首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
AIMS: Acid resistance could be an indicator of virulence since acid resistant strains are able to better survive the human stomach passage and in macrophages. We studied the acid resistance of several Salmonella Typhimurium DT104 strains isolated from food and humans and identified cellular parameters contributing to the enhanced acid resistance of these isolates. METHODS AND RESULTS: Acid resistance was tested in 37 Salmonella enterica Typhimurium serovar DT104 (S. Typhimurium DT104) strains. Acid adaptation at pH 5 followed by exposure for 2 h at pH 2.5 in the 27 human, nine nonhuman, and in two reference strains, revealed strong variation of acid survival. After 2 h at pH 2.5 six strains of S. Typhimurium DT104 were considered high acid resistant as they displayed a level of survival >10%, 14 strains were considered intermediate acid resistant (level of survival was <10% and >0.01%) and 19 strains were considered low acid resistant (level of survival <0.01%). Six strains were selected for further studies and proteomics revealed a relatively high amount of phase 2 flagellin in an acid-sensitive strain and a relatively high amount of the beta component of the H(+)/ATPase in an acid-resistant strain. Two strains were slightly more heat resistant possibly as the result of increased levels of DnaK or GroEL. CONCLUSIONS: A significant difference could be detected between human and food isolates regarding their acid resistance; all high acid-resistant strains were human isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: S. Typhimurium DT104 is known for two decades and has a great impact on human health causing serious food-borne diseases. Our results suggest the existence of a positive correlation between acid resistance and pathogenicity in S. Typhimurium DT104 as all high acid-resistant strains were isolated from humans.  相似文献   

2.
AIMS: To determine the effectiveness of a novel dry air decontamination apparatus in the deactivation of Salmonella serotype Typhimurium DT104 or Escherichia coli O157:H7 on beef surfaces. METHODS AND RESULTS: A laboratory scale dry air decontamination apparatus, capable of producing repeatable and known heating time-temperature cycles on food surfaces was used in decontamination trials. Beef samples were surface inoculated with 7-8 log10CFU cm(-2) of S. Typhimurium DT104 or E. coli O157:H7 and heated at 60, 75, 90 and 100 degrees C using fast and slow heating rates and subsequently held at these temperatures for up to 600 s. A substantial reduction in pathogen numbers was achieved at higher temperatures (90 and 100 degrees C, 4.18-6.06 log10CFU cm(-2)) using both heating rates, but cell survival at these temperatures was also observed. At the lower temperatures, deactivation was small at 60 degrees C in particular it was less than one log unit after 3 min heating. No significant differences were observed when total reductions in pathogen counts were compared for all the temperature/heat up time combinations tested. During slow heating at 90 degrees C, and both heating rates at 100 degrees C, the pattern of deactivation of S. Typhimurium DT104 or E. coli O157:H7 was triphasic. CONCLUSIONS: This study has shown that heating meat surfaces with dry air can achieve substantial reductions in S. Typhimurium DT104 or E. coli O157:H7. As surface decontamination of beef surfaces with dry air had a negative effect on beef colour and appearance, such a decontamination apparatus would be unsuitable for producing meat for retail sale but it could be used to produce safer meat for use in the catering trade. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides researchers and food processors with data on the dynamic changes in S. Typhimurium DT104 and E. coli O157:H7 counts on intact beef surfaces during heating with dry air under realistic (time-varying) temperature conditions.  相似文献   

