首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 379 毫秒
1.
Pathogenicity of aseptic Bursaphelenchus xylophilus   总被引:2,自引:0,他引:2  
Zhu LH  Ye J  Negi S  Xu XL  Wang ZL  Ji JY 《PloS one》2012,7(5):e38095
Pine wilt is a disease of pine (Pinus spp.) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus. However, the pathogenic mechanism of pine wilt disease (PWD) remains unclear. Although the PWN was thought to be the only pathogenic agent associated with this disease, a potential role for bacterial symbionts in the disease process was recently proposed. Studies have indicated that aseptic PWNs do not cause PWD in aseptic pine trees, while PWNs associated with bacteria cause wilting symptoms. To investigate the pathogenicity of the PWN and its associated bacteria, 3-month-old microcuttings derived from certain clones of Pinus densiflora Siebold & Zucc. produced in vitro were inoculated under aseptic conditions with aseptic PWNs, non-aseptic PWNs and bacteria isolated from the nematodes. Six-month-old aseptic P. densiflora microcuttings and 7-month-old P. massoniana seedlings were also inoculated under aseptic conditions with aseptic PWNs and non-aseptic PWNs. The results showed that the aseptic microcuttings and seedlings inoculated with aseptic PWNs or non-aseptic PWNs wilted, while those inoculated with bacterial isolates did not wilt. Nematodes were recovered from wilted microcuttings and seedlings inoculated with aseptic PWNs and non-aseptic PWNs, and the asepsis of nematodes recovered from aseptic PWN-inoculated microcuttings and seedlings was reconfirmed by culturing them in NB liquid medium at 30°C for more than 7 days. Taken together, the results indicate that the asepsis of PWN did not cause the loss of pathogenicity.  相似文献   

2.
Pine wilt disease (PWD) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, is one of the most devastating diseases of Pinus spp. The PWN was therefore listed as one of the most dangerous forest pests in China meriting quarantine. Virulence of the PWN is closely linked with the spread of PWD. However, main factors responsible for the virulence of PWNs are still unclear. Recently epiphytic bacteria carried by PWNs have drawn much attention. But little is known about the relationship between endophytic bacteria and virulence of B. xylophilus. In this research, virulence of ten strains of B. xylophilus from different geographical areas in six provinces of China and four pine species were tested with 2-year-old seedlings of Pinus thunbergii. Endophytic bacteria were isolated from PWNs with different virulence to investigate the relationship between the bacteria and PWN virulence. Meanwhile, the carbon metabolism of endophytic bacteria from highly and low virulent B. xylophilus was analyzed using Biolog plates (ECO). The results indicated that ten strains of PWNs showed a wide range of virulence. Simultaneously, endophytic bacteria were isolated from 90% of the B. xylophilus strains. The dominant endophytic bacteria in the nematodes were identified as species of Stenotrophomonas, Achromobacter, Ewingella, Leifsonia, Rhizobium, and Pseudomonas using molecular and biochemical methods. Moreover, S. maltophilia, and A. xylosoxidans subsp. xylosoxidans were the predominant strains. Most of the strains (80%) from P. massoniana contained either S. maltophilia, A. xylosoxidans, or both species. There was a difference between the abilities of the endophytic bacteria to utilize carbon sources. Endophytic bacteria from highly virulent B. xylophilus had a relatively high utilization rate of carbohydrate and carboxylic acids, while bacteria from low virulent B. xylophilus made better use of amino acids. In conclusion, endophytic bacteria widely exist in B. xylophilus from different pines and areas; and B. xylophilus strains with different virulence possessed various endophytic bacteria and diverse carbon metabolism which suggested that the endophytic bacteria species and carbon metabolism might be related with the B. xylophilus virulence.  相似文献   

