首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The practice of ecological restoration is a primary option for increasing levels of biodiversity by modifying human-altered ecosystems. The scientific discipline of restoration ecology provides conceptual guidance and tests of restoration strategies, with the ultimate goal of predictive landscape restoration. I construct a conceptual model for restoration of biodiversity, based on site-level (e.g., biotic and abiotic) conditions, landscape (e.g, interpatch connectivity and patch geometry), and historical factors (e.g., species arrival order and land-use legacies). I then ask how well restoration ecology has addressed the various components of this model. During the past decade, restoration research has focused largely on how the restoration of site-level factors promotes species diversity-primarily of plants. Relatively little attention has been paid to how landscape or historical factors interplay with restoration, how restoration influences functional and genetic components of biodiversity, or how a suite of less-studied taxa might be restored. I suggest that the high level of variation seen in restoration outcomes might be explained, at least in part, by the contingencies placed on site-level restoration by landscape and historical factors and then present a number of avenues for future research to address these often ignored linkages in the biodiversity restoration model. Such work will require carefully conducted restoration experiments set across multiple sites and many years. It is my hope that by considering how space and time influence restoration, we might move restoration ecology in a direction of stronger prediction, conducted across landscapes, thus providing feasible restoration strategies that work at scales over which biodiversity conservation occurs.  相似文献   

2.
Ward  Tockner 《Freshwater Biology》2001,46(6):807-819
1. A broadened concept of biodiversity, encompassing spatio‐temporal heterogeneity, functional processes and species diversity, could provide a unifying theme for river ecology. 2. The theoretical foundations of stream ecology often do not reflect fully the crucial roles of spatial complexity and fluvial dynamics in natural river ecosystems, which has hindered conceptual advances and the effectiveness of efforts at conservation and restoration. 3. Inclusion of surface waters (lotic and lentic), subsurface waters (hyporheic and phreatic), riparian systems (in both constrained and floodplain reaches), and the ecotones between them (e.g. springs) as interacting components contributing to total biodiversity, is crucial for developing a holistic framework of rivers as ecosystems. 4. Measures of species diversity, including alpha, beta and gamma diversity, are a result of disturbance history, resource partitioning, habitat fragmentation and successional phenomena across the riverine landscape. A hierarchical approach to diversity in natural and altered river‐floodplain ecosystems will enhance understanding of ecological phenomena operating at different scales along multidimensional environmental gradients. 5. Re‐establishing functional diversity (e.g. hydrologic and successional processes) across the active corridor could serve as the focus of river conservation initiatives. Once functional processes have been reconstituted, habitat heterogeneity will increase, followed by corresponding increases in species diversity of aquatic and riparian biota.  相似文献   

3.
挠力河流域平原区湿地景观完整性评价   总被引:2,自引:0,他引:2  
李玉凤  刘红玉  朱丽娟 《生态学报》2009,29(9):4857-4864
探讨一种景观完整性评价方法对湿地管理和保护非常重要.利用遥感和GIS技术,选择10个指标构建景观完整性指数,对挠力河流域平原区开展景观完整性评价.结果显示,1950年挠力河流域洪泛平原中的湿地景观完整性远好于2005年;人类活动影响越强的区域湿地景观完整性越差;2005年仅河岸带湿地景观比其它区域具有较好的景观完整性.由于景观完整性指数包涵了必要的景观结构和功能完整性特征信息,对评价景观尺度生态完整性,诊断生态受损区域,保护、恢复和管理湿地具有重要作用.  相似文献   