3.
AIMS: To comparatively evaluate the adaptive stationary-phase acid tolerance response (ATR) in food-borne pathogens induced by culturing in glucose-containing media, as affected by strain variability and antibiotic resistance, growth temperature, challenge pH and type of acidulant. METHODS AND RESULTS: Antibiotic resistant or sensitive strains of Listeria monocytogenes, Salmonella including S. Typhimurium DT104, and Escherichia coli O157:H7 were cultured (30 degrees C for 24 h; 10 degrees C for up to 14 days) in trypticase soya broth with yeast extract (TSBYE) with 1% or without glucose to induce or prevent acid adaptation, respectively. Cultures were subsequently exposed to pH 3.5 or 3.7 with lactic or acetic acid at 25 degrees C for 120 min. Acid-adapted cultures were more acid tolerant than nonadapted cultures, particularly those of L. monocytogenes and Salmonella. No consistent, positive or negative, influence of antibiotic resistance on the pH-inducible ATR or acid resistance (AR) was observed. Compared with 30 degrees C cultures, growth and acid adaptation of L. monocytogenes and S. Typhimurium DT104 at 10 degrees C markedly reduced their ATR and AR in stationary phase. E. coli O157:H7 had the greatest AR, relying less on acid adaptation. A 0.2 unit difference in challenge pH (3.5-3.7) caused great variations in survival of acid-adapted and nonadapted cells. CONCLUSIONS: Culturing L. monocytogenes and Salmonella to stationary phase in media with 1% glucose induces a pH-dependent ATR and enhances their survival to organic acids; thus, this method is suitable for producing acid-adapted cultures for use in food challenge studies. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacterial pathogens may become acid-adapted in foods containing glucose or other fermentable carbohydrates. Low storage temperatures may substantially decrease the stationary-phase ATR of L. monocytogenes and S. Typhimurium DT104, but their effect on ATR of E. coli O157:H7 appears to be far less dramatic.  相似文献   

4.
AIMS: The objective of this study was to investigate alkaline treatments of cattle manure to kill coliforms, Escherichia coli O157:H7 and Salmonella Typhimurium DT104 based on their inhibition by carbonate ion and ammonia. METHODS AND RESULTS: Pure cultures of S. Typhimurium DT104 and E. coli O157:H7 strains were treated with sodium carbonate and ammonia to determine threshold inhibitory concentrations. Fresh cattle manure samples were inoculated with the same strains and their survival was determined after addition of sodium hydroxide, ammonium sulphate, sodium carbonate and/or urea. Control of CO and NH3 concentrations in manure by pH adjustment to 9.5 with sodium hydroxide to more than 5 and 30 mmol l-1, respectively, killed more than 106 cells g-1 in 7 days. Addition of sodium carbonate enhanced the killing effect of NaOH by increasing the CO and NH3 concentrations. Addition of 100 mmol l-1 urea, produced high levels of CO and NH3 and decreased all bacterial counts by at least 106 cells g-1 after 7 days. CONCLUSIONS: Reduction of food-borne pathogens in manure can be achieved by a combination of high concentrations of CO and NH3 which are pH-dependent parameters. SIGNIFICANCE AND IMPACT OF STUDY: Addition of urea could provide a simple manure treatment by combining both antimicrobial factors.  相似文献   

5.
AIMS: To predict and validate survival of non-acid adapted Escherichia coli O157 in an environment mimicking the human stomach. METHODS AND RESULTS: Survival was predicted mathematically from inactivation rates at various, but constant pH values. Predictions were subsequently validated experimentally in a pH-controlled fermentor. Contrary to prediction, acid-sensitive cultures of E. coli O157 survived for a long period of time and died as rapidly as acid-resistant cultures. Experimental results showed that in an environment with changing pH, acid-sensitive cultures became acid-resistant within 17 min. Cyclo fatty acids was reported to be a factor in acid resistance. As synthesis of cyclo fatty acids does not require de novo enzyme synthesis and thus requires little time to develop, we analysed the membrane fatty acid composition of E. coli O157 during adaptation. No changes in membrane fatty acid composition were observed. CONCLUSIONS: Acid adaptation of E. coli O157 can occur during passage of the human gastric acid barrier, which can take up to 4 h. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability of acid-adapted bacteria to survive the human stomach is an important virulence factor. The ability of non-acid adapted E. coli O157 to adapt within a very short period of time under extreme conditions further contributes to the virulence of E. coli O157.  相似文献   