3.
Pine wilt disease (PWD) is native to North America and has spread to Asia and Europe. Lately, mutualistic relationship has been suggested between the pinewood nematode (PWN), Bursaphelenchus xylophilus the causal nematode agent of PWD, and bacteria. In countries where PWN occurs, nematodes from diseased trees were reported to carry bacteria from several genera. However no data exists for the United States. The objective of this study was to evaluate the diversity of the bacterial community carried by B. xylophilus, isolated from different Pinus spp. with PWD in Nebraska, United States. The bacteria carried by PWN belonged to Gammaproteobacteria (79.9%), Betaproteobacteria (11.7%), Bacilli (5.0%), Alphaproteobacteria (1.7%) and Flavobacteriia (1.7%). Strains from the genera Chryseobacterium and Pigmentiphaga were found associated with the nematode for the first time. These results were compared to results from similar studies conducted from other countries of three continents in order to assess the diversity of bacteria with associated with PWN. The isolates from the United States, Portugal and China belonged to 25 different genera and only strains from the genus Pseudomonas were found in nematodes from all countries. The strains from China were closely related to P. fluorescens and the strains isolated from Portugal and USA were phylogenetically related to P. mohnii and P. lutea. Nematodes from the different countries are associated with bacteria of different species, not supporting a relationship between PWN with a particular bacterial species. Moreover, the diversity of the bacteria carried by the pinewood nematode seems to be related to the geographic area and the Pinus species. The roles these bacteria play within the pine trees or when associated with the nematodes, might be independent of the presence of the nematode in the tree and only related on the bacteria''s relationship with the tree.  相似文献   

4.
Pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causative agent of pine wilt disease (PWD) of pine trees and is transmitted by cerambycid beetles belonging to the genus Monochamus. PWN is believed to have been introduced into Japan from North America at the beginning of the 20th century. In this article, we first provide an outline of the PWD system and the range expansion of PWN in Japan and then review the literature, focusing on the virulence of PWN. Virulence is a heritable trait in PWN, with high virulence being closely related to a high rate of reproduction and within-tree dispersal. When two PWN isolates with different virulence levels are inoculated into pine seedlings, the more virulent nematodes always dominate in dead seedlings. In a laboratory setting, many more virulent nematodes board the insect vectors than avirulent ones. The age at which vectors transmit the most abundant PWNs to pine twigs changes during the course of a PWD epidemic. However, the relation between virulence and transmission of PWN remains as yet relatively unknown. Such information would enable ecologists to predict the evolution of the PWD system. In this review we also compare ecological traits between the PWN and the avirulent congener, B. mucronatus.  相似文献   

5.
In the review, the life cycles and mutualistic relations within the nematode-bacteria associations are analyzed: nematodes Bursaphelenchus xylophilus (PWN) with bacteria Pseudomonas fluorescens, Bacillus spp., Burkholderia arboris; entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis with bacteria of the genera Xenorhabdus and Photorhabdus. The life cycles of PWN and EPN show traits of the primary detrital trophism. Both cycles include invasion of the living host and are completed with death of the host, which is an obligate condition for dispersal of the nematodes and their associated bacteria. Nematodes and bacteria stimulate each other to reproduce fast; the diverse forms of their interactions are considered, including direct and indirect ones (via the plant or insect host). Bacteria of both mutualistic associations produce siderophores and antibiotics that prevent reproduction of other pathogenic and putrefactive microorganisms. Ectosymbiotic bacteria of PWN may be recruited into the association from among the inhabitants of the mucous cover of the nematode body, as well as from the pathogenic bacterial biota of local conifers; thus the PWN and bacteria are facultative synergists in the phytopathogenic process. Endosymbiotic bacteria of EPN are not capable of independent life; they have developed obligate associations with highly specific nematode hosts.  相似文献   

6.
林峰  赵博光 《应用生态学报》2005,16(12):2476-2478
1.引言松材线虫病(Bursaphelenchus xylophilus)是松树的一种毁灭性病害,在日本、中国、韩国和北美、尼日利亚和葡萄牙等国家蔓延,造成了巨大经济损失,其中以日本和中国受害最重.一直认为松材线虫是引起该病的唯一病原,但近十几年来的研究发现,细菌在致病过程中可能起着重要作用,相继从病木和松材线虫体上分离到能对黑松苗有致萎活性的细菌.赵博光等首次根据实验提出松材线虫病是线虫和细菌共同侵染引起的复合侵染病害的假说,并在以后的试验中得到了验证.关于松材线虫对其细菌繁殖的影响研究鲜有报道.本试验采用从感病松树上分离并鉴定了的细菌菌株中选取假单胞属7株、其它属的细菌菌株3株,  相似文献   