4.
Vital Landscape Attributes: Missing Tools for Restoration Ecology   总被引:9,自引:0,他引:9  
Twenty-three “vital ecosystem attributes” (VEAs) were previously proposed to aid in quantitative evaluation of whole ecosystem structure, composition, and functional complexity over time. We here introduce a series of 16 quantifiable attributes for use at a higher spatial scale and ecological organizational level, the landscape. “Vital landscape attributes” (VLAs) should be useful in evaluating the results of ecological restoration or rehabilitation undertaken with a landscape perspective, provided that clear definitions and boundaries are agreed upon for the different spatial and ecological entities involved. Like VEAs, VLAs should be sensitive to changes wrought by human as well as to nonhuman factors leading to ruptures in flow processes or vegetation “switches.” They should be applicable over a wide range of landscape types and therefore aid in conducting rigorous interlandscape comparisons. We present three groups of VLAs: (1) landscape structure and biotic composition, (2) functional interactions among ecosystems within the landscape, and (3) degree, type, and causes of landscape fragmentation and degradation. Ecotones between ecosystems are touched upon by several different VLAs. Because conflicting terminology abounds in this area, we append a glossary defining the problematic terms used.  相似文献   

5.
Riparian ecosystems are hotspots for ecological restoration globally because of the disproportionately high value and diversity of the ecological functions and services which they support and their high level of vulnerability to anthropogenic pressures, including climate change. Degraded riparian ecosystems are associated with many serious anthropogenic problems including increased river bank erosion, water quality decline, increased flood risk and biodiversity loss. Conventional approaches to riparian restoration, however, are frequently too narrow in focus – spatially, temporally, ecologically and socially – to adequately or equitably address the goals to which they aspire. Climate change, along with the intensification of other human pressures, means that static, historically oriented restoration objectives focused solely on prior ecological composition and structure are unlikely to be defensible, achievable or appropriate in the Anthropocene. Conversely, open‐ended restoration strategies lacking clear objectives and targets entail substantial risks such as significant biodiversity losses, especially of native species. A functional approach to planning and prioritising riparian restoration interventions offers an intermediate alternative that is still framed by measurable targets but allows for greater consideration of broader temporal, spatial and cultural influences. Here, we provide an overview of major riparian functions across multiple scales and identify key drivers of, and threats to, these. We also discuss practical approaches to restoring and promoting riparian functions and highlight some key concerns for the development of policy and management of robust riparian restoration in the Anthropocene.  相似文献   

6.
7.
景观生态恢复与重建是区域生态安全格局构建的关键途径   总被引:82,自引:8,他引:74  
生态恢复与重建是跨尺度、多等级的问题,其主要表现层次应是生态系统(生物群落)、景观,甚至区域,而不能仅仅局限于生态系统。景观的恢复与重建是针对景观退化而言,景观退化从表现形式上可分为景观结构退化与景观功能退化。景观结构退化即景观破碎化,是指景观中各生态系统之间的各种功能联系断裂或连接度(connectivity)减少的现象;而鲜受重视的景观聚集(aggregation)在很多情况下同样具有造成景观退化的负面效应。景观功能退化是指与前一状态相比,由于景观异质性的改变导致景观的稳定性与服务功能等的衰退现象。景观恢复是指恢复原生生态系统间被人类活动终止或破坏的相互联系;景观生态建设应以景观单元空间结构的调整和重新构建为基本手段,包括调整原有的景观格局,引进新的景观组分等,以改善受胁或受损生态系统的功能,提高其基本生产力和稳定性,将人类活动对于景观演化的影响导入良性循环。二者的综合,统称为景观生态恢复与重建,是构建安全的区域生态格局的关键途径。其目标是建立一种由结构合理、功能高效、关系协调的模式生态系统(model ecosystem)组成的模式景观(model landscape),以实现生态系统健康、生态格局安全和景观服务功能持续,以3S(RS,GPS,GIS)技术为支撑的GAP(ageographic approach to protect biological diversity)分析将为大尺度景观恢复的诊断、评价、规划提供重要的手段。景观中某些关键性点、位置或关系的破坏对整个生态安全具有毁灭性的后果,研究景观层次上的生态恢复模式及恢复技术、选择恢复的关键位置、构筑生态安全格局已成为景观生态学家关注的焦点。  相似文献   

