strains isolated in 1997-2004 from pigs were analysed and the results compared to establish the discriminatory ability of each method. In order to investigate the epidemiology of S. Typhimurium from different populations, the VNTR profiles from pigs were compared with those obtained from 190 S. Typhimurium strains isolated from poultry and 186 strains isolated from human cases of gastroenteritis. METHODS AND RESULTS: A total of 195 strains of S. Typhimurium were tested by PFGE and VNTR. For PFGE, the restriction enzyme XbaI was used, and for VNTR, the number of repeats at five loci (STTR 9, 5, 6, 10pl and 3) were counted and assigned an allele number based on an established VNTR scheme. The results obtained showed improved discrimination of VNTR when compared with PFGE with 34 PFGE profiles identified compared with 96 different VNTR profiles for the pig isolates and 56 different VNTR types within the most common PFGE type. Within the three different populations, VNTR showed distinct subpopulations of VNTR type related not only to source, but also demonstrated common VNTR types within samples obtained from humans, poultry and pigs, especially in strains of phage type DT104. CONCLUSIONS: VNTR has taken the discrimination to a further level than that obtained through PFGE, and demonstrated an overlap in the genetic diversity of isolates tested across the three different populations, confirming previous suggestions that animals have an involvement in the dissemination of S. Typhimurium through the food chain. SIGNIFICANCE AND IMPACT OF THE STUDY: Salmonella Typhimurium remains an important concern as a food-borne zoonotic agent. The VNTR strategy described provides an accurate method of tracing strain dissemination, and adds a further level of discrimination to the PFGE type, providing potential benefits to epidemiological studies and the possibility of deciphering source attribution of cases.  相似文献   

16.
AIMS: To investigate lipopolysaccharide (LPS) expression in Salmonella enterica serotype Typhimurium definitive phage type 104 (Salmonella Typhimurium DT104) and related phage types. METHODS AND RESULTS: Isolates were examined for the expression of LPS by SDS-PAGE and silver staining and subtyped by Pulsed Field Gel Electrophoresis (PFGE). The 100 isolates expressed one of two LPS profiles designated A (72%) and B (28%). LPS profiling was able to discriminate between isolates of identical PFGE type. Among 10 groups of outbreak isolates examined, each group was of a single LPS profile: A, 8/10 and B, 2/10. All 10 outbreaks were identical by PFGE analysis. CONCLUSIONS: Isolates of Salmonella Typhimurium DT104 and related phage types expressed one of two distinct LPS profiles. The two LPS profiles appear similar but shifted and in phase with one another, suggesting that the heterogeneity is due to changes in the LPS core region rather than among the repeating oligosaccharide units of the long-chain LPS. SIGNIFICANCE AND IMPACT OF THE SUTDY: LPS profiling provides a useful adjunct to PFGE and other molecular methods for the subtyping of this group of bacteria in epidemiological investigations.  相似文献   

17.
An increase in the number of multidrug-resistant Salmonella enterica serovar Typhimurium strains (definitive phage type DT20a and DT120) as well as the occurrence of DT104 strains during 2003-2005 in Slovakia was documented. Based on the results of the molecular analysis we suggest that multidrug-resistant DT20a and DT120 phage types are more closely related to multidrug-resistant phage type, and that the occurrence is probably due to changes in the phage susceptibility of DT104. Continued surveillance and molecular analysis should be maintained to follow the spread of these new multidrug-resistant DT104 variants in animals and humans.  相似文献   

18.
Fifty-six human and 24 adult dairy cattle isolates of Salmonella enterica serovar Typhimurium from a single county in California were compared using ribotyping, insertion sequence typing (IS200), pulsed-field gel electrophoresis, plasmid typing, phage typing, and antimicrobial resistance testing. The majority of the isolates fell into one of two groups which were phage types DT104 and DT193. Combining the information from all typing methods, a total of 45 different “clusters” were defined, with 35 of those including only a single isolate. The library of isolates had a high degree of variability, but antibiotic resistance and plasmid typing each defined single clusters in which human or bovine isolates predominated (χ2, P < 0.05).  相似文献   

19.
AIMS: Acid resistance could be an indicator of virulence since acid resistant strains are able to better survive the human stomach passage and in macrophages. We studied the acid resistance of several Salmonella Typhimurium DT104 strains isolated from food and humans and identified cellular parameters contributing to the enhanced acid resistance of these isolates. METHODS AND RESULTS: Acid resistance was tested in 37 Salmonella enterica Typhimurium serovar DT104 (S. Typhimurium DT104) strains. Acid adaptation at pH 5 followed by exposure for 2 h at pH 2.5 in the 27 human, nine nonhuman, and in two reference strains, revealed strong variation of acid survival. After 2 h at pH 2.5 six strains of S. Typhimurium DT104 were considered high acid resistant as they displayed a level of survival >10%, 14 strains were considered intermediate acid resistant (level of survival was <10% and >0.01%) and 19 strains were considered low acid resistant (level of survival <0.01%). Six strains were selected for further studies and proteomics revealed a relatively high amount of phase 2 flagellin in an acid-sensitive strain and a relatively high amount of the beta component of the H(+)/ATPase in an acid-resistant strain. Two strains were slightly more heat resistant possibly as the result of increased levels of DnaK or GroEL. CONCLUSIONS: A significant difference could be detected between human and food isolates regarding their acid resistance; all high acid-resistant strains were human isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: S. Typhimurium DT104 is known for two decades and has a great impact on human health causing serious food-borne diseases. Our results suggest the existence of a positive correlation between acid resistance and pathogenicity in S. Typhimurium DT104 as all high acid-resistant strains were isolated from humans.  相似文献   

20.
Salmonella enterica serovar Typhimurium was isolated from the intestinal contents of Rattus rattus and Rattus norvegicus house rats captured at two buildings, designated buildings J and YS, in Yokohama City, Japan. From October 1997 to September 1998, 52 of 339 (15.3%) house rats were found to carry Salmonella serovar Typhimurium definitive phage type 104 (DT104). In building J, 26 of 161 (16.1%) house rats carried DT104 over the 1-year study period, compared to 26 of 178 (14.6%) rats in building YS. The isolation rates of DT104 from R. rattus and R. norvegicus were similar in the two buildings. Most DT104 strains from building J (24 of 26) showed resistance to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, and tetracycline and contained both the 1.0- and 1.2-kbp integrons, carrying genes pse1, pasppflo-like, aadA2, sulI, and tet(G). All DT104 strains from building YS were resistant to ampicillin and sulfisoxazole, and had the 1.2-kbp integron carrying pse1 and sulI. Cluster analysis of pulsed-field gel electrophoresis patterns of BlnI-digested DT104 DNAs showed that 22 of 26 DT104 strains from building J and 24 of 26 strains from building YS could be grouped into separate clusters each specific for the building origin. These results indicated that DT104 strains were prevalent in house rat colonies in each building and suggest that house rats may play an important role in the epidemiology of DT104.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号