6.
Genomic subtractive hybridization was performed between Salmonella enterica serovar Typhimurium LT2 and DT104 to search for novel Salmonella serovar Typhimurium DT104-specific sequences. The subtraction resulted mainly in the isolation of DNA fragments with sequence similarity to phages. Two fragments identified were associated with possible virulence factors. One fragment was identical to irsA of Salmonella serovar Typhimurium ATCC 14028, which is suggested to be involved in macrophage survival. The other fragment was homologous to HldD, an Escherichia coli O157:H7 lipopolysaccharide assembly-related protein. Five selected DNA fragments-irsA, the HldD homologue, and three fragments with sequence similarity to prophages-were tested for their presence in 17 Salmonella serovar Typhimurium DT104 isolates and 27 non-DT104 isolates by PCR. All five selected DNA fragments were Salmonella serovar Typhimurium DT104 specific among the serovar Typhimurium isolates tested. These DNA fragments can be useful for better detection and typing of Salmonella serovar Typhimurium DT104.  相似文献   

7.
AIMS: The aim of the study was to evaluate the effect of habituation at different pH conditions on the acid resistance of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serotype Typhimurium, and to identify potential differences between the adaptive responses of the three pathogens. METHODS: Stationary phase cells of L. monocytogenes, E. coli O157:H7 and S. Typhimurium, grown in glucose-free media, were exposed to pH 3.5 broth directly or after habituation for 90 min at various pH conditions from 4.0 to 6.0. Survivors at pH 3.5 were determined by plating on tryptic soy agar and incubating at 30 degrees C for 48 h. The kinetics (death rate) of the pathogens at pH 3.5 was calculated by fitting the data to an exponential model. RESULTS: Habituation to acidic environments provided protection of the pathogens against lethal acid conditions. This acid protection, however, was found to be pH dependent. For example, for E. coli O157:H7 an increased acid resistance was observed after habituation at a pH range from 4.0 to 5.5, while the maximum acid tolerance was induced at pH 5.0. Furthermore, the effect of low pH habituation was different among pathogens. For L. monocytogenes, E. coli O157:H7 and S. Typhimurium, the pH range within which habituation resulted to increased acid resistance was 5.0-6.0, 4.0-5.5 and 4.0-5.0, respectively, while the maximum acid tolerance was induced after habituation at pH 5.5, 5.0 and 4.5, respectively. SIGNIFICANCE: Acid stress conditions are common within current food processing technologies. The information on adaptive responses of L. monocytogenes, E. coli O157:H7 and S. Typhimurium after habituation to different pH environments provided in the present study, could lead to a more realistic evaluation of food safety concerns and to a better selection of processes in order to avoid adaptation phenomena and to minimize the potential for food safety risks.  相似文献   

8.
The rpoS nucleotide and predicted amino acid sequences from three Escherichia coli O157:H7 isolates were compared with those from three other E. coli isolates, including the likely O157:H7 progenitor, E. coli O55:H7. These clinical and environmental isolates all had identical sigma S amino acid sequences, while laboratory strains K12 and DH1 had three and one amino acid alterations, respectively, in comparison with the majority sequence. To extend the analysis of sigma S sequence conservation to include other Gram-negative bacteria, the E. coli sigma S sequences were compared with those from diverse Gram-negative organisms; sigma S sequence identities ranged from 50.2 to 99.7% among the available sequences. The results further confirm the existence of rpoS alleles among different E. coli strains, although all strains were classified as acid-resistant with survival rates > 10% after 2 h exposure to pH 2.5. It was also found that all E. coli O157:H7 isolates tested had a unique nucleotide at position 543, thus differentiating these strains from other E. coli serotypes.  相似文献   