8.
Representatives from agencies involved in natural resource management in the Murray‐Darling Basin gathered for a workshop in November 2010 to develop a vision for improved monitoring and reporting of riparian restoration projects. The resounding message from this workshop was that the effectiveness of riparian restoration depends on having sound, documented and agreed evidence on the ecological responses to restoration efforts. Improving our capacity to manage and restore riparian ecosystems is constrained by (i) a lack of ecological evidence on the effects of restoration efforts, and (ii) short‐termism in commitment to restoration efforts, in funding of monitoring and in expected time spans for ecosystem recovery. Restoration at the effective spatial scope will invariably require a long‐term commitment by researchers, funding agencies, management agencies and landholders. To address the knowledge gaps that constrain riparian restoration in the Basin, participants endorsed four major fields for future research: the importance of landscape context to restoration outcomes; spatio‐temporal scaling of restoration outcomes; functional effects of restoration efforts; and developing informative and effective indicators of restoration. To improve the monitoring and restoration of riparian zones throughout the Basin, participants advocated an integrated approach: a hierarchical adaptive management framework that incorporates long‐term ecological research.  相似文献   

9.
Restoring streams in an urbanizing world   总被引:1,自引:0,他引:1  
1. The world's population is increasingly urban, and streams and rivers, as the low lying points of the landscape, are especially sensitive to and profoundly impacted by the changes associated with urbanization and suburbanization of catchments. 2. River restoration is an increasingly popular management strategy for improving the physical and ecological conditions of degraded urban streams. In urban catchments, management activities as diverse as stormwater management, bank stabilisation, channel reconfiguration and riparian replanting may be described as river restoration projects. 3. Restoration in urban streams is both more expensive and more difficult than restoration in less densely populated catchments. High property values and finely subdivided land and dense human infrastructure (e.g. roads, sewer lines) limit the spatial extent of urban river restoration options, while stormwaters and the associated sediment and pollutant loads may limit the potential for restoration projects to reverse degradation. 4. To be effective, urban stream restoration efforts must be integrated within broader catchment management strategies. A key scientific and management challenge is to establish criteria for determining when the design options for urban river restoration are so constrained that a return towards reference or pre‐urbanization conditions is not realistic or feasible and when river restoration presents a viable and effective strategy for improving the ecological condition of these degraded ecosystems.  相似文献   

10.
1. The restoration of native, forested riparian habitats is a widely accepted method for improving degraded streams. Little is known, however, about how the width, extent and continuity of forested vegetation along stream networks affect stream ecosystems. 2. To increase the likelihood of achieving restoration goals, restoration practitioners require quantitative tools to guide the development of restoration strategies in different catchment settings. We present an empirically based model that establishes a relationship between a ‘stress’ imposed at different locations along a stream by the spatial pattern of land cover within catchments, and the response of biologically determined ecosystem characteristics to this stress. The model provides a spatially explicit, quantitative framework for predicting the effects of changes in catchment land cover composition and spatial configuration on specific characteristics of stream ecosystems. 3. We used geospatial datasets and biological data for attached algae and benthic macroinvertebrates in streams to estimate model parameters for 40 sites in 33 distinct catchments within the mid‐Atlantic Piedmont region of the eastern U.S. Model parameters were estimated using a genetic optimisation algorithm. R2 values for the resulting relationships between catchment land cover and biological characteristics of streams were substantially improved over R2 values for spatially aggregated regression models based on whole‐catchment land cover. 4. Using model parameters estimated for the mid‐Atlantic Piedmont, we show how the model can be used to guide restoration planning in a case study of a small catchment. The model predicts the quantitative change in biological characteristics of the stream, such as indices of species diversity and species composition, that would occur with the implementation of a hypothetical restoration project.  相似文献   