7.
In pine wilt disease (PWD), embolized tracheids arise after virulent pine wood nematodes (PWN), Bursaphelenchus xylophilus, invade the resin canal of pine tree; infected pine trees finally die from significant loss of xylem water conduction. We used a compact magnetic resonance imaging system with a U-shaped radio frequency (rf) probe coil to reveal the developmental process of the xylem dysfunction in PWD. Multiple cross-sectional slices along the stem axis were acquired to periodically monitor the total water distribution in each 1-year-old main stem of two 3-year-old Japanese black pines (Pinus thunbergii) after inoculation of PWN. During the development of PWD, a mass of embolized tracheids around the inoculation site rapidly enlarged in all directions. This phenomenon occurred before the significant decrease of water potential. Some patch-like embolisms were observed at all monitoring positions during the experimental period. Patchy embolisms in a cross-section did not expand, but the number of patches increased as time passed. When the significant decrease of water potential occurred, the xylem dysfunctional rate near the inoculation point exceeded 70%. Finally, almost the whole area of xylem was abruptly embolized in all cross-sections along the stem. This phenomenon occurred just after water conduction was mostly blocked in one of the cross-sections. Thus, it appears that the simultaneous expansion of embolized conduit clusters may be required to induce a large-scale embolism across the functional xylem. Consequently, xylem dysfunction in infected trees may be closely related to both the distribution and the number of PWN in the pine stem.  相似文献   

8.
The pine wilt disease caused by Bursaphelenchus xylophilus (BX), also known as the pine wood nematode (PWN), is the most devastating disease of pine trees. In this work, a high molecular weight B. xylophilus cellulase antigen (BXCa) was purified from total homogenates of nematodes. BXCa was found to be able to hydrolyze carboxymethyl cellulose (CMC) efficiently (155.65 U/mg) and to have an approximate molecular mass of 58.9 kDa. We harvested anti-BXCa antibodies and performed immunocytochemical assays, which revealed the localization of cellulase pools in the esophageal gland cells of the PWN. It was also discovered that cellulase was secreted from the stylet and was used to hydrolyze cellulose to facilitate the PWN entering host cells. These results are consistent with other plant parasitical nematodes. Interestingly, strong fluorescence signals from cellulase staining were observed in tracheid cells in naturally infected pine wood, in addition to ray cells and the resin canal zone. These results strongly suggest that the cellulase released by the PWN is one of the pathogenic substances of pine wilt disease and is responsible for the development of the early symptoms of the disease.  相似文献   

9.
Abstract:  Transmission of the pinewood nematode (PWN) Bursaphelenchus xylophilus (Steiner & Bührer) Nickle to Pinus pinaster Aiton branches through feeding wounds of its vector in Portugal, Monochamus galloprovincialis Olivier, was studied under laboratory conditions. All the B. xylophilus -infected beetles transmitted nematodes to branches they fed. The transmission was more frequent during the first 6 weeks after emergence, with transmission peaks during the second and the sixth week. The adult M. galloprovincialis transmitted nematodes for a mean of 5 weeks, independently of the beetle's sex or longevity. No relation was found between beetle feeding intensity and effective transmission of B. xylophilus to the branches. The nematode transmission ceased after the ninth week, even in insects which still had B. xylophilus on their bodies. The longevity of the nematode-free insects (control group) was slightly higher than the B. xylophilus -infected beetles, although with no significant difference. The results emphasize the necessity to control the immature stages of M. galloprovincialis prior to emergence and develop efficient strategies to capture and eliminate the recently emerged beetles, as majority of the nematode infection of healthy pine trees occurs during a short period of few weeks after beetle emergence.  相似文献   

10.
Population dynamics of the pine wood nematode Bursaphelenchus xylophilus (PWN) and its accompanying bacteria in non-inoculated twigs along with the process of the disease was observed in Japanese black pine, Pinus thunbergii inoculated with PWN. In the non-inoculated twigs, bacteria could be detected when only a few pine needles became yellow. Once most needles had turned yellow or brown, the nematode began to appear and the bacterial populations increased. At the late stages of the disease when the inoculated pine was dying and the needles were totally wilted, the populations of both nematode and bacteria started to increase rapidly. Only a few bacterial species were found at the early stages. As the disease process advanced, the bacterial populations increased rapidly in both population size and variety of the species. However, Pseudomonas fluorescens , P. sp., Pantoea sp. and Sphimgomenas pancimobilis, remained dominant.  相似文献   