9.
Genomic rearrangements (duplications and inversions) in enteric bacteria such as Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12 are frequent (10(-3) to 10(-5)) in culture, but in wild-type strains these genomic rearrangements seldom survive. However, inversions commonly survive in the terminus of replication (TER) region, where bidirectional DNA replication terminates; nucleotide sequences from S. enterica serovar Typhimurium LT2, S. enterica serovar Typhi CT18, E. coli K12, and E. coli O157:H7 revealed genomic inversions spanning the TER region. Assuming that S. enterica serovar Typhimurium LT2 represents the ancestral genome structure, we found an inversion of 556 kb in serovar Typhi CT18 between two of the 25 IS200 elements and an inversion of about 700 kb in E. coli K12 and E. coli O157:H7. In addition, there is another inversion of 500 kb in E. coli O157:H7 compared with E. coli K12. PCR analysis confirmed that all S. enterica serovar Typhi strains tested, but not strains of other Salmonella serovars, have an inversion at the exact site of the IS200 insertions. We conclude that inversions of the TER region survive because they do not significantly change replication balance or because they are part of the compensating mechanisms to regain chromosome balance after it is disrupted by insertions, deletions, or other inversions.  相似文献   

10.
11.
Genomic subtractive hybridization was performed between Salmonella enterica serovar Typhimurium LT2 and DT104 to search for novel Salmonella serovar Typhimurium DT104-specific sequences. The subtraction resulted mainly in the isolation of DNA fragments with sequence similarity to phages. Two fragments identified were associated with possible virulence factors. One fragment was identical to irsA of Salmonella serovar Typhimurium ATCC 14028, which is suggested to be involved in macrophage survival. The other fragment was homologous to HldD, an Escherichia coli O157:H7 lipopolysaccharide assembly-related protein. Five selected DNA fragments—irsA, the HldD homologue, and three fragments with sequence similarity to prophages—were tested for their presence in 17 Salmonella serovar Typhimurium DT104 isolates and 27 non-DT104 isolates by PCR. All five selected DNA fragments were Salmonella serovar Typhimurium DT104 specific among the serovar Typhimurium isolates tested. These DNA fragments can be useful for better detection and typing of Salmonella serovar Typhimurium DT104.  相似文献   

12.
AIMS: To investigate the effect of a therapeutic and sub-therapeutic chlortetracycline treatment on tetracycline-resistant Salmonella enterica serovar Typhimurium DT104 and on the commensal Escherichia coli in pig. METHODS AND RESULTS: Salmonella Typhimurium DT104 was orally administered in all pigs prior to antibiotic treatment, and monitored with the native E. coli. Higher numbers of S. Typhimurium DT104 were shed from treated pigs than untreated pigs. This lasted up to 6 weeks post-treatment in the high-dose group. In this group, there was a 30% increase in E. coli with a chlortetracycline minimal inhibitory concentration (MIC) > 16 mg l-1 and a 10% increase in E. coli with an MIC > 50 mg l-1 during and 2 weeks post-treatment. This effect was less-pronounced in the low-dose group. PCR identified the predominant tetracycline resistance genes in the E. coli as tetA, tetB and tetC. The concentration of chlortetracycline in the pig faeces was measured by HPLC and levels reached 80 microg g-1 faeces during treatment. CONCLUSION: Chlortetracycline treatment increases the proportion of resistant enteric bacteria beyond the current withdrawal time. SIGNIFICANCE AND IMPACT OF THE STUDY: Treated pigs are more likely to enter abattoirs with higher levels of resistant bacteria than untreated pigs promoting the risk of these moving up the food chain and infecting man.  相似文献   