11.
12.
The safeguard of riparian ecosystems is a major field of study in the understanding and maintenance of the ecological health of rivers. Vegetation communities found on these ecotones ensure essential functions such as limitation of river bank erosion and protection of rivers from pollutants. The aim of our study is to investigate the potential for natural regeneration of trees on river banks after passive restoration. We have also studied the influence of landscape on recolonization through the analysis of the influence of hedge networks. Our study takes place on headwaters in Normandy (France) on Vallée‐Aux‐Berges, a stream, which has been passively restored for the last 6 years. As passive restoration removes stresses (heavy trampling and grazing) caused by cattle on river banks, we expect it to help the growth of natural plant communities. The condition of this stream—from the start of restoration work to the present—is compared to another one in the same catchment considered to be ecologically healthy. Our results suggest that passive restoration leads to an increase in tree cover on river banks and contributes to the improvement of the banks' physical integrity. Landscape structure seems to be a major factor for this recolonization: the more the stream is surrounded by hedge networks, the more the recolonization by trees on banks is effective. These results indicate that the influence of landscape structure should be considered in future restoration management in similar headwaters.  相似文献   

13.
Riparian ecosystems in the 21st century are likely to play a critical role in determining the vulnerability of natural and human systems to climate change, and in influencing the capacity of these systems to adapt. Some authors have suggested that riparian ecosystems are particularly vulnerable to climate change impacts due to their high levels of exposure and sensitivity to climatic stimuli, and their history of degradation. Others have highlighted the probable resilience of riparian ecosystems to climate change as a result of their evolution under high levels of climatic and environmental variability. We synthesize current knowledge of the vulnerability of riparian ecosystems to climate change by assessing the potential exposure, sensitivity, and adaptive capacity of their key components and processes, as well as ecosystem functions, goods and services, to projected global climatic changes. We review key pathways for ecological and human adaptation for the maintenance, restoration and enhancement of riparian ecosystem functions, goods and services and present emerging principles for planned adaptation. Our synthesis suggests that, in the absence of adaptation, riparian ecosystems are likely to be highly vulnerable to climate change impacts. However, given the critical role of riparian ecosystem functions in landscapes, as well as the strong links between riparian ecosystems and human well-being, considerable means, motives and opportunities for strategically planned adaptation to climate change also exist. The need for planned adaptation of and for riparian ecosystems is likely to be strengthened as the importance of many riparian ecosystem functions, goods and services will grow under a changing climate. Consequently, riparian ecosystems are likely to become adaptation ‘hotspots’ as the century unfolds.  相似文献   

14.
Riverine landscape dynamics and ecological risk assessment   总被引:7,自引:0,他引:7  
1. The aim of ecological risk assessments is to evaluate the likelihood that ecosystems are adversely affected by human‐induced disturbance that brings the ecosystem into a new dynamic equilibrium with a simpler structure and lower potential energy. The risk probability depends on the threshold capacity of the system (resistance) and on the capacity of the system to return to a state of equilibrium (resilience). 2. There are two complementary approaches to assessing ecological risks of riverine landscape dynamics. The reductionist approach aims at identifying risk to the ecosystem on the basis of accumulated data on simple stressor–effect relationships. The holistic approach aims at taking the whole ecosystem performance into account, which implies meso‐scale analysis. 3. Landscape patterns and their dynamics represent the physical framework of processes determining the ecosystem's equilibrium. Assessing risks of landscape dynamics to riverine ecosystems implies addressing complex interactions of system components (e.g. population dynamics and biogeochemical cycles) occurring at multiple scales of space and time. 4. One of the most important steps in ecological risk assessment is to establish clear assessment endpoints (e.g. vital ecosystem and landscape attributes). Their formulation must recognise that riverine ecosystems are dynamic, structurally complex and composed of both deterministic and stochastic components. 5. Remote sensing (geo)statistics and geographical information systems are primary tools for quantifying spatial and temporal components of riverine ecosystem and landscape attributes. 6. The difficulty to experiment at the riverine landscape level means that ecological risk management is heavily dependent on models. Current models are targeted towards simulating ecological risk at levels ranging from single species to habitats, food webs and meta‐populations to ecosystems and entire riverine landscapes, with some including socio‐economic considerations.  相似文献   