11.
Scanning electron microscopy (SEM) was applied to paraffin-embedded wood sections to study the histopathology of pine seedlings inoculated with the pinewood nematode (PWN), Bursaphelenchus xylophilus. The sections, which had been previously prepared and observed by light microscopy (LM) on glass slides, were originally obtained from experiments in which pine seedlings had been inoculated with PWN. The cover glass was removed by soaking the glass slide in xylene for 3 to 5 days. The glass slides were cut into small pieces so that each piece contained one wood section. Each piece of the glass slide was attached with double adhesive tape to an aluminum stub. The specimens were sputter-coated with gold and examined with a scanning electron microscope (JEOL-JSM 5200). Compared to LM (as documented in previous reports) SEM provided greater depth of focus and resolution of the damaged wood tissues, nematodes and associated bacteria. SEM made it possible to observe the relationship between bacterial distribution and nematode distribution in wood tissues. SEM observations also suggested the possibility of documenting the death of ray cells and other parenchyma cells in relation to disease development. Finally, the current study of PWN in pine seedlings demonstrated that glass slides prepared for LM observations more than 25 years earlier could be successfully processed for examination by SEM.  相似文献   

12.
松材线虫(Bursaphelenchus xylophilus)是一种松树上发生严重的有害生物,它不仅改变了生态系统的结构和功能,而且改变了系统内生物的原有特性和地理分布。松材线虫及其引起的松树萎蔫病已对中国马尾松林(Pinus massoniana)的树木成长产生了巨大影响。基于此,使用"每木调查法"和"样方法",对松材线虫入侵后的马尾松林内松树的各项生长指标因子进行了调查分析,其结果表明:自松材线虫1996年入侵所调查地区的松林后,对于受害松树不管是伐倒木(被伐倒)还是倒木(自然倒地),其对周围马尾松胸径生长的影响是显著的,而对树高生长的影响不显著。最后建立了一系列的灰色和灰色-马尔可夫链数学模型,其预测结果精度高,可用于今后受害和未受害区马尾松林分因子的生长预测。  相似文献   

13.
The pine wood nematode (PWN) Bursaphelenchus xylophilus is the causal agent of pine wilt disease (PWD), a xylem restricting disease of pine trees. PWN, a native of North America where it very rarely kills native pine trees, has spread internationally killing host trees in China, Japan, Korea, Taiwan and Portugal, with isolated incursions into Spain. Based on the locations where tree mortality has been recorded, it appears that pine trees growing in hot, dry conditions are more susceptible to pine wilt disease. This paper describes the ETpN model, an evapo-transpiration model (previously developed by Forest Research), which has been modified to incorporate the presence of PWN inside a tree and which predicts the regions of Europe that are likely to succumb to PWD. ETpN acts independently of the vector beetle (Monochamus spp.), predicting the likelihood of PWD on the assumption that a tree in a particular region has already been infested by the pine wood nematode. Different regions across Europe are included to investigate and demonstrate how different climates affect PWD incidence significantly. Simplified, “lite” and latency models have been developed to allow a non-specialist user to determine respectively the risk of PWD at a particular location and the likelihood of delays (latency) in expression of wilt symptoms.  相似文献   

14.
化学通讯在松材线虫侵染和扩散中的作用   总被引:6,自引:1,他引:5  
松材线虫为外来入侵种 ,由其引起的松材线虫病正在我国迅速扩散蔓延 ,造成我国部分地区松林资源的毁灭性破坏。松材线虫病的发生和流行与媒介天牛、寄主植物、共生真菌和细菌密切相关 ,松材线虫 -墨天牛 -松树 -共生微生物之间存在着广泛的化学联系 ,它们通过化学互作 ,调控松材线虫的行为 ,影响松材线虫的侵染和扩散  相似文献   

15.
Pine wilt disease (PWD) is a complex disease integrating three major agents: the pathogenic agent, the pinewood nematode Bursaphelenchus xylophilus; the insect-vector Monochamus spp.; and the host pine tree, Pinus sp. Since the early 80''s, the notion that another pathogenic agent, namely bacteria, may play a role in PWD has been gaining traction, however the role of bacteria in PWD is still unknown. The present work supports the possibility that some B. xylophilus-associated bacteria may play a significant role in the development of this disease. This is inferred as a consequence of: (i) the phenotypic characterization of a collection of 35 isolates of B. xylophilus-associated bacteria, in different tests broadly used to test plant pathogenic and plant growth promoting bacteria, and (ii) greenhouse experiments that infer the pathogenicity of these bacteria in maritime pine, Pinus pinaster. The results illustrate the presence of a heterogeneous microbial community associated with B. xylophilus and the traits exhibited by at least, some of these bacteria, appear to be related to PWD symptoms. The inoculation of four specific B. xylophilus-associated bacteria isolates in P. pinaster seedlings resulted in the development of some PWD symptoms suggesting that these bacteria likely play an active role with B. xylophilus in PWD.  相似文献   