13.
The U.S. Food and Drug Administration (FDA) recently mandated a warning statement on packaged fruit juices not treated to reduce target pathogen populations by 5 log10 units. This study describes combinations of intervention treatments that reduced concentrations of mixtures of Escherichia coli O157:H7 (strains ATCC 43895, C7927, and USDA-FSIS-380-94) or Salmonella typhimurium DT104 (DT104b, U302, and DT104) by 5 log10 units in apple cider with a pH of 3.3, 3.7, and 4.1. Treatments used were short-term storage at 4, 25, or 35 degrees C and/or freeze-thawing (48 h at -20 degrees C; 4 h at 4 degrees C) of cider with or without added organic acids (0.1% lactic acid, sorbic acid [SA], or propionic acid). Treatments more severe than those for S. typhimurium DT104 were always required to destroy E. coli O157:H7. In pH 3.3 apple cider, a 5-log10-unit reduction in E. coli O157:H7 cell numbers was achieved by freeze-thawing or 6-h 35 degrees C treatments. In pH 3.7 cider the 5-log10-unit reduction followed freeze-thawing combined with either 6 h at 4 degrees C, 2 h at 25 degrees C, or 1 h at 35 degrees C or 6 h at 35 degrees C alone. A 5-log10-unit reduction occurred in pH 4.1 cider after the following treatments: 6 h at 35 degrees C plus freeze-thawing, SA plus 12 h at 25 degrees C plus freeze-thawing, SA plus 6 h at 35 degrees C, and SA plus 4 h at 35 degrees C plus freeze-thawing. Yeast and mold counts did not increase significantly (P < 0.05) during the 6-h storage at 35 degrees C. Cider with no added organic acids treated with either 6 h at 35 degrees C, freeze-thawing or their combination was always preferred by consumers over pasteurized cider (P < 0.05). The simple, inexpensive intervention treatments described in the present work could produce safe apple cider without pasteurization and would not require the FDA-mandated warning statement.  相似文献   

14.
AIMS: To assess the potential of essential oils and structurally related synthetic food additives in reducing bacterial pathogens in swine intestinal tract. METHODS AND RESULTS: The antimicrobial activity of essential oils/compounds was measured by determining the inhibition of bacterial growth. Among 66 essential oils/compounds that exhibited > or =80% inhibition towards Salmonellatyphimurium DT104 and Escherichia coli O157:H7, nine were further studied. Most of the oils/compounds demonstrated high efficacy against S. typhimurium DT104, E. coli O157:H7, and E. coli with K88 pili with little inhibition towards lactobacilli and bifidobacteria. They were also tolerant to the low pH. When mixed with pig cecal digesta, these oils/compounds retained their efficacy against E. coli O157:H7. In addition, they significantly inhibited E. coli and coliform bacteria in the digesta, but had little effect on the total number of lactobacilli and anaerobic bacteria. CONCLUSIONS: Some essential oils/compounds demonstrated good potential, including efficacy, tolerance to low pH, and selectivity towards bacterial pathogens, in reducing human and animal bacterial pathogens in swine intestinal tract. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has identified candidates of essential oils/compounds for in vivo studies to develop antibiotic substitutes for the reduction of human and animal bacterial pathogens in swine intestinal tract.  相似文献   

15.
AIMS: To test the inhibitory activity of 2-nitro-1-propanol (2NPOH) against Salmonella Typhimurium, Escherichia coli O157:H7 and Enterococcus faecalis. METHODS AND RESULTS: Specific growth rates (h(-1)) of S. Typhimurium, E. coli O157:H7 and Ent. faecalis were determined during culture in tryptic soya broth (TSB) supplemented with 0-10 mm 2NPOH. Growth rates were inhibited by 2NPOH, with nearly complete inhibition observed with 10 mm. Studies with S. Typhimurium revealed that its survivability during culture in TSB containing 5 or 10 mm 2NPOH was lower (P < 0.05) under aerobic than anaerobic conditions. The survivability of Salmonella during anaerobic culture in TSB containing 2.5 mm 2NPOH was less at pH 5.6 than at pH 7.0 and 8.0. No Salmonella survived anaerobic incubation in TSB supplemented with 10 mm 2NPOH regardless of pH. When incubated in suspensions of freshly collected populations of ruminal and faecal bacteria, Salmonella concentrations were lower (P < 0.05) in suspensions containing 10 mm 2NPOH than in suspensions containing no 2NPOH. CONCLUSIONS: 2NPOH inhibited S. Typhimurium, E. coli O157:H7 and Ent. faecalis. SIGNIFICANCE AND IMPACT OF THE STUDY: Results suggest that 2NPOH may be a useful antimicrobial supplement to reduce carriage of certain food-borne pathogens in food animals.  相似文献   