15.
1.  The provision of environmental flows and the removal of barriers to water flow are high priorities for restoration where changes to flow regimes have caused degradation of riverine ecosystems. Nevertheless, flow regulation is often accompanied by changes in catchment and riparian land-use, which also can have major impacts on river health via local habitat degradation or modification of stream energy regimes.
2.  The challenges are determining the relative importance of flow, land-use and other impacts as well as deciding where to focus restoration effort. As a consequence, flow, catchment and riparian restoration efforts are often addressed in isolation. River managers need decision support tools to assess which flow and catchment interventions are most likely to succeed and, importantly, which are cost-effective.
3.  Bayesian networks (BNs) can be used as a decision support tool for considering the influence of multiple stressors on aquatic ecosystems and the relative benefits of various restoration options. We provide simple illustrative examples of how BNs can address specific river restoration goals and assist with the prioritisation of flow and catchment restoration options. This includes the use of cost and utility functions to assist decision makers in their choice of potential management interventions.
4.  A BN approach facilitates the development of conceptual models of likely cause and effect relationships between flow regime, land-use and river conditions and provides an interactive tool to explore the relative benefits of various restoration options. When combined with information on the costs and expected benefits of intervention, one can derive recommendations about the best restoration option to adopt given the network structure and the associated cost and utility functions.  相似文献   

16.
Restoration ecologists use reference information to define restoration goals, determine the restoration potential of sites, and evaluate the success of restoration efforts. Basic to the selection and use of reference information is the need to understand temporal and spatial variation in nature. This is a challenging task: variation is likely to be scale dependent; ecosystems vary in complex ways at several spatial and temporal scales; and there is an important interaction between spatial and temporal variation. The two most common forms of reference information are historical data from the site to be restored and contemporary data from reference sites (sites chosen as good analogs of the site to be restored). Among the problems of historical data are unmeasured factors that confound the interpretation of historical changes observed. Among the problems of individual reference sites is the difficulty of finding or proving a close match in all relevant ecological dimensions. Approximating and understanding ecological variation will require multiple sources of information. Restoration, by its inherently experimental nature, can further the understanding of the distribution, causes, and functions of nature's variation.  相似文献   

17.
Fire plays a fundamental role in the ecology of Araucaria-Nothofagus forests. This paper highlights the utility of dendrochronological techniques in providing the historical reference conditions to guide ecological restoration. In the Araucarian region human activity has dramatically changed the fire frequency in the Araucaria-Nothofagus forest ecosystems. Although further critical evaluation is required, our preliminary data show that, compared with the Native American period (pre-1883), there was widespread burning of forests associated with the subsequent Euro-Chilean settlement phase. Vast areas of subalpine forest were deliberately burned to increase pasture for cattle ranching. This process is documented by a major increase in the frequency of fires in the forested Araucaria-Nothofagus landscape during the 20th century. Prior to the 1880s the fire regime was characterized by infrequent catastrophic fires with long intervening periods of stability. The immediate reduction of human-induced fire is necessary to move these altered forest ecosystems towards the range of natural structural conditions and reestablish the historical variability of this ecological process. A better understanding of the fire ecology seems crucial in developing strategies for the restoration and management of these fire-dependent forest ecosystems.  相似文献   