16.
松材线虫生防细菌的筛选、鉴定及其毒性因子的初步研究   总被引:4,自引:0,他引:4  
从河南南阳不同农田的植物根部采取土壤样本,共分离获得了198株细菌。通过毒性测试和平板生测从中筛选出松材线虫生防细菌6株,其中NS-3菌株对松材线虫的杀灭活性最高。结合该菌株的形态学、生理学特征及16S rDNA序列分析等结果将该菌株归为芽孢杆菌属,命名为Bacillus sp.strain NS-3。将该细菌液体培养的上清液和上清蛋白粗提物分别处理松材线虫48h后线虫的死亡率分别达到50%和100%;线虫死亡后虫体消解。然而,细菌的上清蛋白粗提物经煮沸变性后,基本丧失了对松材线虫的侵染活性,结果显示细菌Bacillus sp.strain NS-3的杀线虫活性物质主要要存在于细菌培养上清液中,并且为热不稳定性物质。  相似文献   

17.
18.
Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37 degrees C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.  相似文献   

19.
欧阳革成  张润杰 《生态学报》2005,25(10):2658-2661
松材线虫病是重要的森林病害,该病与松材线虫携带的病原菌和松树的内生病原菌密切相关。在室内条件下,初步研究了从人工培养的松材线虫上分离到的菌株C对松材线虫病的抑制作用。在健康的水培马尾松枝上分别接种松材线虫接种液、菌株C接种液、松材线虫与菌株C的混合接种液。处理后松枝的相对重量与相对蒸腾强度均为:接种菌株C的松枝>混合接种的松枝>接种线虫的松枝。处理后15d时,接种线虫的松枝与混合接种的松枝的相对重量有显著性差异(p<0.05)。接种线虫松枝的存活期显著短于其它处理松枝的存活期(p<0.05)。接种菌株C的针叶褐变株数少于接种线虫的松枝,两者有显著性差异(p<0.05)。从接种线虫和混合接种的所有松枝中都分离到松材线虫,且分离出的线虫量没有显著性差异。将8个月生的断根马尾松苗插入菌株C的查彼培养液的滤液中培养,6d后松苗的平均感病指数和感病株率均显著少于对照(p<0.05)。这表明,菌株C对松材线虫病有抑制作用,菌株C培养液中产生的某些代谢物质有利于松苗的抗病和存活。菌株C可能抑制了松树上的内生病原菌和松材线虫携带的病原微生物,或提高了松树的生长力和抗逆能力。经电子显微镜观察并参照AP I 20 C AUX鉴定系统鉴定,菌株C为季也蒙假丝酵母C and id a gu ilierm ond ii。  相似文献   

20.
A diverse and active microbial community in the stratal waters of the Daqing oil field (China), which is exploited with the use of water-flooding, was found to contain aerobic chemoheterotrophic bacteria (including hydrocarbon-oxidizing ones) and anaerobic fermentative, sulfate-reducing, and methanogenic bacteria. The aerobic bacteria were most abundant in the near-bottom zones of injection wells. Twenty pure cultures of aerobic saprotrophic bacteria were isolated from the stratal waters. Under laboratory conditions, they grew at temperatures, pH, and salinity values typical of the stratal water from which they were isolated. These isolates were found to be able to utilize crude oil and a wide range of hydrocarbons, fatty acids, and alcohols. Phylogenetic analysis carried out with the use of complete 16S rRNA sequences showed that the isolates could be divided into three major groups: gram-positive bacteria with a high and a low G + C content of DNA and gram-negative bacteria of the gamma-subclass of the Proteobacteria. Gram-positive isolates belonged to the genera Bacillus, Brevibacillus, Rhodococcus, Dietzia, Kocuria, Gordonia, Cellulomonas, and Clavibacter. Gram-negative isolates belonged to the genera Pseudomonas and Acinetobacter. In their 16S rRNA sequences, many isolates were similar to the known microbial species and some probably represented new species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号