16.
Two strains of Escherichia coli O157:H7 were grown in tryptic soy broth (TSB, pH 7.1) supplemented with 0, 2.5, 5.0, 7.5, and 10% ethanol at 30 degrees C for up to 54 h. Growth rates in TSB supplemented with 0, 2.5, and 5.0% ethanol decreased with an increase in ethanol concentration. Growth was not observed in TSB supplemented with 7.5 or 10% ethanol. The pH of TSB containing 5.0% ethanol decreased to 5.8 within 12 h and then increased to 7.0 at 54 h. The ethanol content in TSB supplemented with 2.5 or 5.0% ethanol did not change substantially during the first 36 h of incubation but decreased slightly thereafter, indicating utilization or degradation of ethanol by both strains. Glucose was depleted in TSB supplemented with 0, 2.5, or 5.0% ethanol within 12 h. Cells grown under ethanol stress contained a higher amount of fatty acids. With the exceptions of cis-oleic acid and nonadecanoic acid, larger amounts of fatty acid were present in stationary-phase cells of the two strains grown in TSB supplemented with 5.0% ethanol for 30 h than in cells grown in TSB without ethanol for 22 h. The trans-oleic acid content was 10-fold higher in the cells grown in TSB with 5.0% ethanol than those grown in TSB without ethanol. In contrast, cis-oleic acid was not detected in ethanol-stressed cells but was present at concentrations of 0.32 and 0.36 mg/g of cells of the two strains grown in TSB without ethanol. Protein content was higher in ethanol-stressed cells than in nonstressed cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles varied qualitatively as affected by the strain and the presence of ethanol in TSB. An ethanol-mediated protein (28 kDa) was observed in the ethanol-stressed cells but not in control cells. It is concluded that the two test strains of E. coli O157:H7 underwent phenotypic modifications in cellular fatty acid composition and protein profiles in response to ethanol stress. The potential for cross protection against subsequent stresses applied in food preservation technologies as a result of these changes is under investigation.  相似文献   

17.
The periplasmic chaperones HdeA and HdeB are known to be important for cell survival at low pH (pH < 3) in Escherichia coli and Shigella spp. Here we investigated the roles of HdeA and HdeB in the survival of various enterohemorrhagic E. coli (EHEC) following exposure to pH 2.0. Similar to K-12 strains, the acid protections conferred by HdeA and HdeB in EHEC O145 were significant: loss of HdeA and HdeB led to over 100- to 1,000-fold reductions in acid survival, depending on the growth condition of prechallenge cells. However, this protection was much less in E. coli O157:H7 strains. Deletion of hdeB did not affect the acid survival of cells, and deletion of hdeA led to less than a 5-fold decrease in survival. Sequence analysis of the hdeAB operon revealed a point mutation at the putative start codon of the hdeB gene in all 26 E. coli O157:H7 strains analyzed, which shifted the ATG start codon to ATA. This mutation correlated with the lack of HdeB in E. coli O157:H7; however, the plasmid-borne O157-hdeB was able to restore partially the acid resistance in an E. coli O145ΔhdeAB mutant, suggesting the potential function of O157-HdeB as an acid chaperone. We conclude that E. coli O157:H7 strains have evolved acid survival strategies independent of the HdeA/B chaperones and are more acid resistant than nonpathogenic K-12 for cells grown under nonfavorable culturing conditions such as in Luria-Bertani no-salt broth at 28°C. These results suggest a divergent evolution of acid resistance mechanisms within E. coli.  相似文献   