18.
Rivers are conduits for materials and energy; this, the frequent and intense disturbances that these systems experience, and their narrow, linear nature, create problems for conservation of biodiversity and ecosystem functioning in the face of increasing human influence. In most parts of the world, riparian zones are highly modified. Changes caused by alien plants — or environmental changes that facilitate shifts in dominance creating novel ecosystems — are often important agents of perturbation in these systems. Many restoration projects are underway. Objective frameworks based on an understanding of biogeographical processes at different spatial scales (reach, segment, catchment), the specific relationships between invasive plants and resilience and ecosystem functioning, and realistic endpoints are needed to guide sustainable restoration initiatives. This paper examines the biogeography and the determinants of composition and structure of riparian vegetation in temperate and subtropical regions and conceptualizes the components of resilience in these systems. We consider changes to structure and functioning caused by, or associated with, alien plant invasions, in particular those that lead to breached abiotic‐ or biotic thresholds. These pose challenges when formulating restoration programmes. Pervasive and escalating human‐mediated changes to multiple factors and at a range of scales in riparian environments demand innovative and pragmatic approaches to restoration. The application of a new framework accommodating such complexity is demonstrated with reference to a hypothetical riparian ecosystem under three scenarios: (1) system unaffected by invasive plants; (2) system initially uninvaded, but with flood‐generated incursion of alien plants and escalating invasion‐driven alteration; and (3) system affected by both invasions and engineering interventions. The scheme has been used to derive a decision‐making framework for restoring riparian zones in South Africa and could guide similar initiatives in other parts of the world.  相似文献   

19.
Re-establishing and assessing ecological integrity in riverine landscapes   总被引:17,自引:0,他引:17  
1. River–floodplain systems are among the most diverse and complex ecosystems. The lack of detailed information about functional relationships and processes at the landscape and catchment scale currently hampers assessment of their ecological status.
2. Intensive use and alteration of riverine landscapes by humans have led to severe degradation of river–floodplain systems, especially in highly industrialised countries. Recent water-related regulations and legislation focussing on high standards of ecological integrity back efforts to restore or rehabilitate these systems.
3. Most restoration projects in the past have suffered from a range of deficits, which pertain to project design, the planning process, the integration of associated disciplines, scaling issues and monitoring.
4. The so-called `Leitbild' (i.e. a target vision) assumes a key role in river restoration and the assessment of ecological integrity in general. The development of such a Leitbild requires a multistep approach. Including explicitly the first step that defines the natural, type-specific reference condition (i.e. a visionary as opposed to an operational Leitbild), has great practical advantages for restoration efforts, primarily because it provides an objective benchmark, as is required by the European Water Framework Directive and other legal documents.
5. Clearly defined assessment criteria are crucial for evaluating ecological integrity, especially in the pre- and postrestoration monitoring phases. Criteria that reflect processes and functions should play a primary role in future assessments, so as to preserve and restore functional integrity as a fundamental component of ecological integrity.
6. Case studies on the Kissimmee River (U.S.A.), the Rhine River (Netherlands and Germany), and the Drau River (Austria) are used to illustrate the fundamental principles underlying successful restoration projects of river–floodplain systems.  相似文献   

20.
Alien grass invasions in arid and semi-arid ecosystems are resulting in grass–fire cycles and ecosystem-level transformations that severely diminish ecosystem services. Our capacity to address the rapid and complex changes occurring in these ecosystems can be enhanced by developing an understanding of the environmental factors and ecosystem attributes that determine resilience of native ecosystems to stress and disturbance, and resistance to invasion. Cold desert shrublands occur over strong environmental gradients and exhibit significant differences in resilience and resistance. They provide an excellent opportunity to increase our understanding of these concepts. Herein, we examine a series of linked questions about (a) ecosystem attributes that determine resilience and resistance along environmental gradients, (b) effects of disturbances like livestock grazing and altered fire regimes and of stressors like rapid climate change, rising CO2, and N deposition on resilience and resistance, and (c) interacting effects of resilience and resistance on ecosystems with different environmental conditions. We conclude by providing strategies for the use of resilience and resistance concepts in a management context. At ecological site scales, state and transition models are used to illustrate how differences in resilience and resistance influence potential alternative vegetation states, transitions among states, and thresholds. At landscape scales management strategies based on resilience and resistance—protection, prevention, restoration, and monitoring and adaptive management—are used to determine priority management areas and appropriate actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号