18.
The biofilms and rugose colony morphology of Salmonella enterica serovar Typhimurium strains are usually associated with at least two different exopolymeric substances (EPS), curli and cellulose. In this study, another EPS, a capsular polysaccharide (CP) synthesized constitutively in S. enterica serovar Typhimurium strain DT104 at 25 and 37 degrees C, has been recognized as a biofilm matrix component as well. Fluorophore-assisted carbohydrate electrophoresis (FACE) analysis indicated that the CP is comprised principally of glucose and mannose, with galactose as a minor constituent. The composition differs from that of known colanic acid-containing CP that is isolated from cells of Escherichia coli and other enteric bacteria grown at 37 degrees C. The reactivity of carbohydrate-specific lectins conjugated to fluorescein isothiocyanate or gold particles with cellular carbohydrates demonstrated the cell surface localization of CP. Further, lectin binding also correlated with the FACE analysis of CP. Immunoelectron microscopy, using specific antibodies against CP, confirmed that CP surrounds the cells. Confocal microscopy of antibody-labeled cells showed greater biofilm formation at 25 degrees C than at 37 degrees C. Since the CP was shown to be produced at both 37 degrees C and 25 degrees C, it does not appear to be significantly involved in attachment during the early formation of the biofilm matrix. Although the attachment of S. enterica serovar Typhimurium DT104 does not appear to be mediated by its CP, the capsule does contribute to the biofilm matrix and may have a role in other features of this organism, such as virulence, as has been shown previously for the capsules of other gram-negative and gram-positive bacteria.  相似文献   

19.
Escherichia coli O157:H7 is a highly acid-resistant food-borne pathogen that survives in the bovine and human gastrointestinal tracts and in acidic foods such as apple cider. This property is thought to contribute to the low infectious dose of the organism. Three acid resistance (AR) systems are expressed in stationary-phase cells. AR system 1 is sigma(S) dependent, while AR systems 2 and 3 are glutamate and arginine dependent, respectively. In this study, we sought to determine which AR systems are important for survival in acidic foods and which are required for survival in the bovine intestinal tract. Wild-type and mutant E. coli O157:H7 strains deficient in AR system 1, 2, or 3 were challenged with apple cider and inoculated into calves. Wild-type cells, adapted at pH 5.5 in the absence of glucose (AR system 1 induced), survived well in apple cider. Conversely, the mutant deficient in AR system 1, shown previously to survive poorly in calves, was susceptible to apple cider (pH 3.5), and this sensitivity was shown to be caused by low pH. Interestingly, the AR system 2-deficient mutant survived in apple cider at high levels, but its shedding from calves was significantly decreased compared to that of wild-type cells. AR system 3-deficient cells survived well in both apple cider and calves. Taken together, these results indicate that E. coli O157:H7 utilizes different acid resistance systems based on the type of acidic environment encountered.  相似文献   

20.
Fate of enterohemorrhagic Escherichia coli O157:H7 in bovine feces.   总被引:12,自引:0,他引:12       下载免费PDF全文
G Wang  T Zhao    M P Doyle 《Applied microbiology》1996,62(7):2567-2570
Dairy cattle have been identified as a principal reservoir of Escherichia coli O157:H7. The fate of this pathogen in bovine feces at 5, 22, and 37 degrees C was determined. Two levels of inocula (10(3) and 10(5) CFU/g) of a mixture of five nalidixic acid-resistant E. coli O157:H7 strains were used. E. coli O157:H7 survived at 37 degrees C for 42 and 49 days with low and high inocula, respectively, and at 22 degrees C for 49 and 56 days with low and high inocula, respectively. Fecal samples at both temperatures had low moisture contents (about 10%) and water activities ( < 0.5) near the end of the study. E. coli O157:H7 at 5 degrees C survived for 63 to 70 days, with the moisture content (74%) of feces remaining high through the study. Chromosomal DNA fingerprinting of E. coli O157:H7 isolates surviving near the completion of the study revealed that the human isolate strain 932 was the only surviving strain at 22 or 37 degrees C. All five strains were isolated near the end of incubation from feces held at 5 degrees C. Isolates at each temperature were still capable of producing both verotoxin 1 and verotoxin 2. Results indicate that E. coli O157:H7 can survive in feces for a long period of time and retain its ability to produce verotoxins. Hence, bovine feces are a potential vehicle for transmitting E. coli O157:H7 to cattle, food, and the environment. Appropriate handling of bovine feces is important to control the spread of this pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号